src/HOL/Nitpick_Examples/minipick.ML
changeset 45035 60d2c03d5c70
child 45062 9598cada31b3
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Nitpick_Examples/minipick.ML	Wed Sep 21 15:55:16 2011 +0200
@@ -0,0 +1,327 @@
+(*  Title:      HOL/Nitpick_Examples/minipick.ML
+    Author:     Jasmin Blanchette, TU Muenchen
+    Copyright   2009-2010
+
+Finite model generation for HOL formulas using Kodkod, minimalistic version.
+*)
+
+signature MINIPICK =
+sig
+  datatype rep = S_Rep | R_Rep
+  type styp = Nitpick_Util.styp
+
+  val vars_for_bound_var :
+    (typ -> int) -> rep -> typ list -> int -> Kodkod.rel_expr list
+  val rel_expr_for_bound_var :
+    (typ -> int) -> rep -> typ list -> int -> Kodkod.rel_expr
+  val decls_for : rep -> (typ -> int) -> typ list -> typ -> Kodkod.decl list
+  val false_atom : Kodkod.rel_expr
+  val true_atom : Kodkod.rel_expr
+  val formula_from_atom : Kodkod.rel_expr -> Kodkod.formula
+  val atom_from_formula : Kodkod.formula -> Kodkod.rel_expr
+  val kodkod_problem_from_term :
+    Proof.context -> (typ -> int) -> term -> Kodkod.problem
+  val solve_any_kodkod_problem : theory -> Kodkod.problem list -> string
+end;
+
+structure Minipick : MINIPICK =
+struct
+
+open Kodkod
+open Nitpick_Util
+open Nitpick_HOL
+open Nitpick_Peephole
+open Nitpick_Kodkod
+
+datatype rep = S_Rep | R_Rep
+
+fun check_type ctxt (Type (@{type_name fun}, Ts)) =
+    List.app (check_type ctxt) Ts
+  | check_type ctxt (Type (@{type_name prod}, Ts)) =
+    List.app (check_type ctxt) Ts
+  | check_type _ @{typ bool} = ()
+  | check_type _ (TFree (_, @{sort "{}"})) = ()
+  | check_type _ (TFree (_, @{sort HOL.type})) = ()
+  | check_type ctxt T =
+    raise NOT_SUPPORTED ("type " ^ quote (Syntax.string_of_typ ctxt T))
+
+fun atom_schema_of S_Rep card (Type (@{type_name fun}, [T1, T2])) =
+    replicate_list (card T1) (atom_schema_of S_Rep card T2)
+  | atom_schema_of R_Rep card (Type (@{type_name fun}, [T1, @{typ bool}])) =
+    atom_schema_of S_Rep card T1
+  | atom_schema_of R_Rep card (Type (@{type_name fun}, [T1, T2])) =
+    atom_schema_of S_Rep card T1 @ atom_schema_of R_Rep card T2
+  | atom_schema_of _ card (Type (@{type_name prod}, Ts)) =
+    maps (atom_schema_of S_Rep card) Ts
+  | atom_schema_of _ card T = [card T]
+val arity_of = length ooo atom_schema_of
+
+fun index_for_bound_var _ [_] 0 = 0
+  | index_for_bound_var card (_ :: Ts) 0 =
+    index_for_bound_var card Ts 0 + arity_of S_Rep card (hd Ts)
+  | index_for_bound_var card Ts n = index_for_bound_var card (tl Ts) (n - 1)
+fun vars_for_bound_var card R Ts j =
+  map (curry Var 1) (index_seq (index_for_bound_var card Ts j)
+                               (arity_of R card (nth Ts j)))
+val rel_expr_for_bound_var = foldl1 Product oooo vars_for_bound_var
+fun decls_for R card Ts T =
+  map2 (curry DeclOne o pair 1)
+       (index_seq (index_for_bound_var card (T :: Ts) 0)
+                  (arity_of R card (nth (T :: Ts) 0)))
+       (map (AtomSeq o rpair 0) (atom_schema_of R card T))
+
+val atom_product = foldl1 Product o map Atom
+
+val false_atom = Atom 0
+val true_atom = Atom 1
+
+fun formula_from_atom r = RelEq (r, true_atom)
+fun atom_from_formula f = RelIf (f, true_atom, false_atom)
+
+fun kodkod_formula_from_term ctxt card frees =
+  let
+    fun R_rep_from_S_rep (Type (@{type_name fun}, [T1, @{typ bool}])) r =
+        let
+          val jss = atom_schema_of S_Rep card T1 |> map (rpair 0)
+                    |> all_combinations
+        in
+          map2 (fn i => fn js =>
+                   RelIf (formula_from_atom (Project (r, [Num i])),
+                          atom_product js, empty_n_ary_rel (length js)))
+               (index_seq 0 (length jss)) jss
+          |> foldl1 Union
+        end
+      | R_rep_from_S_rep (Type (@{type_name fun}, [T1, T2])) r =
+        let
+          val jss = atom_schema_of S_Rep card T1 |> map (rpair 0)
+                    |> all_combinations
+          val arity2 = arity_of S_Rep card T2
+        in
+          map2 (fn i => fn js =>
+                   Product (atom_product js,
+                            Project (r, num_seq (i * arity2) arity2)
+                            |> R_rep_from_S_rep T2))
+               (index_seq 0 (length jss)) jss
+          |> foldl1 Union
+        end
+      | R_rep_from_S_rep _ r = r
+    fun S_rep_from_R_rep Ts (T as Type (@{type_name fun}, _)) r =
+        Comprehension (decls_for S_Rep card Ts T,
+            RelEq (R_rep_from_S_rep T
+                       (rel_expr_for_bound_var card S_Rep (T :: Ts) 0), r))
+      | S_rep_from_R_rep _ _ r = r
+    fun to_F Ts t =
+      (case t of
+         @{const Not} $ t1 => Not (to_F Ts t1)
+       | @{const False} => False
+       | @{const True} => True
+       | Const (@{const_name All}, _) $ Abs (_, T, t') =>
+         All (decls_for S_Rep card Ts T, to_F (T :: Ts) t')
+       | (t0 as Const (@{const_name All}, _)) $ t1 =>
+         to_F Ts (t0 $ eta_expand Ts t1 1)
+       | Const (@{const_name Ex}, _) $ Abs (_, T, t') =>
+         Exist (decls_for S_Rep card Ts T, to_F (T :: Ts) t')
+       | (t0 as Const (@{const_name Ex}, _)) $ t1 =>
+         to_F Ts (t0 $ eta_expand Ts t1 1)
+       | Const (@{const_name HOL.eq}, _) $ t1 $ t2 =>
+         RelEq (to_R_rep Ts t1, to_R_rep Ts t2)
+       | Const (@{const_name ord_class.less_eq},
+                Type (@{type_name fun},
+                      [Type (@{type_name fun}, [_, @{typ bool}]), _]))
+         $ t1 $ t2 =>
+         Subset (to_R_rep Ts t1, to_R_rep Ts t2)
+       | @{const HOL.conj} $ t1 $ t2 => And (to_F Ts t1, to_F Ts t2)
+       | @{const HOL.disj} $ t1 $ t2 => Or (to_F Ts t1, to_F Ts t2)
+       | @{const HOL.implies} $ t1 $ t2 => Implies (to_F Ts t1, to_F Ts t2)
+       | t1 $ t2 => Subset (to_S_rep Ts t2, to_R_rep Ts t1)
+       | Free _ => raise SAME ()
+       | Term.Var _ => raise SAME ()
+       | Bound _ => raise SAME ()
+       | Const (s, _) => raise NOT_SUPPORTED ("constant " ^ quote s)
+       | _ => raise TERM ("Minipick.kodkod_formula_from_term.to_F", [t]))
+      handle SAME () => formula_from_atom (to_R_rep Ts t)
+    and to_S_rep Ts t =
+      case t of
+        Const (@{const_name Pair}, _) $ t1 $ t2 =>
+        Product (to_S_rep Ts t1, to_S_rep Ts t2)
+      | Const (@{const_name Pair}, _) $ _ => to_S_rep Ts (eta_expand Ts t 1)
+      | Const (@{const_name Pair}, _) => to_S_rep Ts (eta_expand Ts t 2)
+      | Const (@{const_name fst}, _) $ t1 =>
+        let val fst_arity = arity_of S_Rep card (fastype_of1 (Ts, t)) in
+          Project (to_S_rep Ts t1, num_seq 0 fst_arity)
+        end
+      | Const (@{const_name fst}, _) => to_S_rep Ts (eta_expand Ts t 1)
+      | Const (@{const_name snd}, _) $ t1 =>
+        let
+          val pair_arity = arity_of S_Rep card (fastype_of1 (Ts, t1))
+          val snd_arity = arity_of S_Rep card (fastype_of1 (Ts, t))
+          val fst_arity = pair_arity - snd_arity
+        in Project (to_S_rep Ts t1, num_seq fst_arity snd_arity) end
+      | Const (@{const_name snd}, _) => to_S_rep Ts (eta_expand Ts t 1)
+      | Bound j => rel_expr_for_bound_var card S_Rep Ts j
+      | _ => S_rep_from_R_rep Ts (fastype_of1 (Ts, t)) (to_R_rep Ts t)
+    and to_R_rep Ts t =
+      (case t of
+         @{const Not} => to_R_rep Ts (eta_expand Ts t 1)
+       | Const (@{const_name All}, _) => to_R_rep Ts (eta_expand Ts t 1)
+       | Const (@{const_name Ex}, _) => to_R_rep Ts (eta_expand Ts t 1)
+       | Const (@{const_name HOL.eq}, _) $ _ => to_R_rep Ts (eta_expand Ts t 1)
+       | Const (@{const_name HOL.eq}, _) => to_R_rep Ts (eta_expand Ts t 2)
+       | Const (@{const_name ord_class.less_eq},
+                Type (@{type_name fun},
+                      [Type (@{type_name fun}, [_, @{typ bool}]), _])) $ _ =>
+         to_R_rep Ts (eta_expand Ts t 1)
+       | Const (@{const_name ord_class.less_eq}, _) =>
+         to_R_rep Ts (eta_expand Ts t 2)
+       | @{const HOL.conj} $ _ => to_R_rep Ts (eta_expand Ts t 1)
+       | @{const HOL.conj} => to_R_rep Ts (eta_expand Ts t 2)
+       | @{const HOL.disj} $ _ => to_R_rep Ts (eta_expand Ts t 1)
+       | @{const HOL.disj} => to_R_rep Ts (eta_expand Ts t 2)
+       | @{const HOL.implies} $ _ => to_R_rep Ts (eta_expand Ts t 1)
+       | @{const HOL.implies} => to_R_rep Ts (eta_expand Ts t 2)
+       | Const (@{const_name bot_class.bot},
+                T as Type (@{type_name fun}, [_, @{typ bool}])) =>
+         empty_n_ary_rel (arity_of R_Rep card T)
+       | Const (@{const_name insert}, _) $ t1 $ t2 =>
+         Union (to_S_rep Ts t1, to_R_rep Ts t2)
+       | Const (@{const_name insert}, _) $ _ => to_R_rep Ts (eta_expand Ts t 1)
+       | Const (@{const_name insert}, _) => to_R_rep Ts (eta_expand Ts t 2)
+       | Const (@{const_name trancl}, _) $ t1 =>
+         if arity_of R_Rep card (fastype_of1 (Ts, t1)) = 2 then
+           Closure (to_R_rep Ts t1)
+         else
+           raise NOT_SUPPORTED "transitive closure for function or pair type"
+       | Const (@{const_name trancl}, _) => to_R_rep Ts (eta_expand Ts t 1)
+       | Const (@{const_name inf_class.inf},
+                Type (@{type_name fun},
+                      [Type (@{type_name fun}, [_, @{typ bool}]), _]))
+         $ t1 $ t2 =>
+         Intersect (to_R_rep Ts t1, to_R_rep Ts t2)
+       | Const (@{const_name inf_class.inf}, _) $ _ =>
+         to_R_rep Ts (eta_expand Ts t 1)
+       | Const (@{const_name inf_class.inf}, _) =>
+         to_R_rep Ts (eta_expand Ts t 2)
+       | Const (@{const_name sup_class.sup},
+                Type (@{type_name fun},
+                      [Type (@{type_name fun}, [_, @{typ bool}]), _]))
+         $ t1 $ t2 =>
+         Union (to_R_rep Ts t1, to_R_rep Ts t2)
+       | Const (@{const_name sup_class.sup}, _) $ _ =>
+         to_R_rep Ts (eta_expand Ts t 1)
+       | Const (@{const_name sup_class.sup}, _) =>
+         to_R_rep Ts (eta_expand Ts t 2)
+       | Const (@{const_name minus_class.minus},
+                Type (@{type_name fun},
+                      [Type (@{type_name fun}, [_, @{typ bool}]), _]))
+         $ t1 $ t2 =>
+         Difference (to_R_rep Ts t1, to_R_rep Ts t2)
+       | Const (@{const_name minus_class.minus},
+                Type (@{type_name fun},
+                      [Type (@{type_name fun}, [_, @{typ bool}]), _])) $ _ =>
+         to_R_rep Ts (eta_expand Ts t 1)
+       | Const (@{const_name minus_class.minus},
+                Type (@{type_name fun},
+                      [Type (@{type_name fun}, [_, @{typ bool}]), _])) =>
+         to_R_rep Ts (eta_expand Ts t 2)
+       | Const (@{const_name Pair}, _) $ _ $ _ => raise SAME ()
+       | Const (@{const_name Pair}, _) $ _ => raise SAME ()
+       | Const (@{const_name Pair}, _) => raise SAME ()
+       | Const (@{const_name fst}, _) $ _ => raise SAME ()
+       | Const (@{const_name fst}, _) => raise SAME ()
+       | Const (@{const_name snd}, _) $ _ => raise SAME ()
+       | Const (@{const_name snd}, _) => raise SAME ()
+       | Const (_, @{typ bool}) => atom_from_formula (to_F Ts t)
+       | Free (x as (_, T)) =>
+         Rel (arity_of R_Rep card T, find_index (curry (op =) x) frees)
+       | Term.Var _ => raise NOT_SUPPORTED "schematic variables"
+       | Bound _ => raise SAME ()
+       | Abs (_, T, t') =>
+         (case fastype_of1 (T :: Ts, t') of
+            @{typ bool} => Comprehension (decls_for S_Rep card Ts T,
+                                          to_F (T :: Ts) t')
+          | T' => Comprehension (decls_for S_Rep card Ts T @
+                                 decls_for R_Rep card (T :: Ts) T',
+                                 Subset (rel_expr_for_bound_var card R_Rep
+                                                              (T' :: T :: Ts) 0,
+                                         to_R_rep (T :: Ts) t')))
+       | t1 $ t2 =>
+         (case fastype_of1 (Ts, t) of
+            @{typ bool} => atom_from_formula (to_F Ts t)
+          | T =>
+            let val T2 = fastype_of1 (Ts, t2) in
+              case arity_of S_Rep card T2 of
+                1 => Join (to_S_rep Ts t2, to_R_rep Ts t1)
+              | arity2 =>
+                let val res_arity = arity_of R_Rep card T in
+                  Project (Intersect
+                      (Product (to_S_rep Ts t2,
+                                atom_schema_of R_Rep card T
+                                |> map (AtomSeq o rpair 0) |> foldl1 Product),
+                       to_R_rep Ts t1),
+                      num_seq arity2 res_arity)
+                end
+            end)
+       | _ => raise NOT_SUPPORTED ("term " ^
+                                   quote (Syntax.string_of_term ctxt t)))
+      handle SAME () => R_rep_from_S_rep (fastype_of1 (Ts, t)) (to_S_rep Ts t)
+  in to_F [] end
+
+fun bound_for_free card i (s, T) =
+  let val js = atom_schema_of R_Rep card T in
+    ([((length js, i), s)],
+     [TupleSet [], atom_schema_of R_Rep card T |> map (rpair 0)
+                   |> tuple_set_from_atom_schema])
+  end
+
+fun declarative_axiom_for_rel_expr card Ts (Type (@{type_name fun}, [T1, T2]))
+                                   r =
+    if body_type T2 = bool_T then
+      True
+    else
+      All (decls_for S_Rep card Ts T1,
+           declarative_axiom_for_rel_expr card (T1 :: Ts) T2
+               (List.foldl Join r (vars_for_bound_var card S_Rep (T1 :: Ts) 0)))
+  | declarative_axiom_for_rel_expr _ _ _ r = One r
+fun declarative_axiom_for_free card i (_, T) =
+  declarative_axiom_for_rel_expr card [] T (Rel (arity_of R_Rep card T, i))
+
+fun kodkod_problem_from_term ctxt raw_card t =
+  let
+    val thy = ProofContext.theory_of ctxt
+    fun card (Type (@{type_name fun}, [T1, T2])) =
+        reasonable_power (card T2) (card T1)
+      | card (Type (@{type_name prod}, [T1, T2])) = card T1 * card T2
+      | card @{typ bool} = 2
+      | card T = Int.max (1, raw_card T)
+    val neg_t = @{const Not} $ Object_Logic.atomize_term thy t
+    val _ = fold_types (K o check_type ctxt) neg_t ()
+    val frees = Term.add_frees neg_t []
+    val bounds = map2 (bound_for_free card) (index_seq 0 (length frees)) frees
+    val declarative_axioms =
+      map2 (declarative_axiom_for_free card) (index_seq 0 (length frees)) frees
+    val formula = kodkod_formula_from_term ctxt card frees neg_t
+                  |> fold_rev (curry And) declarative_axioms
+    val univ_card = univ_card 0 0 0 bounds formula
+  in
+    {comment = "", settings = [], univ_card = univ_card, tuple_assigns = [],
+     bounds = bounds, int_bounds = [], expr_assigns = [], formula = formula}
+  end
+
+fun solve_any_kodkod_problem thy problems =
+  let
+    val {debug, overlord, ...} = Nitpick_Isar.default_params thy []
+    val max_threads = 1
+    val max_solutions = 1
+  in
+    case solve_any_problem debug overlord NONE max_threads max_solutions
+                           problems of
+      JavaNotInstalled => "unknown"
+    | JavaTooOld => "unknown"
+    | KodkodiNotInstalled => "unknown"
+    | Normal ([], _, _) => "none"
+    | Normal _ => "genuine"
+    | TimedOut _ => "unknown"
+    | Error (s, _) => error ("Kodkod error: " ^ s)
+  end
+
+end;