--- a/src/HOL/UNITY/Comp/Counterc.thy Thu Jul 03 10:37:25 2003 +0200
+++ b/src/HOL/UNITY/Comp/Counterc.thy Thu Jul 03 12:56:48 2003 +0200
@@ -11,9 +11,9 @@
Spriner LNCS 1586 (1999), pages 1215-1227.
*)
-Counterc = UNITY_Main +
+theory Counterc = UNITY_Main:
-types state
+typedecl state
arities state :: type
consts
@@ -41,5 +41,90 @@
Component :: "nat => state program"
"Component i == mk_total_program({s. C s = 0 & (c s) i = 0},
{a i},
- \\<Union>G \\<in> preserves (%s. (c s) i). Acts G)"
+ \<Union>G \<in> preserves (%s. (c s) i). Acts G)"
+
+
+declare Component_def [THEN def_prg_Init, simp]
+declare Component_def [THEN def_prg_AllowedActs, simp]
+declare a_def [THEN def_act_simp, simp]
+
+(* Theorems about sum and sumj *)
+lemma sum_sumj_eq1 [rule_format]: "\<forall>i. I<i--> (sum I s = sumj I i s)"
+by (induct_tac "I", auto)
+
+lemma sum_sumj_eq2 [rule_format]: "i<I --> sum I s = c s i + sumj I i s"
+apply (induct_tac "I")
+apply (auto simp add: linorder_neq_iff sum_sumj_eq1)
+done
+
+lemma sum_ext [rule_format]:
+ "(\<forall>i. i<I --> c s' i = c s i) --> (sum I s' = sum I s)"
+by (induct_tac "I", auto)
+
+lemma sumj_ext [rule_format]:
+ "(\<forall>j. j<I & j~=i --> c s' j = c s j) --> (sumj I i s' = sumj I i s)"
+apply (induct_tac "I", safe)
+apply (auto intro!: sum_ext)
+done
+
+
+lemma sum0 [rule_format]: "(\<forall>i. i<I --> c s i = 0) --> sum I s = 0"
+by (induct_tac "I", auto)
+
+
+(* Safety properties for Components *)
+
+lemma Component_ok_iff:
+ "(Component i ok G) =
+ (G \<in> preserves (%s. c s i) & Component i \<in> Allowed G)"
+apply (auto simp add: ok_iff_Allowed Component_def [THEN def_total_prg_Allowed])
+done
+declare Component_ok_iff [iff]
+declare OK_iff_ok [iff]
+declare preserves_def [simp]
+
+
+lemma p2: "Component i \<in> stable {s. C s = (c s) i + k}"
+by (simp add: Component_def, constrains)
+
+lemma p3:
+ "[| OK I Component; i\<in>I |]
+ ==> Component i \<in> stable {s. \<forall>j\<in>I. j~=i --> c s j = c k j}"
+apply simp
+apply (unfold Component_def mk_total_program_def)
+apply (simp (no_asm_use) add: stable_def constrains_def)
+apply blast
+done
+
+
+lemma p2_p3_lemma1:
+ "[| OK {i. i<I} Component; i<I |] ==>
+ \<forall>k. Component i \<in> stable ({s. C s = c s i + sumj I i k} Int
+ {s. \<forall>j\<in>{i. i<I}. j~=i --> c s j = c k j})"
+by (blast intro: stable_Int [OF p2 p3])
+
+lemma p2_p3_lemma2:
+ "(\<forall>k. F \<in> stable ({s. C s = (c s) i + sumj I i k} Int
+ {s. \<forall>j\<in>{i. i<I}. j~=i --> c s j = c k j}))
+ ==> (F \<in> stable {s. C s = c s i + sumj I i s})"
+apply (simp add: constrains_def stable_def)
+apply (force intro!: sumj_ext)
+done
+
+
+lemma p2_p3:
+ "[| OK {i. i<I} Component; i<I |]
+ ==> Component i \<in> stable {s. C s = c s i + sumj I i s}"
+by (blast intro: p2_p3_lemma1 [THEN p2_p3_lemma2])
+
+
+(* Compositional correctness *)
+lemma safety:
+ "[| 0<I; OK {i. i<I} Component |]
+ ==> (\<Squnion>i\<in>{i. i<I}. (Component i)) \<in> invariant {s. C s = sum I s}"
+apply (unfold invariant_def)
+apply (simp (no_asm) add: JN_stable sum_sumj_eq2)
+apply (auto intro!: sum0 p2_p3)
+done
+
end