src/HOL/MiniML/Type.thy
changeset 1476 608483c2122a
parent 1400 5d909faf0e04
child 1557 fe30812f5b5e
--- a/src/HOL/MiniML/Type.thy	Mon Feb 05 21:27:16 1996 +0100
+++ b/src/HOL/MiniML/Type.thy	Mon Feb 05 21:29:06 1996 +0100
@@ -10,81 +10,81 @@
 
 (* new class for structures containing type variables *)
 classes
-	type_struct < term 
+        type_struct < term 
 
 (* type expressions *)
 datatype
-	typ = TVar nat | "->" typ typ (infixr 70)
+        typ = TVar nat | "->" typ typ (infixr 70)
 
 (* type variable substitution *)
 types
-	subst = nat => typ
+        subst = nat => typ
 
 arities
-	typ::type_struct
-	list::(type_struct)type_struct
-	fun::(term,type_struct)type_struct
+        typ::type_struct
+        list::(type_struct)type_struct
+        fun::(term,type_struct)type_struct
 
 (* substitutions *)
 
 (* identity *)
 consts
-	id_subst :: subst
+        id_subst :: subst
 defs
-	id_subst_def "id_subst == (%n.TVar n)"
+        id_subst_def "id_subst == (%n.TVar n)"
 
 (* extension of substitution to type structures *)
 consts
-	app_subst :: [subst, 'a::type_struct] => 'a::type_struct ("$")
+        app_subst :: [subst, 'a::type_struct] => 'a::type_struct ("$")
 
 rules
-	app_subst_TVar  "$ s (TVar n) = s n" 
-	app_subst_Fun	"$ s (t1 -> t2) = ($ s t1) -> ($ s t2)" 
+        app_subst_TVar  "$ s (TVar n) = s n" 
+        app_subst_Fun   "$ s (t1 -> t2) = ($ s t1) -> ($ s t2)" 
 defs
-        app_subst_list	"$ s == map ($ s)"
+        app_subst_list  "$ s == map ($ s)"
   
 (* free_tv s: the type variables occuring freely in the type structure s *)
 consts
-	free_tv :: ['a::type_struct] => nat set
+        free_tv :: ['a::type_struct] => nat set
 
 rules
-	free_tv_TVar	"free_tv (TVar m) = {m}"
-	free_tv_Fun	"free_tv (t1 -> t2) = (free_tv t1) Un (free_tv t2)"
-	free_tv_Nil	"free_tv [] = {}"
-	free_tv_Cons	"free_tv (x#l) = (free_tv x) Un (free_tv l)"
+        free_tv_TVar    "free_tv (TVar m) = {m}"
+        free_tv_Fun     "free_tv (t1 -> t2) = (free_tv t1) Un (free_tv t2)"
+        free_tv_Nil     "free_tv [] = {}"
+        free_tv_Cons    "free_tv (x#l) = (free_tv x) Un (free_tv l)"
 
 (* domain of a substitution *)
 consts
-	dom :: subst => nat set
+        dom :: subst => nat set
 defs
-	dom_def 	"dom s == {n. s n ~= TVar n}" 
+        dom_def         "dom s == {n. s n ~= TVar n}" 
 
 (* codomain of a substitutions: the introduced variables *)
 consts
      cod :: subst => nat set
 defs
-	cod_def		"cod s == (UN m:dom s. free_tv (s m))"
+        cod_def         "cod s == (UN m:dom s. free_tv (s m))"
 
 defs
-	free_tv_subst	"free_tv s == (dom s) Un (cod s)"
+        free_tv_subst   "free_tv s == (dom s) Un (cod s)"
 
 (* new_tv s n computes whether n is a new type variable w.r.t. a type 
    structure s, i.e. whether n is greater than any type variable 
    occuring in the type structure *)
 consts
-	new_tv :: [nat,'a::type_struct] => bool
+        new_tv :: [nat,'a::type_struct] => bool
 defs
         new_tv_def      "new_tv n ts == ! m. m:free_tv ts --> m<n"
 
 (* unification algorithm mgu *)
 consts
-	mgu :: [typ,typ] => subst maybe
+        mgu :: [typ,typ] => subst maybe
 rules
-	mgu_eq 	 "mgu t1 t2 = Ok u ==> $u t1 = $u t2"
-	mgu_mg 	 "[| (mgu t1 t2) = Ok u; $s t1 = $s t2 |] ==>
-		  ? r. s = $r o u"
-	mgu_Ok	 "$s t1 = $s t2 ==> ? u. mgu t1 t2 = Ok u"
-	mgu_free "mgu t1 t2 = Ok u ==> free_tv u <= free_tv t1 Un free_tv t2"
+        mgu_eq   "mgu t1 t2 = Ok u ==> $u t1 = $u t2"
+        mgu_mg   "[| (mgu t1 t2) = Ok u; $s t1 = $s t2 |] ==>
+                  ? r. s = $r o u"
+        mgu_Ok   "$s t1 = $s t2 ==> ? u. mgu t1 t2 = Ok u"
+        mgu_free "mgu t1 t2 = Ok u ==> free_tv u <= free_tv t1 Un free_tv t2"
 
 end