--- a/src/HOL/Set.thy Wed Jan 10 13:35:56 2018 +0100
+++ b/src/HOL/Set.thy Wed Jan 10 15:21:49 2018 +0100
@@ -20,19 +20,19 @@
and Collect_mem_eq [simp]: "Collect (\<lambda>x. member x A) = A"
notation
- member ("op \<in>") and
+ member ("'(\<in>')") and
member ("(_/ \<in> _)" [51, 51] 50)
abbreviation not_member
where "not_member x A \<equiv> \<not> (x \<in> A)" \<comment> "non-membership"
notation
- not_member ("op \<notin>") and
+ not_member ("'(\<notin>')") and
not_member ("(_/ \<notin> _)" [51, 51] 50)
notation (ASCII)
- member ("op :") and
+ member ("'(:')") and
member ("(_/ : _)" [51, 51] 50) and
- not_member ("op ~:") and
+ not_member ("'(~:')") and
not_member ("(_/ ~: _)" [51, 51] 50)
@@ -155,9 +155,9 @@
where "subset_eq \<equiv> less_eq"
notation
- subset ("op \<subset>") and
+ subset ("'(\<subset>')") and
subset ("(_/ \<subset> _)" [51, 51] 50) and
- subset_eq ("op \<subseteq>") and
+ subset_eq ("'(\<subseteq>')") and
subset_eq ("(_/ \<subseteq> _)" [51, 51] 50)
abbreviation (input)
@@ -169,15 +169,15 @@
"supset_eq \<equiv> greater_eq"
notation
- supset ("op \<supset>") and
+ supset ("'(\<supset>')") and
supset ("(_/ \<supset> _)" [51, 51] 50) and
- supset_eq ("op \<supseteq>") and
+ supset_eq ("'(\<supseteq>')") and
supset_eq ("(_/ \<supseteq> _)" [51, 51] 50)
notation (ASCII output)
- subset ("op <") and
+ subset ("'(<')") and
subset ("(_/ < _)" [51, 51] 50) and
- subset_eq ("op <=") and
+ subset_eq ("'(<=')") and
subset_eq ("(_/ <= _)" [51, 51] 50)
definition Ball :: "'a set \<Rightarrow> ('a \<Rightarrow> bool) \<Rightarrow> bool"
@@ -254,7 +254,7 @@
(fn [Const (@{syntax_const "_bound"}, _) $ Free (v, Type (@{type_name set}, _)),
Const (c, _) $
(Const (d, _) $ (Const (@{syntax_const "_bound"}, _) $ Free (v', T)) $ n) $ P] =>
- (case AList.lookup (op =) trans (q, c, d) of
+ (case AList.lookup (=) trans (q, c, d) of
NONE => raise Match
| SOME l => mk v (v', T) l n P)
| _ => raise Match));
@@ -305,7 +305,7 @@
| check (Const (@{const_syntax HOL.conj}, _) $
(Const (@{const_syntax HOL.eq}, _) $ Bound m $ e) $ P, n) =
n > 0 andalso m = n andalso not (loose_bvar1 (P, n)) andalso
- subset (op =) (0 upto (n - 1), add_loose_bnos (e, 0, []))
+ subset (=) (0 upto (n - 1), add_loose_bnos (e, 0, []))
| check _ = false;
fun tr' (_ $ abs) =
@@ -653,7 +653,7 @@
subsubsection \<open>Binary intersection\<close>
abbreviation inter :: "'a set \<Rightarrow> 'a set \<Rightarrow> 'a set" (infixl "\<inter>" 70)
- where "op \<inter> \<equiv> inf"
+ where "(\<inter>) \<equiv> inf"
notation (ASCII)
inter (infixl "Int" 70)
@@ -957,7 +957,7 @@
lemma bex_imageD: "\<exists>x\<in>f ` A. P x \<Longrightarrow> \<exists>x\<in>A. P (f x)"
by auto
-lemma image_add_0 [simp]: "op + (0::'a::comm_monoid_add) ` S = S"
+lemma image_add_0 [simp]: "(+) (0::'a::comm_monoid_add) ` S = S"
by auto