src/HOL/Integ/nat_bin.ML
changeset 14272 5efbb548107d
parent 14271 8ed6989228bb
child 14273 e33ffff0123c
--- a/src/HOL/Integ/nat_bin.ML	Wed Dec 03 10:49:34 2003 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,500 +0,0 @@
-(*  Title:      HOL/nat_bin.ML
-    ID:         $Id$
-    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
-    Copyright   1999  University of Cambridge
-
-Binary arithmetic for the natural numbers
-*)
-
-val nat_number_of_def = thm "nat_number_of_def";
-
-val ss_Int = simpset_of Int_thy;
-
-(** nat (coercion from int to nat) **)
-
-Goal "nat (number_of w) = number_of w";
-by (simp_tac (simpset() addsimps [nat_number_of_def]) 1);
-qed "nat_number_of";
-Addsimps [nat_number_of, nat_0, nat_1];
-
-Goal "Numeral0 = (0::nat)";
-by (simp_tac (simpset() addsimps [nat_number_of_def]) 1); 
-qed "numeral_0_eq_0";
-
-Goal "Numeral1 = (1::nat)";
-by (simp_tac (simpset() addsimps [nat_1, nat_number_of_def]) 1); 
-qed "numeral_1_eq_1";
-
-Goal "Numeral1 = Suc 0";
-by (simp_tac (simpset() addsimps [numeral_1_eq_1]) 1); 
-qed "numeral_1_eq_Suc_0";
-
-Goalw [nat_number_of_def] "2 = Suc (Suc 0)";
-by (rtac nat_2 1); 
-qed "numeral_2_eq_2";
-
-
-(** Distributive laws for "nat".  The others are in IntArith.ML, but these
-    require div and mod to be defined for type "int".  They also need 
-    some of the lemmas proved just above.**)
-
-Goal "(0::int) <= z ==> nat (z div z') = nat z div nat z'";
-by (case_tac "0 <= z'" 1);
-by (auto_tac (claset(), 
-	      simpset() addsimps [div_nonneg_neg_le0, DIVISION_BY_ZERO_DIV]));
-by (case_tac "z' = 0" 1 THEN asm_simp_tac (simpset() addsimps [DIVISION_BY_ZERO]) 1);
- by (simp_tac (simpset() addsimps [numeral_0_eq_0, DIVISION_BY_ZERO_DIV]) 1);
-by (auto_tac (claset() addSEs [nonneg_eq_int], simpset()));
-by (rename_tac "m m'" 1);
-by (subgoal_tac "0 <= int m div int m'" 1);
- by (asm_full_simp_tac 
-     (simpset() addsimps [numeral_0_eq_0, pos_imp_zdiv_nonneg_iff]) 2);
-by (rtac (inj_int RS injD) 1);
-by (Asm_simp_tac 1);
-by (res_inst_tac [("r", "int (m mod m')")] quorem_div 1);
- by (Force_tac 2);
-by (asm_full_simp_tac 
-    (simpset() addsimps [nat_less_iff RS sym, quorem_def, 
-	                 numeral_0_eq_0, zadd_int, zmult_int]) 1);
-qed "nat_div_distrib";
-
-(*Fails if z'<0: the LHS collapses to (nat z) but the RHS doesn't*)
-Goal "[| (0::int) <= z;  0 <= z' |] ==> nat (z mod z') = nat z mod nat z'";
-by (case_tac "z' = 0" 1 THEN asm_simp_tac (simpset() addsimps [DIVISION_BY_ZERO]) 1);
- by (simp_tac (simpset() addsimps [numeral_0_eq_0, DIVISION_BY_ZERO_MOD]) 1);
-by (auto_tac (claset() addSEs [nonneg_eq_int], simpset()));
-by (rename_tac "m m'" 1);
-by (subgoal_tac "0 <= int m mod int m'" 1);
- by (asm_full_simp_tac 
-     (simpset() addsimps [nat_less_iff, numeral_0_eq_0, pos_mod_sign]) 2);
-by (rtac (inj_int RS injD) 1);
-by (Asm_simp_tac 1);
-by (res_inst_tac [("q", "int (m div m')")] quorem_mod 1);
- by (Force_tac 2);
-by (asm_full_simp_tac 
-     (simpset() addsimps [nat_less_iff RS sym, quorem_def, 
-		          numeral_0_eq_0, zadd_int, zmult_int]) 1);
-qed "nat_mod_distrib";
-
-
-(** int (coercion from nat to int) **)
-
-(*"neg" is used in rewrite rules for binary comparisons*)
-Goal "int (number_of v :: nat) = \
-\        (if neg (number_of v) then 0 \
-\         else (number_of v :: int))";
-by (simp_tac
-    (ss_Int addsimps [neg_nat, nat_number_of_def, not_neg_nat, int_0]) 1);
-qed "int_nat_number_of";
-Addsimps [int_nat_number_of];
-
-
-(** Successor **)
-
-Goal "(0::int) <= z ==> Suc (nat z) = nat (1 + z)";
-by (rtac sym 1);
-by (asm_simp_tac (simpset() addsimps [nat_eq_iff, int_Suc]) 1);
-qed "Suc_nat_eq_nat_zadd1";
-
-Goal "Suc (number_of v + n) = \
-\       (if neg (number_of v) then 1+n else number_of (bin_succ v) + n)";
-by (simp_tac (ss_Int addsimps [neg_nat, nat_1, not_neg_eq_ge_0, 
-		               nat_number_of_def, int_Suc, 
-		               Suc_nat_eq_nat_zadd1, number_of_succ]) 1);
-qed "Suc_nat_number_of_add";
-
-Goal "Suc (number_of v) = \
-\       (if neg (number_of v) then 1 else number_of (bin_succ v))";
-by (cut_inst_tac [("n","0")] Suc_nat_number_of_add 1);
-by (asm_full_simp_tac (simpset() delcongs [if_weak_cong]) 1); 
-qed "Suc_nat_number_of";
-Addsimps [Suc_nat_number_of];
-
-val nat_bin_arith_setup =
- [Fast_Arith.map_data 
-   (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, simpset} =>
-     {add_mono_thms = add_mono_thms, mult_mono_thms = mult_mono_thms,
-      inj_thms = inj_thms,
-      lessD = lessD,
-      simpset = simpset addsimps [Suc_nat_number_of, int_nat_number_of,
-                                  not_neg_number_of_Pls,
-                                  neg_number_of_Min,neg_number_of_BIT]})];
-
-(** Addition **)
-
-(*"neg" is used in rewrite rules for binary comparisons*)
-Goal "(number_of v :: nat) + number_of v' = \
-\        (if neg (number_of v) then number_of v' \
-\         else if neg (number_of v') then number_of v \
-\         else number_of (bin_add v v'))";
-by (simp_tac (ss_Int addsimps [neg_nat, not_neg_eq_ge_0, nat_number_of_def, 
-		  	       nat_add_distrib RS sym, number_of_add]) 1);
-qed "add_nat_number_of";
-
-Addsimps [add_nat_number_of];
-
-
-(** Subtraction **)
-
-Goal "nat z - nat z' = \
-\       (if neg z' then nat z  \
-\        else let d = z-z' in    \
-\             if neg d then 0 else nat d)";
-by (simp_tac (simpset() addsimps [Let_def, nat_diff_distrib RS sym,
-				  neg_eq_less_0, not_neg_eq_ge_0]) 1);
-by (simp_tac (simpset() addsimps [diff_is_0_eq, nat_le_eq_zle]) 1);
-qed "diff_nat_eq_if";
-
-Goalw [nat_number_of_def]
-     "(number_of v :: nat) - number_of v' = \
-\       (if neg (number_of v') then number_of v \
-\        else let d = number_of (bin_add v (bin_minus v')) in    \
-\             if neg d then 0 else nat d)";
-by (simp_tac (ss_Int delcongs [if_weak_cong]
-		     addsimps [not_neg_eq_ge_0, nat_0,
-			       diff_nat_eq_if, diff_number_of_eq]) 1);
-qed "diff_nat_number_of";
-
-Addsimps [diff_nat_number_of];
-
-
-(** Multiplication **)
-
-Goal "(number_of v :: nat) * number_of v' = \
-\      (if neg (number_of v) then 0 else number_of (bin_mult v v'))";
-by (simp_tac (ss_Int addsimps [neg_nat, not_neg_eq_ge_0, nat_number_of_def, 
-		               nat_mult_distrib RS sym, number_of_mult, 
-			       nat_0]) 1);
-qed "mult_nat_number_of";
-
-Addsimps [mult_nat_number_of];
-
-
-(** Quotient **)
-
-Goal "(number_of v :: nat)  div  number_of v' = \
-\         (if neg (number_of v) then 0 \
-\          else nat (number_of v div number_of v'))";
-by (simp_tac (ss_Int addsimps [not_neg_eq_ge_0, nat_number_of_def, neg_nat, 
-			       nat_div_distrib RS sym, nat_0]) 1);
-qed "div_nat_number_of";
-
-Addsimps [div_nat_number_of];
-
-
-(** Remainder **)
-
-Goal "(number_of v :: nat)  mod  number_of v' = \
-\       (if neg (number_of v) then 0 \
-\        else if neg (number_of v') then number_of v \
-\        else nat (number_of v mod number_of v'))";
-by (simp_tac (ss_Int addsimps [not_neg_eq_ge_0, nat_number_of_def, 
-                               neg_nat, nat_0, DIVISION_BY_ZERO_MOD,
-                               nat_mod_distrib RS sym]) 1);
-qed "mod_nat_number_of";
-
-Addsimps [mod_nat_number_of];
-
-structure NatAbstractNumeralsData =
-  struct
-  val dest_eq		= HOLogic.dest_eq o HOLogic.dest_Trueprop o concl_of
-  val is_numeral	= Bin_Simprocs.is_numeral
-  val numeral_0_eq_0    = numeral_0_eq_0
-  val numeral_1_eq_1    = numeral_1_eq_Suc_0
-  val prove_conv        = Bin_Simprocs.prove_conv_nohyps_novars
-  fun norm_tac simps	= ALLGOALS (simp_tac (HOL_ss addsimps simps))
-  val simplify_meta_eq  = Bin_Simprocs.simplify_meta_eq 
-  end
-
-structure NatAbstractNumerals = AbstractNumeralsFun (NatAbstractNumeralsData)
-
-val nat_eval_numerals = 
-  map Bin_Simprocs.prep_simproc
-   [("nat_div_eval_numerals", ["(Suc 0) div m"], NatAbstractNumerals.proc div_nat_number_of),
-    ("nat_mod_eval_numerals", ["(Suc 0) mod m"], NatAbstractNumerals.proc mod_nat_number_of)];
-
-Addsimprocs nat_eval_numerals;
-
-
-(*** Comparisons ***)
-
-(** Equals (=) **)
-
-Goal "[| (0::int) <= z;  0 <= z' |] ==> (nat z = nat z') = (z=z')";
-by (auto_tac (claset() addSEs [nonneg_eq_int], simpset()));
-qed "eq_nat_nat_iff";
-
-(*"neg" is used in rewrite rules for binary comparisons*)
-Goal "((number_of v :: nat) = number_of v') = \
-\     (if neg (number_of v) then (iszero (number_of v') | neg (number_of v')) \
-\      else if neg (number_of v') then iszero (number_of v) \
-\      else iszero (number_of (bin_add v (bin_minus v'))))";
-by (simp_tac (ss_Int addsimps [neg_nat, not_neg_eq_ge_0, nat_number_of_def, 
-                               eq_nat_nat_iff, eq_number_of_eq, nat_0]) 1);
-by (simp_tac (ss_Int addsimps [nat_eq_iff, nat_eq_iff2, iszero_def]) 1);
-by (simp_tac (simpset () addsimps [not_neg_eq_ge_0 RS sym]) 1);
-qed "eq_nat_number_of";
-
-Addsimps [eq_nat_number_of];
-
-(** Less-than (<) **)
-
-(*"neg" is used in rewrite rules for binary comparisons*)
-Goal "((number_of v :: nat) < number_of v') = \
-\        (if neg (number_of v) then neg (number_of (bin_minus v')) \
-\         else neg (number_of (bin_add v (bin_minus v'))))";
-by (simp_tac (ss_Int addsimps [neg_nat, not_neg_eq_ge_0, nat_number_of_def, 
-                          nat_less_eq_zless, less_number_of_eq_neg, nat_0]) 1);
-by (simp_tac (ss_Int addsimps [neg_eq_less_0, zminus_zless, 
-				number_of_minus, zless_nat_eq_int_zless]) 1);
-qed "less_nat_number_of";
-
-Addsimps [less_nat_number_of];
-
-
-(** Less-than-or-equals (<=) **)
-
-Goal "(number_of x <= (number_of y::nat)) = \
-\     (~ number_of y < (number_of x::nat))";
-by (rtac (linorder_not_less RS sym) 1);
-qed "le_nat_number_of_eq_not_less"; 
-
-Addsimps [le_nat_number_of_eq_not_less];
-
-
-(*Maps #n to n for n = 0, 1, 2*)
-bind_thms ("numerals", [numeral_0_eq_0, numeral_1_eq_1, numeral_2_eq_2]);
-val numeral_ss = simpset() addsimps numerals;
-
-(** Nat **)
-
-Goal "0 < n ==> n = Suc(n - 1)";
-by (asm_full_simp_tac numeral_ss 1);
-qed "Suc_pred'";
-
-(*Expresses a natural number constant as the Suc of another one.
-  NOT suitable for rewriting because n recurs in the condition.*)
-bind_thm ("expand_Suc", inst "n" "number_of ?v" Suc_pred');
-
-(** Arith **)
-
-Goal "Suc n = n + 1";
-by (asm_simp_tac numeral_ss 1);
-qed "Suc_eq_add_numeral_1";
-
-(* These two can be useful when m = number_of... *)
-
-Goal "(m::nat) + n = (if m=0 then n else Suc ((m - 1) + n))";
-by (case_tac "m" 1);
-by (ALLGOALS (asm_simp_tac numeral_ss));
-qed "add_eq_if";
-
-Goal "(m::nat) * n = (if m=0 then 0 else n + ((m - 1) * n))";
-by (case_tac "m" 1);
-by (ALLGOALS (asm_simp_tac numeral_ss));
-qed "mult_eq_if";
-
-Goal "(p ^ m :: nat) = (if m=0 then 1 else p * (p ^ (m - 1)))";
-by (case_tac "m" 1);
-by (ALLGOALS (asm_simp_tac numeral_ss));
-qed "power_eq_if";
-
-Goal "[| 0<n; 0<m |] ==> m - n < (m::nat)";
-by (asm_full_simp_tac (numeral_ss addsimps [diff_less]) 1);
-qed "diff_less'";
-
-Addsimps [inst "n" "number_of ?v" diff_less'];
-
-(** Power **)
-
-Goal "(p::nat) ^ 2 = p*p";
-by (simp_tac numeral_ss 1);
-qed "power_two";
-
-
-(*** Comparisons involving (0::nat) ***)
-
-Goal "(number_of v = (0::nat)) = \
-\     (if neg (number_of v) then True else iszero (number_of v))";
-by (simp_tac (simpset() addsimps [numeral_0_eq_0 RS sym, iszero_0]) 1);
-qed "eq_number_of_0"; 
-
-Goal "((0::nat) = number_of v) = \
-\     (if neg (number_of v) then True else iszero (number_of v))";
-by (rtac ([eq_sym_conv, eq_number_of_0] MRS trans) 1);
-qed "eq_0_number_of";
-
-Goal "((0::nat) < number_of v) = neg (number_of (bin_minus v))";
-by (simp_tac (simpset() addsimps [numeral_0_eq_0 RS sym]) 1);
-qed "less_0_number_of";
-
-(*Simplification already handles n<0, n<=0 and 0<=n.*)
-Addsimps [eq_number_of_0, eq_0_number_of, less_0_number_of];
-
-Goal "neg (number_of v) ==> number_of v = (0::nat)";
-by (asm_simp_tac (simpset() addsimps [numeral_0_eq_0 RS sym, iszero_0]) 1);
-qed "neg_imp_number_of_eq_0";
-
-
-
-(*** Comparisons involving Suc ***)
-
-Goal "(number_of v = Suc n) = \
-\       (let pv = number_of (bin_pred v) in \
-\        if neg pv then False else nat pv = n)";
-by (simp_tac (ss_Int addsimps
-	      [Let_def, neg_eq_less_0, linorder_not_less, number_of_pred,
-	       nat_number_of_def, zadd_0] @ zadd_ac) 1);
-by (res_inst_tac [("x", "number_of v")] spec 1);
-by (auto_tac (claset(), simpset() addsimps [nat_eq_iff]));
-qed "eq_number_of_Suc";
-
-Goal "(Suc n = number_of v) = \
-\       (let pv = number_of (bin_pred v) in \
-\        if neg pv then False else nat pv = n)";
-by (rtac ([eq_sym_conv, eq_number_of_Suc] MRS trans) 1);
-qed "Suc_eq_number_of";
-
-Goal "(number_of v < Suc n) = \
-\       (let pv = number_of (bin_pred v) in \
-\        if neg pv then True else nat pv < n)";
-by (simp_tac (ss_Int addsimps
-	      [Let_def, neg_eq_less_0, linorder_not_less, number_of_pred,
-	       nat_number_of_def, zadd_0] @ zadd_ac) 1);
-by (res_inst_tac [("x", "number_of v")] spec 1);
-by (auto_tac (claset(), simpset() addsimps [nat_less_iff]));
-qed "less_number_of_Suc";
-
-Goal "(Suc n < number_of v) = \
-\       (let pv = number_of (bin_pred v) in \
-\        if neg pv then False else n < nat pv)";
-by (simp_tac (ss_Int addsimps
-	      [Let_def, neg_eq_less_0, linorder_not_less, number_of_pred,
-	       nat_number_of_def, zadd_0] @ zadd_ac) 1);
-by (res_inst_tac [("x", "number_of v")] spec 1);
-by (auto_tac (claset(), simpset() addsimps [zless_nat_eq_int_zless]));
-qed "less_Suc_number_of";
-
-Goal "(number_of v <= Suc n) = \
-\       (let pv = number_of (bin_pred v) in \
-\        if neg pv then True else nat pv <= n)";
-by (simp_tac
-    (simpset () addsimps
-      [Let_def, less_Suc_number_of, linorder_not_less RS sym]) 1);
-qed "le_number_of_Suc";
-
-Goal "(Suc n <= number_of v) = \
-\       (let pv = number_of (bin_pred v) in \
-\        if neg pv then False else n <= nat pv)";
-by (simp_tac
-    (simpset () addsimps
-      [Let_def, less_number_of_Suc, linorder_not_less RS sym]) 1);
-qed "le_Suc_number_of";
-
-Addsimps [eq_number_of_Suc, Suc_eq_number_of, 
-	  less_number_of_Suc, less_Suc_number_of, 
-	  le_number_of_Suc, le_Suc_number_of];
-
-(* Push int(.) inwards: *)
-Addsimps [zadd_int RS sym];
-
-Goal "(m+m = n+n) = (m = (n::int))";
-by Auto_tac;
-val lemma1 = result();
-
-Goal "m+m ~= (1::int) + n + n";
-by Auto_tac;
-by (dres_inst_tac [("f", "%x. x mod 2")] arg_cong 1);
-by (full_simp_tac (simpset() addsimps [zmod_zadd1_eq]) 1); 
-val lemma2 = result();
-
-Goal "((number_of (v BIT x) ::int) = number_of (w BIT y)) = \
-\     (x=y & (((number_of v) ::int) = number_of w))"; 
-by (simp_tac (ss_Int addsimps [number_of_BIT, lemma1, lemma2, eq_commute]) 1); 
-qed "eq_number_of_BIT_BIT"; 
-
-Goal "((number_of (v BIT x) ::int) = number_of bin.Pls) = \
-\     (x=False & (((number_of v) ::int) = number_of bin.Pls))"; 
-by (simp_tac (ss_Int addsimps [number_of_BIT, number_of_Pls, eq_commute]) 1); 
-by (res_inst_tac [("x", "number_of v")] spec 1);
-by Safe_tac;
-by (ALLGOALS Full_simp_tac);
-by (dres_inst_tac [("f", "%x. x mod 2")] arg_cong 1);
-by (full_simp_tac (simpset() addsimps [zmod_zadd1_eq]) 1); 
-qed "eq_number_of_BIT_Pls"; 
-
-Goal "((number_of (v BIT x) ::int) = number_of bin.Min) = \
-\     (x=True & (((number_of v) ::int) = number_of bin.Min))"; 
-by (simp_tac (ss_Int addsimps [number_of_BIT, number_of_Min, eq_commute]) 1); 
-by (res_inst_tac [("x", "number_of v")] spec 1);
-by Auto_tac;
-by (dres_inst_tac [("f", "%x. x mod 2")] arg_cong 1);
-by Auto_tac;
-qed "eq_number_of_BIT_Min"; 
-
-Goal "(number_of bin.Pls ::int) ~= number_of bin.Min"; 
-by Auto_tac;
-qed "eq_number_of_Pls_Min"; 
-
-
-(*Distributive laws for literals*)
-Addsimps (map (inst "k" "number_of ?v")
-	  [add_mult_distrib, add_mult_distrib2,
-	   diff_mult_distrib, diff_mult_distrib2]);
-
-
-(*** Literal arithmetic involving powers, type nat ***)
-
-Goal "(0::int) <= z ==> nat (z^n) = nat z ^ n";
-by (induct_tac "n" 1); 
-by (ALLGOALS (asm_simp_tac (simpset() addsimps [nat_mult_distrib])));
-qed "nat_power_eq";
-
-Goal "(number_of v :: nat) ^ n = \
-\      (if neg (number_of v) then 0^n else nat ((number_of v :: int) ^ n))";
-by (simp_tac (ss_Int addsimps [neg_nat, not_neg_eq_ge_0, nat_number_of_def, 
-				  nat_power_eq]) 1);
-qed "power_nat_number_of";
-
-Addsimps [inst "n" "number_of ?w" power_nat_number_of];
-
-
-
-(*** Literal arithmetic involving powers, type int ***)
-
-Goal "(z::int) ^ (2*a) = (z^a)^2";
-by (simp_tac (simpset() addsimps [zpower_zpower, mult_commute]) 1); 
-qed "zpower_even";
-
-Goal "(p::int) ^ 2 = p*p"; 
-by (simp_tac numeral_ss 1);
-qed "zpower_two";  
-
-Goal "(z::int) ^ (2*a + 1) = z * (z^a)^2";
-by (simp_tac (simpset() addsimps [zpower_even, zpower_zadd_distrib]) 1); 
-qed "zpower_odd";
-
-Goal "(z::int) ^ number_of (w BIT False) = \
-\     (let w = z ^ (number_of w) in  w*w)";
-by (simp_tac (ss_Int addsimps [nat_number_of_def, number_of_BIT, Let_def]) 1);
-by (res_inst_tac [("x","number_of w")] spec 1 THEN Clarify_tac 1); 
-by (case_tac "(0::int) <= x" 1);
-by (auto_tac (claset(), 
-     simpset() addsimps [nat_mult_distrib, zpower_even, zpower_two])); 
-qed "zpower_number_of_even";
-
-Goal "(z::int) ^ number_of (w BIT True) = \
-\         (if (0::int) <= number_of w                   \
-\          then (let w = z ^ (number_of w) in  z*w*w)   \
-\          else 1)";
-by (simp_tac (ss_Int addsimps [nat_number_of_def, number_of_BIT, Let_def]) 1);
-by (res_inst_tac [("x","number_of w")] spec 1 THEN Clarify_tac 1); 
-by (case_tac "(0::int) <= x" 1);
-by (auto_tac (claset(), 
-              simpset() addsimps [nat_add_distrib, nat_mult_distrib, 
-                                  zpower_even, zpower_two])); 
-qed "zpower_number_of_odd";
-
-Addsimps (map (inst "z" "number_of ?v")
-              [zpower_number_of_even, zpower_number_of_odd]);
-