--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOLCF/Ffun.thy Fri Jun 03 22:07:30 2005 +0200
@@ -0,0 +1,118 @@
+(* Title: HOLCF/FunCpo.thy
+ ID: $Id$
+ Author: Franz Regensburger
+
+Definition of the partial ordering for the type of all functions => (fun)
+
+Class instance of => (fun) for class pcpo.
+*)
+
+header {* Class instances for the full function space *}
+
+theory Ffun
+imports Pcpo
+begin
+
+subsection {* Type @{typ "'a => 'b"} is a partial order *}
+
+instance fun :: (type, sq_ord) sq_ord ..
+
+defs (overloaded)
+ less_fun_def: "(op \<sqsubseteq>) \<equiv> (\<lambda>f g. \<forall>x. f x \<sqsubseteq> g x)"
+
+lemma refl_less_fun: "(f::'a::type \<Rightarrow> 'b::po) \<sqsubseteq> f"
+by (simp add: less_fun_def)
+
+lemma antisym_less_fun:
+ "\<lbrakk>(f1::'a::type \<Rightarrow> 'b::po) \<sqsubseteq> f2; f2 \<sqsubseteq> f1\<rbrakk> \<Longrightarrow> f1 = f2"
+by (simp add: less_fun_def expand_fun_eq antisym_less)
+
+lemma trans_less_fun:
+ "\<lbrakk>(f1::'a::type \<Rightarrow> 'b::po) \<sqsubseteq> f2; f2 \<sqsubseteq> f3\<rbrakk> \<Longrightarrow> f1 \<sqsubseteq> f3"
+apply (unfold less_fun_def)
+apply clarify
+apply (rule trans_less)
+apply (erule spec)
+apply (erule spec)
+done
+
+instance fun :: (type, po) po
+by intro_classes
+ (assumption | rule refl_less_fun antisym_less_fun trans_less_fun)+
+
+text {* make the symbol @{text "<<"} accessible for type fun *}
+
+lemma less_fun: "(f \<sqsubseteq> g) = (\<forall>x. f x \<sqsubseteq> g x)"
+by (simp add: less_fun_def)
+
+lemma less_fun_ext: "(\<And>x. f x \<sqsubseteq> g x) \<Longrightarrow> f \<sqsubseteq> g"
+by (simp add: less_fun_def)
+
+subsection {* Type @{typ "'a::type => 'b::pcpo"} is pointed *}
+
+lemma minimal_fun: "(\<lambda>x. \<bottom>) \<sqsubseteq> f"
+by (simp add: less_fun_def)
+
+lemma least_fun: "\<exists>x::'a \<Rightarrow> 'b::pcpo. \<forall>y. x \<sqsubseteq> y"
+apply (rule_tac x = "\<lambda>x. \<bottom>" in exI)
+apply (rule minimal_fun [THEN allI])
+done
+
+subsection {* Type @{typ "'a::type => 'b::cpo"} is chain complete *}
+
+text {* chains of functions yield chains in the po range *}
+
+lemma ch2ch_fun: "chain S \<Longrightarrow> chain (\<lambda>i. S i x)"
+by (simp add: chain_def less_fun_def)
+
+lemma ch2ch_fun_rev: "(\<And>x. chain (\<lambda>i. S i x)) \<Longrightarrow> chain S"
+by (simp add: chain_def less_fun_def)
+
+
+text {* upper bounds of function chains yield upper bound in the po range *}
+
+lemma ub2ub_fun:
+ "range (S::nat \<Rightarrow> 'a \<Rightarrow> 'b::po) <| u \<Longrightarrow> range (\<lambda>i. S i x) <| u x"
+by (auto simp add: is_ub_def less_fun_def)
+
+text {* Type @{typ "'a::type => 'b::cpo"} is chain complete *}
+
+lemma lub_fun:
+ "chain (S::nat \<Rightarrow> 'a::type \<Rightarrow> 'b::cpo)
+ \<Longrightarrow> range S <<| (\<lambda>x. \<Squnion>i. S i x)"
+apply (rule is_lubI)
+apply (rule ub_rangeI)
+apply (rule less_fun_ext)
+apply (rule is_ub_thelub)
+apply (erule ch2ch_fun)
+apply (rule less_fun_ext)
+apply (rule is_lub_thelub)
+apply (erule ch2ch_fun)
+apply (erule ub2ub_fun)
+done
+
+lemma thelub_fun:
+ "chain (S::nat \<Rightarrow> 'a::type \<Rightarrow> 'b::cpo)
+ \<Longrightarrow> lub (range S) = (\<lambda>x. \<Squnion>i. S i x)"
+by (rule lub_fun [THEN thelubI])
+
+lemma cpo_fun:
+ "chain (S::nat \<Rightarrow> 'a::type \<Rightarrow> 'b::cpo) \<Longrightarrow> \<exists>x. range S <<| x"
+by (rule exI, erule lub_fun)
+
+instance fun :: (type, cpo) cpo
+by intro_classes (rule cpo_fun)
+
+instance fun :: (type, pcpo) pcpo
+by intro_classes (rule least_fun)
+
+text {* for compatibility with old HOLCF-Version *}
+lemma inst_fun_pcpo: "UU = (%x. UU)"
+by (rule minimal_fun [THEN UU_I, symmetric])
+
+text {* function application is strict in the left argument *}
+lemma app_strict [simp]: "\<bottom> x = \<bottom>"
+by (simp add: inst_fun_pcpo)
+
+end
+