src/HOL/OrderedGroup.thy
changeset 35060 6088dfd5f9c8
parent 35059 acbc346e5310
parent 35054 a5db9779b026
child 35061 be1e25a62ec8
child 35117 eeec2a320a77
--- a/src/HOL/OrderedGroup.thy	Mon Feb 08 15:49:01 2010 -0800
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,1446 +0,0 @@
-(*  Title:   HOL/OrderedGroup.thy
-    Author:  Gertrud Bauer, Steven Obua, Lawrence C Paulson, Markus Wenzel, Jeremy Avigad
-*)
-
-header {* Ordered Groups *}
-
-theory OrderedGroup
-imports Lattices
-uses "~~/src/Provers/Arith/abel_cancel.ML"
-begin
-
-text {*
-  The theory of partially ordered groups is taken from the books:
-  \begin{itemize}
-  \item \emph{Lattice Theory} by Garret Birkhoff, American Mathematical Society 1979 
-  \item \emph{Partially Ordered Algebraic Systems}, Pergamon Press 1963
-  \end{itemize}
-  Most of the used notions can also be looked up in 
-  \begin{itemize}
-  \item \url{http://www.mathworld.com} by Eric Weisstein et. al.
-  \item \emph{Algebra I} by van der Waerden, Springer.
-  \end{itemize}
-*}
-
-ML {*
-structure Algebra_Simps = Named_Thms(
-  val name = "algebra_simps"
-  val description = "algebra simplification rules"
-)
-*}
-
-setup Algebra_Simps.setup
-
-text{* The rewrites accumulated in @{text algebra_simps} deal with the
-classical algebraic structures of groups, rings and family. They simplify
-terms by multiplying everything out (in case of a ring) and bringing sums and
-products into a canonical form (by ordered rewriting). As a result it decides
-group and ring equalities but also helps with inequalities.
-
-Of course it also works for fields, but it knows nothing about multiplicative
-inverses or division. This is catered for by @{text field_simps}. *}
-
-subsection {* Semigroups and Monoids *}
-
-class semigroup_add = plus +
-  assumes add_assoc [algebra_simps]: "(a + b) + c = a + (b + c)"
-
-sublocale semigroup_add < plus!: semigroup plus proof
-qed (fact add_assoc)
-
-class ab_semigroup_add = semigroup_add +
-  assumes add_commute [algebra_simps]: "a + b = b + a"
-
-sublocale ab_semigroup_add < plus!: abel_semigroup plus proof
-qed (fact add_commute)
-
-context ab_semigroup_add
-begin
-
-lemmas add_left_commute [algebra_simps] = plus.left_commute
-
-theorems add_ac = add_assoc add_commute add_left_commute
-
-end
-
-theorems add_ac = add_assoc add_commute add_left_commute
-
-class semigroup_mult = times +
-  assumes mult_assoc [algebra_simps]: "(a * b) * c = a * (b * c)"
-
-sublocale semigroup_mult < times!: semigroup times proof
-qed (fact mult_assoc)
-
-class ab_semigroup_mult = semigroup_mult +
-  assumes mult_commute [algebra_simps]: "a * b = b * a"
-
-sublocale ab_semigroup_mult < times!: abel_semigroup times proof
-qed (fact mult_commute)
-
-context ab_semigroup_mult
-begin
-
-lemmas mult_left_commute [algebra_simps] = times.left_commute
-
-theorems mult_ac = mult_assoc mult_commute mult_left_commute
-
-end
-
-theorems mult_ac = mult_assoc mult_commute mult_left_commute
-
-class ab_semigroup_idem_mult = ab_semigroup_mult +
-  assumes mult_idem: "x * x = x"
-
-sublocale ab_semigroup_idem_mult < times!: semilattice times proof
-qed (fact mult_idem)
-
-context ab_semigroup_idem_mult
-begin
-
-lemmas mult_left_idem = times.left_idem
-
-end
-
-class monoid_add = zero + semigroup_add +
-  assumes add_0_left [simp]: "0 + a = a"
-    and add_0_right [simp]: "a + 0 = a"
-
-lemma zero_reorient: "0 = x \<longleftrightarrow> x = 0"
-by (rule eq_commute)
-
-class comm_monoid_add = zero + ab_semigroup_add +
-  assumes add_0: "0 + a = a"
-begin
-
-subclass monoid_add
-  proof qed (insert add_0, simp_all add: add_commute)
-
-end
-
-class monoid_mult = one + semigroup_mult +
-  assumes mult_1_left [simp]: "1 * a  = a"
-  assumes mult_1_right [simp]: "a * 1 = a"
-
-lemma one_reorient: "1 = x \<longleftrightarrow> x = 1"
-by (rule eq_commute)
-
-class comm_monoid_mult = one + ab_semigroup_mult +
-  assumes mult_1: "1 * a = a"
-begin
-
-subclass monoid_mult
-  proof qed (insert mult_1, simp_all add: mult_commute)
-
-end
-
-class cancel_semigroup_add = semigroup_add +
-  assumes add_left_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
-  assumes add_right_imp_eq: "b + a = c + a \<Longrightarrow> b = c"
-begin
-
-lemma add_left_cancel [simp]:
-  "a + b = a + c \<longleftrightarrow> b = c"
-by (blast dest: add_left_imp_eq)
-
-lemma add_right_cancel [simp]:
-  "b + a = c + a \<longleftrightarrow> b = c"
-by (blast dest: add_right_imp_eq)
-
-end
-
-class cancel_ab_semigroup_add = ab_semigroup_add +
-  assumes add_imp_eq: "a + b = a + c \<Longrightarrow> b = c"
-begin
-
-subclass cancel_semigroup_add
-proof
-  fix a b c :: 'a
-  assume "a + b = a + c" 
-  then show "b = c" by (rule add_imp_eq)
-next
-  fix a b c :: 'a
-  assume "b + a = c + a"
-  then have "a + b = a + c" by (simp only: add_commute)
-  then show "b = c" by (rule add_imp_eq)
-qed
-
-end
-
-class cancel_comm_monoid_add = cancel_ab_semigroup_add + comm_monoid_add
-
-
-subsection {* Groups *}
-
-class group_add = minus + uminus + monoid_add +
-  assumes left_minus [simp]: "- a + a = 0"
-  assumes diff_minus: "a - b = a + (- b)"
-begin
-
-lemma minus_unique:
-  assumes "a + b = 0" shows "- a = b"
-proof -
-  have "- a = - a + (a + b)" using assms by simp
-  also have "\<dots> = b" by (simp add: add_assoc [symmetric])
-  finally show ?thesis .
-qed
-
-lemmas equals_zero_I = minus_unique (* legacy name *)
-
-lemma minus_zero [simp]: "- 0 = 0"
-proof -
-  have "0 + 0 = 0" by (rule add_0_right)
-  thus "- 0 = 0" by (rule minus_unique)
-qed
-
-lemma minus_minus [simp]: "- (- a) = a"
-proof -
-  have "- a + a = 0" by (rule left_minus)
-  thus "- (- a) = a" by (rule minus_unique)
-qed
-
-lemma right_minus [simp]: "a + - a = 0"
-proof -
-  have "a + - a = - (- a) + - a" by simp
-  also have "\<dots> = 0" by (rule left_minus)
-  finally show ?thesis .
-qed
-
-lemma minus_add_cancel: "- a + (a + b) = b"
-by (simp add: add_assoc [symmetric])
-
-lemma add_minus_cancel: "a + (- a + b) = b"
-by (simp add: add_assoc [symmetric])
-
-lemma minus_add: "- (a + b) = - b + - a"
-proof -
-  have "(a + b) + (- b + - a) = 0"
-    by (simp add: add_assoc add_minus_cancel)
-  thus "- (a + b) = - b + - a"
-    by (rule minus_unique)
-qed
-
-lemma right_minus_eq: "a - b = 0 \<longleftrightarrow> a = b"
-proof
-  assume "a - b = 0"
-  have "a = (a - b) + b" by (simp add:diff_minus add_assoc)
-  also have "\<dots> = b" using `a - b = 0` by simp
-  finally show "a = b" .
-next
-  assume "a = b" thus "a - b = 0" by (simp add: diff_minus)
-qed
-
-lemma diff_self [simp]: "a - a = 0"
-by (simp add: diff_minus)
-
-lemma diff_0 [simp]: "0 - a = - a"
-by (simp add: diff_minus)
-
-lemma diff_0_right [simp]: "a - 0 = a" 
-by (simp add: diff_minus)
-
-lemma diff_minus_eq_add [simp]: "a - - b = a + b"
-by (simp add: diff_minus)
-
-lemma neg_equal_iff_equal [simp]:
-  "- a = - b \<longleftrightarrow> a = b" 
-proof 
-  assume "- a = - b"
-  hence "- (- a) = - (- b)" by simp
-  thus "a = b" by simp
-next
-  assume "a = b"
-  thus "- a = - b" by simp
-qed
-
-lemma neg_equal_0_iff_equal [simp]:
-  "- a = 0 \<longleftrightarrow> a = 0"
-by (subst neg_equal_iff_equal [symmetric], simp)
-
-lemma neg_0_equal_iff_equal [simp]:
-  "0 = - a \<longleftrightarrow> 0 = a"
-by (subst neg_equal_iff_equal [symmetric], simp)
-
-text{*The next two equations can make the simplifier loop!*}
-
-lemma equation_minus_iff:
-  "a = - b \<longleftrightarrow> b = - a"
-proof -
-  have "- (- a) = - b \<longleftrightarrow> - a = b" by (rule neg_equal_iff_equal)
-  thus ?thesis by (simp add: eq_commute)
-qed
-
-lemma minus_equation_iff:
-  "- a = b \<longleftrightarrow> - b = a"
-proof -
-  have "- a = - (- b) \<longleftrightarrow> a = -b" by (rule neg_equal_iff_equal)
-  thus ?thesis by (simp add: eq_commute)
-qed
-
-lemma diff_add_cancel: "a - b + b = a"
-by (simp add: diff_minus add_assoc)
-
-lemma add_diff_cancel: "a + b - b = a"
-by (simp add: diff_minus add_assoc)
-
-declare diff_minus[symmetric, algebra_simps]
-
-lemma eq_neg_iff_add_eq_0: "a = - b \<longleftrightarrow> a + b = 0"
-proof
-  assume "a = - b" then show "a + b = 0" by simp
-next
-  assume "a + b = 0"
-  moreover have "a + (b + - b) = (a + b) + - b"
-    by (simp only: add_assoc)
-  ultimately show "a = - b" by simp
-qed
-
-end
-
-class ab_group_add = minus + uminus + comm_monoid_add +
-  assumes ab_left_minus: "- a + a = 0"
-  assumes ab_diff_minus: "a - b = a + (- b)"
-begin
-
-subclass group_add
-  proof qed (simp_all add: ab_left_minus ab_diff_minus)
-
-subclass cancel_comm_monoid_add
-proof
-  fix a b c :: 'a
-  assume "a + b = a + c"
-  then have "- a + a + b = - a + a + c"
-    unfolding add_assoc by simp
-  then show "b = c" by simp
-qed
-
-lemma uminus_add_conv_diff[algebra_simps]:
-  "- a + b = b - a"
-by (simp add:diff_minus add_commute)
-
-lemma minus_add_distrib [simp]:
-  "- (a + b) = - a + - b"
-by (rule minus_unique) (simp add: add_ac)
-
-lemma minus_diff_eq [simp]:
-  "- (a - b) = b - a"
-by (simp add: diff_minus add_commute)
-
-lemma add_diff_eq[algebra_simps]: "a + (b - c) = (a + b) - c"
-by (simp add: diff_minus add_ac)
-
-lemma diff_add_eq[algebra_simps]: "(a - b) + c = (a + c) - b"
-by (simp add: diff_minus add_ac)
-
-lemma diff_eq_eq[algebra_simps]: "a - b = c \<longleftrightarrow> a = c + b"
-by (auto simp add: diff_minus add_assoc)
-
-lemma eq_diff_eq[algebra_simps]: "a = c - b \<longleftrightarrow> a + b = c"
-by (auto simp add: diff_minus add_assoc)
-
-lemma diff_diff_eq[algebra_simps]: "(a - b) - c = a - (b + c)"
-by (simp add: diff_minus add_ac)
-
-lemma diff_diff_eq2[algebra_simps]: "a - (b - c) = (a + c) - b"
-by (simp add: diff_minus add_ac)
-
-lemma eq_iff_diff_eq_0: "a = b \<longleftrightarrow> a - b = 0"
-by (simp add: algebra_simps)
-
-lemma diff_eq_0_iff_eq [simp, noatp]: "a - b = 0 \<longleftrightarrow> a = b"
-by (simp add: algebra_simps)
-
-end
-
-subsection {* (Partially) Ordered Groups *} 
-
-class pordered_ab_semigroup_add = order + ab_semigroup_add +
-  assumes add_left_mono: "a \<le> b \<Longrightarrow> c + a \<le> c + b"
-begin
-
-lemma add_right_mono:
-  "a \<le> b \<Longrightarrow> a + c \<le> b + c"
-by (simp add: add_commute [of _ c] add_left_mono)
-
-text {* non-strict, in both arguments *}
-lemma add_mono:
-  "a \<le> b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c \<le> b + d"
-  apply (erule add_right_mono [THEN order_trans])
-  apply (simp add: add_commute add_left_mono)
-  done
-
-end
-
-class pordered_cancel_ab_semigroup_add =
-  pordered_ab_semigroup_add + cancel_ab_semigroup_add
-begin
-
-lemma add_strict_left_mono:
-  "a < b \<Longrightarrow> c + a < c + b"
-by (auto simp add: less_le add_left_mono)
-
-lemma add_strict_right_mono:
-  "a < b \<Longrightarrow> a + c < b + c"
-by (simp add: add_commute [of _ c] add_strict_left_mono)
-
-text{*Strict monotonicity in both arguments*}
-lemma add_strict_mono:
-  "a < b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"
-apply (erule add_strict_right_mono [THEN less_trans])
-apply (erule add_strict_left_mono)
-done
-
-lemma add_less_le_mono:
-  "a < b \<Longrightarrow> c \<le> d \<Longrightarrow> a + c < b + d"
-apply (erule add_strict_right_mono [THEN less_le_trans])
-apply (erule add_left_mono)
-done
-
-lemma add_le_less_mono:
-  "a \<le> b \<Longrightarrow> c < d \<Longrightarrow> a + c < b + d"
-apply (erule add_right_mono [THEN le_less_trans])
-apply (erule add_strict_left_mono) 
-done
-
-end
-
-class pordered_ab_semigroup_add_imp_le =
-  pordered_cancel_ab_semigroup_add +
-  assumes add_le_imp_le_left: "c + a \<le> c + b \<Longrightarrow> a \<le> b"
-begin
-
-lemma add_less_imp_less_left:
-  assumes less: "c + a < c + b" shows "a < b"
-proof -
-  from less have le: "c + a <= c + b" by (simp add: order_le_less)
-  have "a <= b" 
-    apply (insert le)
-    apply (drule add_le_imp_le_left)
-    by (insert le, drule add_le_imp_le_left, assumption)
-  moreover have "a \<noteq> b"
-  proof (rule ccontr)
-    assume "~(a \<noteq> b)"
-    then have "a = b" by simp
-    then have "c + a = c + b" by simp
-    with less show "False"by simp
-  qed
-  ultimately show "a < b" by (simp add: order_le_less)
-qed
-
-lemma add_less_imp_less_right:
-  "a + c < b + c \<Longrightarrow> a < b"
-apply (rule add_less_imp_less_left [of c])
-apply (simp add: add_commute)  
-done
-
-lemma add_less_cancel_left [simp]:
-  "c + a < c + b \<longleftrightarrow> a < b"
-by (blast intro: add_less_imp_less_left add_strict_left_mono) 
-
-lemma add_less_cancel_right [simp]:
-  "a + c < b + c \<longleftrightarrow> a < b"
-by (blast intro: add_less_imp_less_right add_strict_right_mono)
-
-lemma add_le_cancel_left [simp]:
-  "c + a \<le> c + b \<longleftrightarrow> a \<le> b"
-by (auto, drule add_le_imp_le_left, simp_all add: add_left_mono) 
-
-lemma add_le_cancel_right [simp]:
-  "a + c \<le> b + c \<longleftrightarrow> a \<le> b"
-by (simp add: add_commute [of a c] add_commute [of b c])
-
-lemma add_le_imp_le_right:
-  "a + c \<le> b + c \<Longrightarrow> a \<le> b"
-by simp
-
-lemma max_add_distrib_left:
-  "max x y + z = max (x + z) (y + z)"
-  unfolding max_def by auto
-
-lemma min_add_distrib_left:
-  "min x y + z = min (x + z) (y + z)"
-  unfolding min_def by auto
-
-end
-
-subsection {* Support for reasoning about signs *}
-
-class pordered_comm_monoid_add =
-  pordered_cancel_ab_semigroup_add + comm_monoid_add
-begin
-
-lemma add_pos_nonneg:
-  assumes "0 < a" and "0 \<le> b" shows "0 < a + b"
-proof -
-  have "0 + 0 < a + b" 
-    using assms by (rule add_less_le_mono)
-  then show ?thesis by simp
-qed
-
-lemma add_pos_pos:
-  assumes "0 < a" and "0 < b" shows "0 < a + b"
-by (rule add_pos_nonneg) (insert assms, auto)
-
-lemma add_nonneg_pos:
-  assumes "0 \<le> a" and "0 < b" shows "0 < a + b"
-proof -
-  have "0 + 0 < a + b" 
-    using assms by (rule add_le_less_mono)
-  then show ?thesis by simp
-qed
-
-lemma add_nonneg_nonneg:
-  assumes "0 \<le> a" and "0 \<le> b" shows "0 \<le> a + b"
-proof -
-  have "0 + 0 \<le> a + b" 
-    using assms by (rule add_mono)
-  then show ?thesis by simp
-qed
-
-lemma add_neg_nonpos:
-  assumes "a < 0" and "b \<le> 0" shows "a + b < 0"
-proof -
-  have "a + b < 0 + 0"
-    using assms by (rule add_less_le_mono)
-  then show ?thesis by simp
-qed
-
-lemma add_neg_neg: 
-  assumes "a < 0" and "b < 0" shows "a + b < 0"
-by (rule add_neg_nonpos) (insert assms, auto)
-
-lemma add_nonpos_neg:
-  assumes "a \<le> 0" and "b < 0" shows "a + b < 0"
-proof -
-  have "a + b < 0 + 0"
-    using assms by (rule add_le_less_mono)
-  then show ?thesis by simp
-qed
-
-lemma add_nonpos_nonpos:
-  assumes "a \<le> 0" and "b \<le> 0" shows "a + b \<le> 0"
-proof -
-  have "a + b \<le> 0 + 0"
-    using assms by (rule add_mono)
-  then show ?thesis by simp
-qed
-
-lemmas add_sign_intros =
-  add_pos_nonneg add_pos_pos add_nonneg_pos add_nonneg_nonneg
-  add_neg_nonpos add_neg_neg add_nonpos_neg add_nonpos_nonpos
-
-lemma add_nonneg_eq_0_iff:
-  assumes x: "0 \<le> x" and y: "0 \<le> y"
-  shows "x + y = 0 \<longleftrightarrow> x = 0 \<and> y = 0"
-proof (intro iffI conjI)
-  have "x = x + 0" by simp
-  also have "x + 0 \<le> x + y" using y by (rule add_left_mono)
-  also assume "x + y = 0"
-  also have "0 \<le> x" using x .
-  finally show "x = 0" .
-next
-  have "y = 0 + y" by simp
-  also have "0 + y \<le> x + y" using x by (rule add_right_mono)
-  also assume "x + y = 0"
-  also have "0 \<le> y" using y .
-  finally show "y = 0" .
-next
-  assume "x = 0 \<and> y = 0"
-  then show "x + y = 0" by simp
-qed
-
-end
-
-class pordered_ab_group_add =
-  ab_group_add + pordered_ab_semigroup_add
-begin
-
-subclass pordered_cancel_ab_semigroup_add ..
-
-subclass pordered_ab_semigroup_add_imp_le
-proof
-  fix a b c :: 'a
-  assume "c + a \<le> c + b"
-  hence "(-c) + (c + a) \<le> (-c) + (c + b)" by (rule add_left_mono)
-  hence "((-c) + c) + a \<le> ((-c) + c) + b" by (simp only: add_assoc)
-  thus "a \<le> b" by simp
-qed
-
-subclass pordered_comm_monoid_add ..
-
-lemma max_diff_distrib_left:
-  shows "max x y - z = max (x - z) (y - z)"
-by (simp add: diff_minus, rule max_add_distrib_left) 
-
-lemma min_diff_distrib_left:
-  shows "min x y - z = min (x - z) (y - z)"
-by (simp add: diff_minus, rule min_add_distrib_left) 
-
-lemma le_imp_neg_le:
-  assumes "a \<le> b" shows "-b \<le> -a"
-proof -
-  have "-a+a \<le> -a+b" using `a \<le> b` by (rule add_left_mono) 
-  hence "0 \<le> -a+b" by simp
-  hence "0 + (-b) \<le> (-a + b) + (-b)" by (rule add_right_mono) 
-  thus ?thesis by (simp add: add_assoc)
-qed
-
-lemma neg_le_iff_le [simp]: "- b \<le> - a \<longleftrightarrow> a \<le> b"
-proof 
-  assume "- b \<le> - a"
-  hence "- (- a) \<le> - (- b)" by (rule le_imp_neg_le)
-  thus "a\<le>b" by simp
-next
-  assume "a\<le>b"
-  thus "-b \<le> -a" by (rule le_imp_neg_le)
-qed
-
-lemma neg_le_0_iff_le [simp]: "- a \<le> 0 \<longleftrightarrow> 0 \<le> a"
-by (subst neg_le_iff_le [symmetric], simp)
-
-lemma neg_0_le_iff_le [simp]: "0 \<le> - a \<longleftrightarrow> a \<le> 0"
-by (subst neg_le_iff_le [symmetric], simp)
-
-lemma neg_less_iff_less [simp]: "- b < - a \<longleftrightarrow> a < b"
-by (force simp add: less_le) 
-
-lemma neg_less_0_iff_less [simp]: "- a < 0 \<longleftrightarrow> 0 < a"
-by (subst neg_less_iff_less [symmetric], simp)
-
-lemma neg_0_less_iff_less [simp]: "0 < - a \<longleftrightarrow> a < 0"
-by (subst neg_less_iff_less [symmetric], simp)
-
-text{*The next several equations can make the simplifier loop!*}
-
-lemma less_minus_iff: "a < - b \<longleftrightarrow> b < - a"
-proof -
-  have "(- (-a) < - b) = (b < - a)" by (rule neg_less_iff_less)
-  thus ?thesis by simp
-qed
-
-lemma minus_less_iff: "- a < b \<longleftrightarrow> - b < a"
-proof -
-  have "(- a < - (-b)) = (- b < a)" by (rule neg_less_iff_less)
-  thus ?thesis by simp
-qed
-
-lemma le_minus_iff: "a \<le> - b \<longleftrightarrow> b \<le> - a"
-proof -
-  have mm: "!! a (b::'a). (-(-a)) < -b \<Longrightarrow> -(-b) < -a" by (simp only: minus_less_iff)
-  have "(- (- a) <= -b) = (b <= - a)" 
-    apply (auto simp only: le_less)
-    apply (drule mm)
-    apply (simp_all)
-    apply (drule mm[simplified], assumption)
-    done
-  then show ?thesis by simp
-qed
-
-lemma minus_le_iff: "- a \<le> b \<longleftrightarrow> - b \<le> a"
-by (auto simp add: le_less minus_less_iff)
-
-lemma less_iff_diff_less_0: "a < b \<longleftrightarrow> a - b < 0"
-proof -
-  have  "(a < b) = (a + (- b) < b + (-b))"  
-    by (simp only: add_less_cancel_right)
-  also have "... =  (a - b < 0)" by (simp add: diff_minus)
-  finally show ?thesis .
-qed
-
-lemma diff_less_eq[algebra_simps]: "a - b < c \<longleftrightarrow> a < c + b"
-apply (subst less_iff_diff_less_0 [of a])
-apply (rule less_iff_diff_less_0 [of _ c, THEN ssubst])
-apply (simp add: diff_minus add_ac)
-done
-
-lemma less_diff_eq[algebra_simps]: "a < c - b \<longleftrightarrow> a + b < c"
-apply (subst less_iff_diff_less_0 [of "plus a b"])
-apply (subst less_iff_diff_less_0 [of a])
-apply (simp add: diff_minus add_ac)
-done
-
-lemma diff_le_eq[algebra_simps]: "a - b \<le> c \<longleftrightarrow> a \<le> c + b"
-by (auto simp add: le_less diff_less_eq diff_add_cancel add_diff_cancel)
-
-lemma le_diff_eq[algebra_simps]: "a \<le> c - b \<longleftrightarrow> a + b \<le> c"
-by (auto simp add: le_less less_diff_eq diff_add_cancel add_diff_cancel)
-
-lemma le_iff_diff_le_0: "a \<le> b \<longleftrightarrow> a - b \<le> 0"
-by (simp add: algebra_simps)
-
-text{*Legacy - use @{text algebra_simps} *}
-lemmas group_simps[noatp] = algebra_simps
-
-end
-
-text{*Legacy - use @{text algebra_simps} *}
-lemmas group_simps[noatp] = algebra_simps
-
-class ordered_ab_semigroup_add =
-  linorder + pordered_ab_semigroup_add
-
-class ordered_cancel_ab_semigroup_add =
-  linorder + pordered_cancel_ab_semigroup_add
-begin
-
-subclass ordered_ab_semigroup_add ..
-
-subclass pordered_ab_semigroup_add_imp_le
-proof
-  fix a b c :: 'a
-  assume le: "c + a <= c + b"  
-  show "a <= b"
-  proof (rule ccontr)
-    assume w: "~ a \<le> b"
-    hence "b <= a" by (simp add: linorder_not_le)
-    hence le2: "c + b <= c + a" by (rule add_left_mono)
-    have "a = b" 
-      apply (insert le)
-      apply (insert le2)
-      apply (drule antisym, simp_all)
-      done
-    with w show False 
-      by (simp add: linorder_not_le [symmetric])
-  qed
-qed
-
-end
-
-class ordered_ab_group_add =
-  linorder + pordered_ab_group_add
-begin
-
-subclass ordered_cancel_ab_semigroup_add ..
-
-lemma neg_less_eq_nonneg:
-  "- a \<le> a \<longleftrightarrow> 0 \<le> a"
-proof
-  assume A: "- a \<le> a" show "0 \<le> a"
-  proof (rule classical)
-    assume "\<not> 0 \<le> a"
-    then have "a < 0" by auto
-    with A have "- a < 0" by (rule le_less_trans)
-    then show ?thesis by auto
-  qed
-next
-  assume A: "0 \<le> a" show "- a \<le> a"
-  proof (rule order_trans)
-    show "- a \<le> 0" using A by (simp add: minus_le_iff)
-  next
-    show "0 \<le> a" using A .
-  qed
-qed
-  
-lemma less_eq_neg_nonpos:
-  "a \<le> - a \<longleftrightarrow> a \<le> 0"
-proof
-  assume A: "a \<le> - a" show "a \<le> 0"
-  proof (rule classical)
-    assume "\<not> a \<le> 0"
-    then have "0 < a" by auto
-    then have "0 < - a" using A by (rule less_le_trans)
-    then show ?thesis by auto
-  qed
-next
-  assume A: "a \<le> 0" show "a \<le> - a"
-  proof (rule order_trans)
-    show "0 \<le> - a" using A by (simp add: minus_le_iff)
-  next
-    show "a \<le> 0" using A .
-  qed
-qed
-
-lemma equal_neg_zero:
-  "a = - a \<longleftrightarrow> a = 0"
-proof
-  assume "a = 0" then show "a = - a" by simp
-next
-  assume A: "a = - a" show "a = 0"
-  proof (cases "0 \<le> a")
-    case True with A have "0 \<le> - a" by auto
-    with le_minus_iff have "a \<le> 0" by simp
-    with True show ?thesis by (auto intro: order_trans)
-  next
-    case False then have B: "a \<le> 0" by auto
-    with A have "- a \<le> 0" by auto
-    with B show ?thesis by (auto intro: order_trans)
-  qed
-qed
-
-lemma neg_equal_zero:
-  "- a = a \<longleftrightarrow> a = 0"
-  unfolding equal_neg_zero [symmetric] by auto
-
-end
-
--- {* FIXME localize the following *}
-
-lemma add_increasing:
-  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
-  shows  "[|0\<le>a; b\<le>c|] ==> b \<le> a + c"
-by (insert add_mono [of 0 a b c], simp)
-
-lemma add_increasing2:
-  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
-  shows  "[|0\<le>c; b\<le>a|] ==> b \<le> a + c"
-by (simp add:add_increasing add_commute[of a])
-
-lemma add_strict_increasing:
-  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
-  shows "[|0<a; b\<le>c|] ==> b < a + c"
-by (insert add_less_le_mono [of 0 a b c], simp)
-
-lemma add_strict_increasing2:
-  fixes c :: "'a::{pordered_ab_semigroup_add_imp_le, comm_monoid_add}"
-  shows "[|0\<le>a; b<c|] ==> b < a + c"
-by (insert add_le_less_mono [of 0 a b c], simp)
-
-
-class pordered_ab_group_add_abs = pordered_ab_group_add + abs +
-  assumes abs_ge_zero [simp]: "\<bar>a\<bar> \<ge> 0"
-    and abs_ge_self: "a \<le> \<bar>a\<bar>"
-    and abs_leI: "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"
-    and abs_minus_cancel [simp]: "\<bar>-a\<bar> = \<bar>a\<bar>"
-    and abs_triangle_ineq: "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
-begin
-
-lemma abs_minus_le_zero: "- \<bar>a\<bar> \<le> 0"
-  unfolding neg_le_0_iff_le by simp
-
-lemma abs_of_nonneg [simp]:
-  assumes nonneg: "0 \<le> a" shows "\<bar>a\<bar> = a"
-proof (rule antisym)
-  from nonneg le_imp_neg_le have "- a \<le> 0" by simp
-  from this nonneg have "- a \<le> a" by (rule order_trans)
-  then show "\<bar>a\<bar> \<le> a" by (auto intro: abs_leI)
-qed (rule abs_ge_self)
-
-lemma abs_idempotent [simp]: "\<bar>\<bar>a\<bar>\<bar> = \<bar>a\<bar>"
-by (rule antisym)
-   (auto intro!: abs_ge_self abs_leI order_trans [of "uminus (abs a)" zero "abs a"])
-
-lemma abs_eq_0 [simp]: "\<bar>a\<bar> = 0 \<longleftrightarrow> a = 0"
-proof -
-  have "\<bar>a\<bar> = 0 \<Longrightarrow> a = 0"
-  proof (rule antisym)
-    assume zero: "\<bar>a\<bar> = 0"
-    with abs_ge_self show "a \<le> 0" by auto
-    from zero have "\<bar>-a\<bar> = 0" by simp
-    with abs_ge_self [of "uminus a"] have "- a \<le> 0" by auto
-    with neg_le_0_iff_le show "0 \<le> a" by auto
-  qed
-  then show ?thesis by auto
-qed
-
-lemma abs_zero [simp]: "\<bar>0\<bar> = 0"
-by simp
-
-lemma abs_0_eq [simp, noatp]: "0 = \<bar>a\<bar> \<longleftrightarrow> a = 0"
-proof -
-  have "0 = \<bar>a\<bar> \<longleftrightarrow> \<bar>a\<bar> = 0" by (simp only: eq_ac)
-  thus ?thesis by simp
-qed
-
-lemma abs_le_zero_iff [simp]: "\<bar>a\<bar> \<le> 0 \<longleftrightarrow> a = 0" 
-proof
-  assume "\<bar>a\<bar> \<le> 0"
-  then have "\<bar>a\<bar> = 0" by (rule antisym) simp
-  thus "a = 0" by simp
-next
-  assume "a = 0"
-  thus "\<bar>a\<bar> \<le> 0" by simp
-qed
-
-lemma zero_less_abs_iff [simp]: "0 < \<bar>a\<bar> \<longleftrightarrow> a \<noteq> 0"
-by (simp add: less_le)
-
-lemma abs_not_less_zero [simp]: "\<not> \<bar>a\<bar> < 0"
-proof -
-  have a: "\<And>x y. x \<le> y \<Longrightarrow> \<not> y < x" by auto
-  show ?thesis by (simp add: a)
-qed
-
-lemma abs_ge_minus_self: "- a \<le> \<bar>a\<bar>"
-proof -
-  have "- a \<le> \<bar>-a\<bar>" by (rule abs_ge_self)
-  then show ?thesis by simp
-qed
-
-lemma abs_minus_commute: 
-  "\<bar>a - b\<bar> = \<bar>b - a\<bar>"
-proof -
-  have "\<bar>a - b\<bar> = \<bar>- (a - b)\<bar>" by (simp only: abs_minus_cancel)
-  also have "... = \<bar>b - a\<bar>" by simp
-  finally show ?thesis .
-qed
-
-lemma abs_of_pos: "0 < a \<Longrightarrow> \<bar>a\<bar> = a"
-by (rule abs_of_nonneg, rule less_imp_le)
-
-lemma abs_of_nonpos [simp]:
-  assumes "a \<le> 0" shows "\<bar>a\<bar> = - a"
-proof -
-  let ?b = "- a"
-  have "- ?b \<le> 0 \<Longrightarrow> \<bar>- ?b\<bar> = - (- ?b)"
-  unfolding abs_minus_cancel [of "?b"]
-  unfolding neg_le_0_iff_le [of "?b"]
-  unfolding minus_minus by (erule abs_of_nonneg)
-  then show ?thesis using assms by auto
-qed
-  
-lemma abs_of_neg: "a < 0 \<Longrightarrow> \<bar>a\<bar> = - a"
-by (rule abs_of_nonpos, rule less_imp_le)
-
-lemma abs_le_D1: "\<bar>a\<bar> \<le> b \<Longrightarrow> a \<le> b"
-by (insert abs_ge_self, blast intro: order_trans)
-
-lemma abs_le_D2: "\<bar>a\<bar> \<le> b \<Longrightarrow> - a \<le> b"
-by (insert abs_le_D1 [of "uminus a"], simp)
-
-lemma abs_le_iff: "\<bar>a\<bar> \<le> b \<longleftrightarrow> a \<le> b \<and> - a \<le> b"
-by (blast intro: abs_leI dest: abs_le_D1 abs_le_D2)
-
-lemma abs_triangle_ineq2: "\<bar>a\<bar> - \<bar>b\<bar> \<le> \<bar>a - b\<bar>"
-  apply (simp add: algebra_simps)
-  apply (subgoal_tac "abs a = abs (plus b (minus a b))")
-  apply (erule ssubst)
-  apply (rule abs_triangle_ineq)
-  apply (rule arg_cong[of _ _ abs])
-  apply (simp add: algebra_simps)
-done
-
-lemma abs_triangle_ineq3: "\<bar>\<bar>a\<bar> - \<bar>b\<bar>\<bar> \<le> \<bar>a - b\<bar>"
-  apply (subst abs_le_iff)
-  apply auto
-  apply (rule abs_triangle_ineq2)
-  apply (subst abs_minus_commute)
-  apply (rule abs_triangle_ineq2)
-done
-
-lemma abs_triangle_ineq4: "\<bar>a - b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
-proof -
-  have "abs(a - b) = abs(a + - b)" by (subst diff_minus, rule refl)
-  also have "... <= abs a + abs (- b)" by (rule abs_triangle_ineq)
-  finally show ?thesis by simp
-qed
-
-lemma abs_diff_triangle_ineq: "\<bar>a + b - (c + d)\<bar> \<le> \<bar>a - c\<bar> + \<bar>b - d\<bar>"
-proof -
-  have "\<bar>a + b - (c+d)\<bar> = \<bar>(a-c) + (b-d)\<bar>" by (simp add: diff_minus add_ac)
-  also have "... \<le> \<bar>a-c\<bar> + \<bar>b-d\<bar>" by (rule abs_triangle_ineq)
-  finally show ?thesis .
-qed
-
-lemma abs_add_abs [simp]:
-  "\<bar>\<bar>a\<bar> + \<bar>b\<bar>\<bar> = \<bar>a\<bar> + \<bar>b\<bar>" (is "?L = ?R")
-proof (rule antisym)
-  show "?L \<ge> ?R" by(rule abs_ge_self)
-next
-  have "?L \<le> \<bar>\<bar>a\<bar>\<bar> + \<bar>\<bar>b\<bar>\<bar>" by(rule abs_triangle_ineq)
-  also have "\<dots> = ?R" by simp
-  finally show "?L \<le> ?R" .
-qed
-
-end
-
-
-subsection {* Lattice Ordered (Abelian) Groups *}
-
-class lordered_ab_group_add_meet = pordered_ab_group_add + lower_semilattice
-begin
-
-lemma add_inf_distrib_left:
-  "a + inf b c = inf (a + b) (a + c)"
-apply (rule antisym)
-apply (simp_all add: le_infI)
-apply (rule add_le_imp_le_left [of "uminus a"])
-apply (simp only: add_assoc [symmetric], simp)
-apply rule
-apply (rule add_le_imp_le_left[of "a"], simp only: add_assoc[symmetric], simp)+
-done
-
-lemma add_inf_distrib_right:
-  "inf a b + c = inf (a + c) (b + c)"
-proof -
-  have "c + inf a b = inf (c+a) (c+b)" by (simp add: add_inf_distrib_left)
-  thus ?thesis by (simp add: add_commute)
-qed
-
-end
-
-class lordered_ab_group_add_join = pordered_ab_group_add + upper_semilattice
-begin
-
-lemma add_sup_distrib_left:
-  "a + sup b c = sup (a + b) (a + c)" 
-apply (rule antisym)
-apply (rule add_le_imp_le_left [of "uminus a"])
-apply (simp only: add_assoc[symmetric], simp)
-apply rule
-apply (rule add_le_imp_le_left [of "a"], simp only: add_assoc[symmetric], simp)+
-apply (rule le_supI)
-apply (simp_all)
-done
-
-lemma add_sup_distrib_right:
-  "sup a b + c = sup (a+c) (b+c)"
-proof -
-  have "c + sup a b = sup (c+a) (c+b)" by (simp add: add_sup_distrib_left)
-  thus ?thesis by (simp add: add_commute)
-qed
-
-end
-
-class lordered_ab_group_add = pordered_ab_group_add + lattice
-begin
-
-subclass lordered_ab_group_add_meet ..
-subclass lordered_ab_group_add_join ..
-
-lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left
-
-lemma inf_eq_neg_sup: "inf a b = - sup (-a) (-b)"
-proof (rule inf_unique)
-  fix a b :: 'a
-  show "- sup (-a) (-b) \<le> a"
-    by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"])
-      (simp, simp add: add_sup_distrib_left)
-next
-  fix a b :: 'a
-  show "- sup (-a) (-b) \<le> b"
-    by (rule add_le_imp_le_right [of _ "sup (uminus a) (uminus b)"])
-      (simp, simp add: add_sup_distrib_left)
-next
-  fix a b c :: 'a
-  assume "a \<le> b" "a \<le> c"
-  then show "a \<le> - sup (-b) (-c)" by (subst neg_le_iff_le [symmetric])
-    (simp add: le_supI)
-qed
-  
-lemma sup_eq_neg_inf: "sup a b = - inf (-a) (-b)"
-proof (rule sup_unique)
-  fix a b :: 'a
-  show "a \<le> - inf (-a) (-b)"
-    by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"])
-      (simp, simp add: add_inf_distrib_left)
-next
-  fix a b :: 'a
-  show "b \<le> - inf (-a) (-b)"
-    by (rule add_le_imp_le_right [of _ "inf (uminus a) (uminus b)"])
-      (simp, simp add: add_inf_distrib_left)
-next
-  fix a b c :: 'a
-  assume "a \<le> c" "b \<le> c"
-  then show "- inf (-a) (-b) \<le> c" by (subst neg_le_iff_le [symmetric])
-    (simp add: le_infI)
-qed
-
-lemma neg_inf_eq_sup: "- inf a b = sup (-a) (-b)"
-by (simp add: inf_eq_neg_sup)
-
-lemma neg_sup_eq_inf: "- sup a b = inf (-a) (-b)"
-by (simp add: sup_eq_neg_inf)
-
-lemma add_eq_inf_sup: "a + b = sup a b + inf a b"
-proof -
-  have "0 = - inf 0 (a-b) + inf (a-b) 0" by (simp add: inf_commute)
-  hence "0 = sup 0 (b-a) + inf (a-b) 0" by (simp add: inf_eq_neg_sup)
-  hence "0 = (-a + sup a b) + (inf a b + (-b))"
-    by (simp add: add_sup_distrib_left add_inf_distrib_right)
-       (simp add: algebra_simps)
-  thus ?thesis by (simp add: algebra_simps)
-qed
-
-subsection {* Positive Part, Negative Part, Absolute Value *}
-
-definition
-  nprt :: "'a \<Rightarrow> 'a" where
-  "nprt x = inf x 0"
-
-definition
-  pprt :: "'a \<Rightarrow> 'a" where
-  "pprt x = sup x 0"
-
-lemma pprt_neg: "pprt (- x) = - nprt x"
-proof -
-  have "sup (- x) 0 = sup (- x) (- 0)" unfolding minus_zero ..
-  also have "\<dots> = - inf x 0" unfolding neg_inf_eq_sup ..
-  finally have "sup (- x) 0 = - inf x 0" .
-  then show ?thesis unfolding pprt_def nprt_def .
-qed
-
-lemma nprt_neg: "nprt (- x) = - pprt x"
-proof -
-  from pprt_neg have "pprt (- (- x)) = - nprt (- x)" .
-  then have "pprt x = - nprt (- x)" by simp
-  then show ?thesis by simp
-qed
-
-lemma prts: "a = pprt a + nprt a"
-by (simp add: pprt_def nprt_def add_eq_inf_sup[symmetric])
-
-lemma zero_le_pprt[simp]: "0 \<le> pprt a"
-by (simp add: pprt_def)
-
-lemma nprt_le_zero[simp]: "nprt a \<le> 0"
-by (simp add: nprt_def)
-
-lemma le_eq_neg: "a \<le> - b \<longleftrightarrow> a + b \<le> 0" (is "?l = ?r")
-proof -
-  have a: "?l \<longrightarrow> ?r"
-    apply (auto)
-    apply (rule add_le_imp_le_right[of _ "uminus b" _])
-    apply (simp add: add_assoc)
-    done
-  have b: "?r \<longrightarrow> ?l"
-    apply (auto)
-    apply (rule add_le_imp_le_right[of _ "b" _])
-    apply (simp)
-    done
-  from a b show ?thesis by blast
-qed
-
-lemma pprt_0[simp]: "pprt 0 = 0" by (simp add: pprt_def)
-lemma nprt_0[simp]: "nprt 0 = 0" by (simp add: nprt_def)
-
-lemma pprt_eq_id [simp, noatp]: "0 \<le> x \<Longrightarrow> pprt x = x"
-  by (simp add: pprt_def sup_aci sup_absorb1)
-
-lemma nprt_eq_id [simp, noatp]: "x \<le> 0 \<Longrightarrow> nprt x = x"
-  by (simp add: nprt_def inf_aci inf_absorb1)
-
-lemma pprt_eq_0 [simp, noatp]: "x \<le> 0 \<Longrightarrow> pprt x = 0"
-  by (simp add: pprt_def sup_aci sup_absorb2)
-
-lemma nprt_eq_0 [simp, noatp]: "0 \<le> x \<Longrightarrow> nprt x = 0"
-  by (simp add: nprt_def inf_aci inf_absorb2)
-
-lemma sup_0_imp_0: "sup a (- a) = 0 \<Longrightarrow> a = 0"
-proof -
-  {
-    fix a::'a
-    assume hyp: "sup a (-a) = 0"
-    hence "sup a (-a) + a = a" by (simp)
-    hence "sup (a+a) 0 = a" by (simp add: add_sup_distrib_right) 
-    hence "sup (a+a) 0 <= a" by (simp)
-    hence "0 <= a" by (blast intro: order_trans inf_sup_ord)
-  }
-  note p = this
-  assume hyp:"sup a (-a) = 0"
-  hence hyp2:"sup (-a) (-(-a)) = 0" by (simp add: sup_commute)
-  from p[OF hyp] p[OF hyp2] show "a = 0" by simp
-qed
-
-lemma inf_0_imp_0: "inf a (-a) = 0 \<Longrightarrow> a = 0"
-apply (simp add: inf_eq_neg_sup)
-apply (simp add: sup_commute)
-apply (erule sup_0_imp_0)
-done
-
-lemma inf_0_eq_0 [simp, noatp]: "inf a (- a) = 0 \<longleftrightarrow> a = 0"
-by (rule, erule inf_0_imp_0) simp
-
-lemma sup_0_eq_0 [simp, noatp]: "sup a (- a) = 0 \<longleftrightarrow> a = 0"
-by (rule, erule sup_0_imp_0) simp
-
-lemma zero_le_double_add_iff_zero_le_single_add [simp]:
-  "0 \<le> a + a \<longleftrightarrow> 0 \<le> a"
-proof
-  assume "0 <= a + a"
-  hence a:"inf (a+a) 0 = 0" by (simp add: inf_commute inf_absorb1)
-  have "(inf a 0)+(inf a 0) = inf (inf (a+a) 0) a" (is "?l=_")
-    by (simp add: add_sup_inf_distribs inf_aci)
-  hence "?l = 0 + inf a 0" by (simp add: a, simp add: inf_commute)
-  hence "inf a 0 = 0" by (simp only: add_right_cancel)
-  then show "0 <= a" unfolding le_iff_inf by (simp add: inf_commute)
-next
-  assume a: "0 <= a"
-  show "0 <= a + a" by (simp add: add_mono[OF a a, simplified])
-qed
-
-lemma double_zero: "a + a = 0 \<longleftrightarrow> a = 0"
-proof
-  assume assm: "a + a = 0"
-  then have "a + a + - a = - a" by simp
-  then have "a + (a + - a) = - a" by (simp only: add_assoc)
-  then have a: "- a = a" by simp
-  show "a = 0" apply (rule antisym)
-  apply (unfold neg_le_iff_le [symmetric, of a])
-  unfolding a apply simp
-  unfolding zero_le_double_add_iff_zero_le_single_add [symmetric, of a]
-  unfolding assm unfolding le_less apply simp_all done
-next
-  assume "a = 0" then show "a + a = 0" by simp
-qed
-
-lemma zero_less_double_add_iff_zero_less_single_add:
-  "0 < a + a \<longleftrightarrow> 0 < a"
-proof (cases "a = 0")
-  case True then show ?thesis by auto
-next
-  case False then show ?thesis (*FIXME tune proof*)
-  unfolding less_le apply simp apply rule
-  apply clarify
-  apply rule
-  apply assumption
-  apply (rule notI)
-  unfolding double_zero [symmetric, of a] apply simp
-  done
-qed
-
-lemma double_add_le_zero_iff_single_add_le_zero [simp]:
-  "a + a \<le> 0 \<longleftrightarrow> a \<le> 0" 
-proof -
-  have "a + a \<le> 0 \<longleftrightarrow> 0 \<le> - (a + a)" by (subst le_minus_iff, simp)
-  moreover have "\<dots> \<longleftrightarrow> a \<le> 0" by (simp add: zero_le_double_add_iff_zero_le_single_add)
-  ultimately show ?thesis by blast
-qed
-
-lemma double_add_less_zero_iff_single_less_zero [simp]:
-  "a + a < 0 \<longleftrightarrow> a < 0"
-proof -
-  have "a + a < 0 \<longleftrightarrow> 0 < - (a + a)" by (subst less_minus_iff, simp)
-  moreover have "\<dots> \<longleftrightarrow> a < 0" by (simp add: zero_less_double_add_iff_zero_less_single_add)
-  ultimately show ?thesis by blast
-qed
-
-declare neg_inf_eq_sup [simp] neg_sup_eq_inf [simp]
-
-lemma le_minus_self_iff: "a \<le> - a \<longleftrightarrow> a \<le> 0"
-proof -
-  from add_le_cancel_left [of "uminus a" "plus a a" zero]
-  have "(a <= -a) = (a+a <= 0)" 
-    by (simp add: add_assoc[symmetric])
-  thus ?thesis by simp
-qed
-
-lemma minus_le_self_iff: "- a \<le> a \<longleftrightarrow> 0 \<le> a"
-proof -
-  from add_le_cancel_left [of "uminus a" zero "plus a a"]
-  have "(-a <= a) = (0 <= a+a)" 
-    by (simp add: add_assoc[symmetric])
-  thus ?thesis by simp
-qed
-
-lemma zero_le_iff_zero_nprt: "0 \<le> a \<longleftrightarrow> nprt a = 0"
-unfolding le_iff_inf by (simp add: nprt_def inf_commute)
-
-lemma le_zero_iff_zero_pprt: "a \<le> 0 \<longleftrightarrow> pprt a = 0"
-unfolding le_iff_sup by (simp add: pprt_def sup_commute)
-
-lemma le_zero_iff_pprt_id: "0 \<le> a \<longleftrightarrow> pprt a = a"
-unfolding le_iff_sup by (simp add: pprt_def sup_commute)
-
-lemma zero_le_iff_nprt_id: "a \<le> 0 \<longleftrightarrow> nprt a = a"
-unfolding le_iff_inf by (simp add: nprt_def inf_commute)
-
-lemma pprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> pprt a \<le> pprt b"
-unfolding le_iff_sup by (simp add: pprt_def sup_aci sup_assoc [symmetric, of a])
-
-lemma nprt_mono [simp, noatp]: "a \<le> b \<Longrightarrow> nprt a \<le> nprt b"
-unfolding le_iff_inf by (simp add: nprt_def inf_aci inf_assoc [symmetric, of a])
-
-end
-
-lemmas add_sup_inf_distribs = add_inf_distrib_right add_inf_distrib_left add_sup_distrib_right add_sup_distrib_left
-
-
-class lordered_ab_group_add_abs = lordered_ab_group_add + abs +
-  assumes abs_lattice: "\<bar>a\<bar> = sup a (- a)"
-begin
-
-lemma abs_prts: "\<bar>a\<bar> = pprt a - nprt a"
-proof -
-  have "0 \<le> \<bar>a\<bar>"
-  proof -
-    have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice)
-    show ?thesis by (rule add_mono [OF a b, simplified])
-  qed
-  then have "0 \<le> sup a (- a)" unfolding abs_lattice .
-  then have "sup (sup a (- a)) 0 = sup a (- a)" by (rule sup_absorb1)
-  then show ?thesis
-    by (simp add: add_sup_inf_distribs sup_aci
-      pprt_def nprt_def diff_minus abs_lattice)
-qed
-
-subclass pordered_ab_group_add_abs
-proof
-  have abs_ge_zero [simp]: "\<And>a. 0 \<le> \<bar>a\<bar>"
-  proof -
-    fix a b
-    have a: "a \<le> \<bar>a\<bar>" and b: "- a \<le> \<bar>a\<bar>" by (auto simp add: abs_lattice)
-    show "0 \<le> \<bar>a\<bar>" by (rule add_mono [OF a b, simplified])
-  qed
-  have abs_leI: "\<And>a b. a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b"
-    by (simp add: abs_lattice le_supI)
-  fix a b
-  show "0 \<le> \<bar>a\<bar>" by simp
-  show "a \<le> \<bar>a\<bar>"
-    by (auto simp add: abs_lattice)
-  show "\<bar>-a\<bar> = \<bar>a\<bar>"
-    by (simp add: abs_lattice sup_commute)
-  show "a \<le> b \<Longrightarrow> - a \<le> b \<Longrightarrow> \<bar>a\<bar> \<le> b" by (fact abs_leI)
-  show "\<bar>a + b\<bar> \<le> \<bar>a\<bar> + \<bar>b\<bar>"
-  proof -
-    have g:"abs a + abs b = sup (a+b) (sup (-a-b) (sup (-a+b) (a + (-b))))" (is "_=sup ?m ?n")
-      by (simp add: abs_lattice add_sup_inf_distribs sup_aci diff_minus)
-    have a:"a+b <= sup ?m ?n" by (simp)
-    have b:"-a-b <= ?n" by (simp) 
-    have c:"?n <= sup ?m ?n" by (simp)
-    from b c have d: "-a-b <= sup ?m ?n" by(rule order_trans)
-    have e:"-a-b = -(a+b)" by (simp add: diff_minus)
-    from a d e have "abs(a+b) <= sup ?m ?n" 
-      by (drule_tac abs_leI, auto)
-    with g[symmetric] show ?thesis by simp
-  qed
-qed
-
-end
-
-lemma sup_eq_if:
-  fixes a :: "'a\<Colon>{lordered_ab_group_add, linorder}"
-  shows "sup a (- a) = (if a < 0 then - a else a)"
-proof -
-  note add_le_cancel_right [of a a "- a", symmetric, simplified]
-  moreover note add_le_cancel_right [of "-a" a a, symmetric, simplified]
-  then show ?thesis by (auto simp: sup_max min_max.sup_absorb1 min_max.sup_absorb2)
-qed
-
-lemma abs_if_lattice:
-  fixes a :: "'a\<Colon>{lordered_ab_group_add_abs, linorder}"
-  shows "\<bar>a\<bar> = (if a < 0 then - a else a)"
-by auto
-
-
-text {* Needed for abelian cancellation simprocs: *}
-
-lemma add_cancel_21: "((x::'a::ab_group_add) + (y + z) = y + u) = (x + z = u)"
-apply (subst add_left_commute)
-apply (subst add_left_cancel)
-apply simp
-done
-
-lemma add_cancel_end: "(x + (y + z) = y) = (x = - (z::'a::ab_group_add))"
-apply (subst add_cancel_21[of _ _ _ 0, simplified])
-apply (simp add: add_right_cancel[symmetric, of "x" "-z" "z", simplified])
-done
-
-lemma less_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (x < y) = (x' < y')"
-by (simp add: less_iff_diff_less_0[of x y] less_iff_diff_less_0[of x' y'])
-
-lemma le_eqI: "(x::'a::pordered_ab_group_add) - y = x' - y' \<Longrightarrow> (y <= x) = (y' <= x')"
-apply (simp add: le_iff_diff_le_0[of y x] le_iff_diff_le_0[of  y' x'])
-apply (simp add: neg_le_iff_le[symmetric, of "y-x" 0] neg_le_iff_le[symmetric, of "y'-x'" 0])
-done
-
-lemma eq_eqI: "(x::'a::ab_group_add) - y = x' - y' \<Longrightarrow> (x = y) = (x' = y')"
-by (simp only: eq_iff_diff_eq_0[of x y] eq_iff_diff_eq_0[of x' y'])
-
-lemma diff_def: "(x::'a::ab_group_add) - y == x + (-y)"
-by (simp add: diff_minus)
-
-lemma le_add_right_mono: 
-  assumes 
-  "a <= b + (c::'a::pordered_ab_group_add)"
-  "c <= d"    
-  shows "a <= b + d"
-  apply (rule_tac order_trans[where y = "b+c"])
-  apply (simp_all add: prems)
-  done
-
-lemma estimate_by_abs:
-  "a + b <= (c::'a::lordered_ab_group_add_abs) \<Longrightarrow> a <= c + abs b" 
-proof -
-  assume "a+b <= c"
-  hence 2: "a <= c+(-b)" by (simp add: algebra_simps)
-  have 3: "(-b) <= abs b" by (rule abs_ge_minus_self)
-  show ?thesis by (rule le_add_right_mono[OF 2 3])
-qed
-
-subsection {* Tools setup *}
-
-lemma add_mono_thms_ordered_semiring [noatp]:
-  fixes i j k :: "'a\<Colon>pordered_ab_semigroup_add"
-  shows "i \<le> j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
-    and "i = j \<and> k \<le> l \<Longrightarrow> i + k \<le> j + l"
-    and "i \<le> j \<and> k = l \<Longrightarrow> i + k \<le> j + l"
-    and "i = j \<and> k = l \<Longrightarrow> i + k = j + l"
-by (rule add_mono, clarify+)+
-
-lemma add_mono_thms_ordered_field [noatp]:
-  fixes i j k :: "'a\<Colon>pordered_cancel_ab_semigroup_add"
-  shows "i < j \<and> k = l \<Longrightarrow> i + k < j + l"
-    and "i = j \<and> k < l \<Longrightarrow> i + k < j + l"
-    and "i < j \<and> k \<le> l \<Longrightarrow> i + k < j + l"
-    and "i \<le> j \<and> k < l \<Longrightarrow> i + k < j + l"
-    and "i < j \<and> k < l \<Longrightarrow> i + k < j + l"
-by (auto intro: add_strict_right_mono add_strict_left_mono
-  add_less_le_mono add_le_less_mono add_strict_mono)
-
-text{*Simplification of @{term "x-y < 0"}, etc.*}
-lemmas diff_less_0_iff_less [simp, noatp] = less_iff_diff_less_0 [symmetric]
-lemmas diff_le_0_iff_le [simp, noatp] = le_iff_diff_le_0 [symmetric]
-
-ML {*
-structure ab_group_add_cancel = Abel_Cancel
-(
-
-(* term order for abelian groups *)
-
-fun agrp_ord (Const (a, _)) = find_index (fn a' => a = a')
-      [@{const_name Algebras.zero}, @{const_name Algebras.plus},
-        @{const_name Algebras.uminus}, @{const_name Algebras.minus}]
-  | agrp_ord _ = ~1;
-
-fun termless_agrp (a, b) = (TermOrd.term_lpo agrp_ord (a, b) = LESS);
-
-local
-  val ac1 = mk_meta_eq @{thm add_assoc};
-  val ac2 = mk_meta_eq @{thm add_commute};
-  val ac3 = mk_meta_eq @{thm add_left_commute};
-  fun solve_add_ac thy _ (_ $ (Const (@{const_name Algebras.plus},_) $ _ $ _) $ _) =
-        SOME ac1
-    | solve_add_ac thy _ (_ $ x $ (Const (@{const_name Algebras.plus},_) $ y $ z)) =
-        if termless_agrp (y, x) then SOME ac3 else NONE
-    | solve_add_ac thy _ (_ $ x $ y) =
-        if termless_agrp (y, x) then SOME ac2 else NONE
-    | solve_add_ac thy _ _ = NONE
-in
-  val add_ac_proc = Simplifier.simproc @{theory}
-    "add_ac_proc" ["x + y::'a::ab_semigroup_add"] solve_add_ac;
-end;
-
-val eq_reflection = @{thm eq_reflection};
-  
-val T = @{typ "'a::ab_group_add"};
-
-val cancel_ss = HOL_basic_ss settermless termless_agrp
-  addsimprocs [add_ac_proc] addsimps
-  [@{thm add_0_left}, @{thm add_0_right}, @{thm diff_def},
-   @{thm minus_add_distrib}, @{thm minus_minus}, @{thm minus_zero},
-   @{thm right_minus}, @{thm left_minus}, @{thm add_minus_cancel},
-   @{thm minus_add_cancel}];
-
-val sum_pats = [@{cterm "x + y::'a::ab_group_add"}, @{cterm "x - y::'a::ab_group_add"}];
-  
-val eqI_rules = [@{thm less_eqI}, @{thm le_eqI}, @{thm eq_eqI}];
-
-val dest_eqI = 
-  fst o HOLogic.dest_bin "op =" HOLogic.boolT o HOLogic.dest_Trueprop o concl_of;
-
-);
-*}
-
-ML {*
-  Addsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv];
-*}
-
-code_modulename SML
-  OrderedGroup Arith
-
-code_modulename OCaml
-  OrderedGroup Arith
-
-code_modulename Haskell
-  OrderedGroup Arith
-
-end