src/HOL/Real/Complex_Numbers.thy
changeset 14374 61de62096768
parent 14373 67a628beb981
child 14375 a545da363b23
--- a/src/HOL/Real/Complex_Numbers.thy	Tue Feb 03 11:06:36 2004 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,182 +0,0 @@
-(*  Title:      HOL/Real/Complex_Numbers.thy
-    ID:         $Id$
-    Author:     Gertrud Bauer and Markus Wenzel, TU München
-    License:    GPL (GNU GENERAL PUBLIC LICENSE)
-*)
-
-header {* Complex numbers *}
-
-theory Complex_Numbers = RealPow + Ring_and_Field:
-
-subsection {* Representation of complex numbers *}
-
-datatype complex = Complex real real
-
-consts Re :: "complex => real"
-primrec "Re (Complex x y) = x"
-
-consts Im :: "complex => real"
-primrec "Im (Complex x y) = y"
-
-lemma complex_surj [simp]: "Complex (Re z) (Im z) = z"
-  by (induct z) simp
-
-instance complex :: zero ..
-instance complex :: one ..
-instance complex :: number ..
-instance complex :: plus ..
-instance complex :: minus ..
-instance complex :: times ..
-instance complex :: inverse ..
-
-defs (overloaded)
-  zero_complex_def: "0 == Complex 0 0"
-  one_complex_def: "1 == Complex 1 0"
-  number_of_complex_def: "number_of b == Complex (number_of b) 0"
-  add_complex_def: "z + w == Complex (Re z + Re w) (Im z + Im w)"
-  minus_complex_def: "z - w == Complex (Re z - Re w) (Im z - Im w)"
-  uminus_complex_def: "- z == Complex (- Re z) (- Im z)"
-  mult_complex_def: "z * w ==
-    Complex (Re z * Re w - Im z * Im w) (Re z * Im w + Im z * Re w)"
-  inverse_complex_def: "(z::complex) \<noteq> 0 ==> inverse z ==
-    Complex (Re z / ((Re z)\<twosuperior> + (Im z)\<twosuperior>)) (- Im z / ((Re z)\<twosuperior> + (Im z)\<twosuperior>))"
-  divide_complex_def: "(w::complex) \<noteq> 0 ==> z / (w::complex) == z * inverse w"
-
-lemma complex_equality [intro?]: "Re z = Re w ==> Im z = Im w ==> z = w"
-  by (induct z, induct w) simp
-
-lemma Re_zero [simp]: "Re 0 = 0"
-  and Im_zero [simp]: "Im 0 = 0"
-  by (simp_all add: zero_complex_def)
-
-lemma Re_one [simp]: "Re 1 = 1"
-  and Im_one [simp]: "Im 1 = 0"
-  by (simp_all add: one_complex_def)
-
-lemma Re_add [simp]: "Re (z + w) = Re z + Re w"
-  by (simp add: add_complex_def)
-
-lemma Im_add [simp]: "Im (z + w) = Im z + Im w"
-  by (simp add: add_complex_def)
-
-lemma Re_diff [simp]: "Re (z - w) = Re z - Re w"
-  by (simp add: minus_complex_def)
-
-lemma Im_diff [simp]: "Im (z - w) = Im z - Im w"
-  by (simp add: minus_complex_def)
-
-lemma Re_uminus [simp]: "Re (-z) = - Re z"
-  by (simp add: uminus_complex_def)
-
-lemma Im_uminus [simp]: "Im (-z) = - Im z"
-  by (simp add: uminus_complex_def)
-
-lemma Re_mult [simp]: "Re (z * w) = Re z * Re w - Im z * Im w"
-  by (simp add: mult_complex_def)
-
-lemma Im_mult [simp]: "Im (z * w) = Re z * Im w + Im z * Re w"
-  by (simp add: mult_complex_def)
-
-lemma zero_complex_iff: "(z = 0) = (Re z = 0 \<and> Im z = 0)"
-  and one_complex_iff: "(z = 1) = (Re z = 1 \<and> Im z = 0)"
-  by (auto simp add: complex_equality)
-
-
-subsection {* The field of complex numbers *}
-
-instance complex :: field
-proof
-  fix z u v w :: complex
-  show "(u + v) + w = u + (v + w)"
-    by (simp add: add_complex_def)
-  show "z + w = w + z"
-    by (simp add: add_complex_def)
-  show "0 + z = z"
-    by (simp add: add_complex_def zero_complex_def)
-  show "-z + z = 0"
-    by (simp add: complex_equality minus_complex_def)
-  show "z - w = z + -w"
-    by (simp add: add_complex_def minus_complex_def uminus_complex_def)
-  show "(u * v) * w = u * (v * w)"
-    by (simp add: mult_complex_def mult_ac ring_distrib real_diff_def)  (* FIXME *)
-  show "z * w = w * z"
-    by (simp add: mult_complex_def)
-  show "1 * z = z"
-    by (simp add: one_complex_def mult_complex_def)
-  show "0 \<noteq> (1::complex)"  --{*for some reason it has to be early*}
-    by (simp add: zero_complex_def one_complex_def) 
-  show "(u + v) * w = u * w + v * w"
-    by (simp add: add_complex_def mult_complex_def ring_distrib)
-  show "z+u = z+v ==> u=v"
-    proof -
-      assume eq: "z+u = z+v" 
-      hence "(-z + z) + u = (-z + z) + v" by (simp add: eq add_complex_def)
-      thus "u = v" by (simp add: add_complex_def)
-    qed
-  assume neq: "w \<noteq> 0"
-  thus "z / w = z * inverse w"
-    by (simp add: divide_complex_def)
-  show "inverse w * w = 1"
-  proof
-    have neq': "Re w * Re w + Im w * Im w \<noteq> 0"
-    proof -
-      have ge: "0 \<le> Re w * Re w"  "0 \<le> Im w * Im w" by simp_all
-      from neq have "Re w \<noteq> 0 \<or> Im w \<noteq> 0" by (simp add: zero_complex_iff)
-      hence "Re w * Re w \<noteq> 0 \<or> Im w * Im w \<noteq> 0" by simp
-      thus ?thesis by rule (insert ge, arith+)
-    qed
-    with neq show "Re (inverse w * w) = Re 1"
-      by (simp add: inverse_complex_def power2_eq_square add_divide_distrib [symmetric])
-    from neq show "Im (inverse w * w) = Im 1"
-      by (simp add: inverse_complex_def power2_eq_square
-        mult_ac add_divide_distrib [symmetric])
-  qed
-qed
-
-
-subsection {* Basic operations *}
-
-instance complex :: power ..
-primrec (power_complex)
-  "z ^ 0 = 1"
-  "z ^ Suc n = (z::complex) * (z ^ n)"
-
-lemma complex_power_two: "z\<twosuperior> = z * (z::complex)"
-  by (simp add: complex_equality numeral_2_eq_2)
-
-
-constdefs
-  im_unit :: complex    ("\<i>")
-  "\<i> == Complex 0 1"
-
-lemma im_unit_square: "\<i>\<twosuperior> = -1"
-  by (simp add: im_unit_def complex_power_two mult_complex_def number_of_complex_def)
-
-
-constdefs
-  conjg :: "complex => complex"
-  "conjg z == Complex (Re z) (- Im z)"
-
-lemma Re_cong [simp]: "Re (conjg z) = Re z"
-  by (simp add: conjg_def)
-
-lemma Im_cong [simp]: "Im (conjg z) = - Im z"
-  by (simp add: conjg_def)
-
-lemma Re_conjg_self: "Re (z * conjg z) = (Re z)\<twosuperior> + (Im z)\<twosuperior>"
-  by (simp add: power2_eq_square)
-
-lemma Im_conjg_self: "Im (z * conjg z) = 0"
-  by simp
-
-
-subsection {* Embedding other number domains *}
-
-constdefs
-  complex :: "'a => complex"
-  "complex x == Complex (real x) 0";
-
-lemma Re_complex [simp]: "Re (complex x) = real x"
-  by (simp add: complex_def)
-
-end