--- a/src/HOL/Tools/SMT/z3_proof_literals.ML Thu Aug 28 00:40:37 2014 +0200
+++ /dev/null Thu Jan 01 00:00:00 1970 +0000
@@ -1,361 +0,0 @@
-(* Title: HOL/Tools/SMT/z3_proof_literals.ML
- Author: Sascha Boehme, TU Muenchen
-
-Proof tools related to conjunctions and disjunctions.
-*)
-
-signature Z3_PROOF_LITERALS =
-sig
- (*literal table*)
- type littab = thm Termtab.table
- val make_littab: thm list -> littab
- val insert_lit: thm -> littab -> littab
- val delete_lit: thm -> littab -> littab
- val lookup_lit: littab -> term -> thm option
- val get_first_lit: (term -> bool) -> littab -> thm option
-
- (*rules*)
- val true_thm: thm
- val rewrite_true: thm
-
- (*properties*)
- val is_conj: term -> bool
- val is_disj: term -> bool
- val exists_lit: bool -> (term -> bool) -> term -> bool
- val negate: cterm -> cterm
-
- (*proof tools*)
- val explode: bool -> bool -> bool -> term list -> thm -> thm list
- val join: bool -> littab -> term -> thm
- val prove_conj_disj_eq: cterm -> thm
-end
-
-structure Z3_Proof_Literals: Z3_PROOF_LITERALS =
-struct
-
-
-
-(* literal table *)
-
-type littab = thm Termtab.table
-
-fun make_littab thms =
- fold (Termtab.update o `SMT_Utils.prop_of) thms Termtab.empty
-
-fun insert_lit thm = Termtab.update (`SMT_Utils.prop_of thm)
-fun delete_lit thm = Termtab.delete (SMT_Utils.prop_of thm)
-fun lookup_lit lits = Termtab.lookup lits
-fun get_first_lit f =
- Termtab.get_first (fn (t, thm) => if f t then SOME thm else NONE)
-
-
-
-(* rules *)
-
-val true_thm = @{lemma "~False" by simp}
-val rewrite_true = @{lemma "True == ~ False" by simp}
-
-
-
-(* properties and term operations *)
-
-val is_neg = (fn @{const Not} $ _ => true | _ => false)
-fun is_neg' f = (fn @{const Not} $ t => f t | _ => false)
-val is_dneg = is_neg' is_neg
-val is_conj = (fn @{const HOL.conj} $ _ $ _ => true | _ => false)
-val is_disj = (fn @{const HOL.disj} $ _ $ _ => true | _ => false)
-
-fun dest_disj_term' f = (fn
- @{const Not} $ (@{const HOL.disj} $ t $ u) => SOME (f t, f u)
- | _ => NONE)
-
-val dest_conj_term = (fn @{const HOL.conj} $ t $ u => SOME (t, u) | _ => NONE)
-val dest_disj_term =
- dest_disj_term' (fn @{const Not} $ t => t | t => @{const Not} $ t)
-
-fun exists_lit is_conj P =
- let
- val dest = if is_conj then dest_conj_term else dest_disj_term
- fun exists t = P t orelse
- (case dest t of
- SOME (t1, t2) => exists t1 orelse exists t2
- | NONE => false)
- in exists end
-
-val negate = Thm.apply (Thm.cterm_of @{theory} @{const Not})
-
-
-
-(* proof tools *)
-
-(** explosion of conjunctions and disjunctions **)
-
-local
- val precomp = Z3_Proof_Tools.precompose2
-
- fun destc ct = Thm.dest_binop (Thm.dest_arg ct)
- val dest_conj1 = precomp destc @{thm conjunct1}
- val dest_conj2 = precomp destc @{thm conjunct2}
- fun dest_conj_rules t =
- dest_conj_term t |> Option.map (K (dest_conj1, dest_conj2))
-
- fun destd f ct = f (Thm.dest_binop (Thm.dest_arg (Thm.dest_arg ct)))
- val dn1 = apfst Thm.dest_arg and dn2 = apsnd Thm.dest_arg
- val dest_disj1 = precomp (destd I) @{lemma "~(P | Q) ==> ~P" by fast}
- val dest_disj2 = precomp (destd dn1) @{lemma "~(~P | Q) ==> P" by fast}
- val dest_disj3 = precomp (destd I) @{lemma "~(P | Q) ==> ~Q" by fast}
- val dest_disj4 = precomp (destd dn2) @{lemma "~(P | ~Q) ==> Q" by fast}
-
- fun dest_disj_rules t =
- (case dest_disj_term' is_neg t of
- SOME (true, true) => SOME (dest_disj2, dest_disj4)
- | SOME (true, false) => SOME (dest_disj2, dest_disj3)
- | SOME (false, true) => SOME (dest_disj1, dest_disj4)
- | SOME (false, false) => SOME (dest_disj1, dest_disj3)
- | NONE => NONE)
-
- fun destn ct = [Thm.dest_arg (Thm.dest_arg (Thm.dest_arg ct))]
- val dneg_rule = Z3_Proof_Tools.precompose destn @{thm notnotD}
-in
-
-(*
- explode a term into literals and collect all rules to be able to deduce
- particular literals afterwards
-*)
-fun explode_term is_conj =
- let
- val dest = if is_conj then dest_conj_term else dest_disj_term
- val dest_rules = if is_conj then dest_conj_rules else dest_disj_rules
-
- fun add (t, rs) = Termtab.map_default (t, rs)
- (fn rs' => if length rs' < length rs then rs' else rs)
-
- fun explode1 rules t =
- (case dest t of
- SOME (t1, t2) =>
- let val (rule1, rule2) = the (dest_rules t)
- in
- explode1 (rule1 :: rules) t1 #>
- explode1 (rule2 :: rules) t2 #>
- add (t, rev rules)
- end
- | NONE => add (t, rev rules))
-
- fun explode0 (@{const Not} $ (@{const Not} $ t)) =
- Termtab.make [(t, [dneg_rule])]
- | explode0 t = explode1 [] t Termtab.empty
-
- in explode0 end
-
-(*
- extract a literal by applying previously collected rules
-*)
-fun extract_lit thm rules = fold Z3_Proof_Tools.compose rules thm
-
-
-(*
- explode a theorem into its literals
-*)
-fun explode is_conj full keep_intermediate stop_lits =
- let
- val dest_rules = if is_conj then dest_conj_rules else dest_disj_rules
- val tab = fold (Termtab.update o rpair ()) stop_lits Termtab.empty
-
- fun explode1 thm =
- if Termtab.defined tab (SMT_Utils.prop_of thm) then cons thm
- else
- (case dest_rules (SMT_Utils.prop_of thm) of
- SOME (rule1, rule2) =>
- explode2 rule1 thm #>
- explode2 rule2 thm #>
- keep_intermediate ? cons thm
- | NONE => cons thm)
-
- and explode2 dest_rule thm =
- if full orelse
- exists_lit is_conj (Termtab.defined tab) (SMT_Utils.prop_of thm)
- then explode1 (Z3_Proof_Tools.compose dest_rule thm)
- else cons (Z3_Proof_Tools.compose dest_rule thm)
-
- fun explode0 thm =
- if not is_conj andalso is_dneg (SMT_Utils.prop_of thm)
- then [Z3_Proof_Tools.compose dneg_rule thm]
- else explode1 thm []
-
- in explode0 end
-
-end
-
-
-
-(** joining of literals to conjunctions or disjunctions **)
-
-local
- fun on_cprem i f thm = f (Thm.cprem_of thm i)
- fun on_cprop f thm = f (Thm.cprop_of thm)
- fun precomp2 f g thm = (on_cprem 1 f thm, on_cprem 2 g thm, f, g, thm)
- fun comp2 (cv1, cv2, f, g, rule) thm1 thm2 =
- Thm.instantiate ([], [(cv1, on_cprop f thm1), (cv2, on_cprop g thm2)]) rule
- |> Z3_Proof_Tools.discharge thm1 |> Z3_Proof_Tools.discharge thm2
-
- fun d1 ct = Thm.dest_arg ct and d2 ct = Thm.dest_arg (Thm.dest_arg ct)
-
- val conj_rule = precomp2 d1 d1 @{thm conjI}
- fun comp_conj ((_, thm1), (_, thm2)) = comp2 conj_rule thm1 thm2
-
- val disj1 = precomp2 d2 d2 @{lemma "~P ==> ~Q ==> ~(P | Q)" by fast}
- val disj2 = precomp2 d2 d1 @{lemma "~P ==> Q ==> ~(P | ~Q)" by fast}
- val disj3 = precomp2 d1 d2 @{lemma "P ==> ~Q ==> ~(~P | Q)" by fast}
- val disj4 = precomp2 d1 d1 @{lemma "P ==> Q ==> ~(~P | ~Q)" by fast}
-
- fun comp_disj ((false, thm1), (false, thm2)) = comp2 disj1 thm1 thm2
- | comp_disj ((false, thm1), (true, thm2)) = comp2 disj2 thm1 thm2
- | comp_disj ((true, thm1), (false, thm2)) = comp2 disj3 thm1 thm2
- | comp_disj ((true, thm1), (true, thm2)) = comp2 disj4 thm1 thm2
-
- fun dest_conj (@{const HOL.conj} $ t $ u) = ((false, t), (false, u))
- | dest_conj t = raise TERM ("dest_conj", [t])
-
- val neg = (fn @{const Not} $ t => (true, t) | t => (false, @{const Not} $ t))
- fun dest_disj (@{const Not} $ (@{const HOL.disj} $ t $ u)) = (neg t, neg u)
- | dest_disj t = raise TERM ("dest_disj", [t])
-
- val precomp = Z3_Proof_Tools.precompose
- val dnegE = precomp (single o d2 o d1) @{thm notnotD}
- val dnegI = precomp (single o d1) @{lemma "P ==> ~~P" by fast}
- fun as_dneg f t = f (@{const Not} $ (@{const Not} $ t))
-
- val precomp2 = Z3_Proof_Tools.precompose2
- fun dni f = apsnd f o Thm.dest_binop o f o d1
- val negIffE = precomp2 (dni d1) @{lemma "~(P = (~Q)) ==> Q = P" by fast}
- val negIffI = precomp2 (dni I) @{lemma "P = Q ==> ~(Q = (~P))" by fast}
- val iff_const = @{const HOL.eq (bool)}
- fun as_negIff f (@{const HOL.eq (bool)} $ t $ u) =
- f (@{const Not} $ (iff_const $ u $ (@{const Not} $ t)))
- | as_negIff _ _ = NONE
-in
-
-fun join is_conj littab t =
- let
- val comp = if is_conj then comp_conj else comp_disj
- val dest = if is_conj then dest_conj else dest_disj
-
- val lookup = lookup_lit littab
-
- fun lookup_rule t =
- (case t of
- @{const Not} $ (@{const Not} $ t) =>
- (Z3_Proof_Tools.compose dnegI, lookup t)
- | @{const Not} $ (@{const HOL.eq (bool)} $ t $ (@{const Not} $ u)) =>
- (Z3_Proof_Tools.compose negIffI, lookup (iff_const $ u $ t))
- | @{const Not} $ ((eq as Const (@{const_name HOL.eq}, _)) $ t $ u) =>
- let fun rewr lit = lit COMP @{thm not_sym}
- in (rewr, lookup (@{const Not} $ (eq $ u $ t))) end
- | _ =>
- (case as_dneg lookup t of
- NONE => (Z3_Proof_Tools.compose negIffE, as_negIff lookup t)
- | x => (Z3_Proof_Tools.compose dnegE, x)))
-
- fun join1 (s, t) =
- (case lookup t of
- SOME lit => (s, lit)
- | NONE =>
- (case lookup_rule t of
- (rewrite, SOME lit) => (s, rewrite lit)
- | (_, NONE) => (s, comp (pairself join1 (dest t)))))
-
- in snd (join1 (if is_conj then (false, t) else (true, t))) end
-
-end
-
-
-
-(** proving equality of conjunctions or disjunctions **)
-
-fun iff_intro thm1 thm2 = thm2 COMP (thm1 COMP @{thm iffI})
-
-local
- val cp1 = @{lemma "(~P) = (~Q) ==> P = Q" by simp}
- val cp2 = @{lemma "(~P) = Q ==> P = (~Q)" by fastforce}
- val cp3 = @{lemma "P = (~Q) ==> (~P) = Q" by simp}
-in
-fun contrapos1 prove (ct, cu) = prove (negate ct, negate cu) COMP cp1
-fun contrapos2 prove (ct, cu) = prove (negate ct, Thm.dest_arg cu) COMP cp2
-fun contrapos3 prove (ct, cu) = prove (Thm.dest_arg ct, negate cu) COMP cp3
-end
-
-
-local
- val contra_rule = @{lemma "P ==> ~P ==> False" by (rule notE)}
- fun contra_left conj thm =
- let
- val rules = explode_term conj (SMT_Utils.prop_of thm)
- fun contra_lits (t, rs) =
- (case t of
- @{const Not} $ u => Termtab.lookup rules u |> Option.map (pair rs)
- | _ => NONE)
- in
- (case Termtab.lookup rules @{const False} of
- SOME rs => extract_lit thm rs
- | NONE =>
- the (Termtab.get_first contra_lits rules)
- |> pairself (extract_lit thm)
- |> (fn (nlit, plit) => nlit COMP (plit COMP contra_rule)))
- end
-
- val falseE_v = Thm.dest_arg (Thm.dest_arg (Thm.cprop_of @{thm FalseE}))
- fun contra_right ct = Thm.instantiate ([], [(falseE_v, ct)]) @{thm FalseE}
-in
-fun contradict conj ct =
- iff_intro (Z3_Proof_Tools.under_assumption (contra_left conj) ct)
- (contra_right ct)
-end
-
-
-local
- fun prove_eq l r (cl, cr) =
- let
- fun explode' is_conj = explode is_conj true (l <> r) []
- fun make_tab is_conj thm = make_littab (true_thm :: explode' is_conj thm)
- fun prove is_conj ct tab = join is_conj tab (Thm.term_of ct)
-
- val thm1 = Z3_Proof_Tools.under_assumption (prove r cr o make_tab l) cl
- val thm2 = Z3_Proof_Tools.under_assumption (prove l cl o make_tab r) cr
- in iff_intro thm1 thm2 end
-
- datatype conj_disj = CONJ | DISJ | NCON | NDIS
- fun kind_of t =
- if is_conj t then SOME CONJ
- else if is_disj t then SOME DISJ
- else if is_neg' is_conj t then SOME NCON
- else if is_neg' is_disj t then SOME NDIS
- else NONE
-in
-
-fun prove_conj_disj_eq ct =
- let val cp as (cl, cr) = Thm.dest_binop (Thm.dest_arg ct)
- in
- (case (kind_of (Thm.term_of cl), Thm.term_of cr) of
- (SOME CONJ, @{const False}) => contradict true cl
- | (SOME DISJ, @{const Not} $ @{const False}) =>
- contrapos2 (contradict false o fst) cp
- | (kl, _) =>
- (case (kl, kind_of (Thm.term_of cr)) of
- (SOME CONJ, SOME CONJ) => prove_eq true true cp
- | (SOME CONJ, SOME NDIS) => prove_eq true false cp
- | (SOME CONJ, _) => prove_eq true true cp
- | (SOME DISJ, SOME DISJ) => contrapos1 (prove_eq false false) cp
- | (SOME DISJ, SOME NCON) => contrapos2 (prove_eq false true) cp
- | (SOME DISJ, _) => contrapos1 (prove_eq false false) cp
- | (SOME NCON, SOME NCON) => contrapos1 (prove_eq true true) cp
- | (SOME NCON, SOME DISJ) => contrapos3 (prove_eq true false) cp
- | (SOME NCON, NONE) => contrapos3 (prove_eq true false) cp
- | (SOME NDIS, SOME NDIS) => prove_eq false false cp
- | (SOME NDIS, SOME CONJ) => prove_eq false true cp
- | (SOME NDIS, NONE) => prove_eq false true cp
- | _ => raise CTERM ("prove_conj_disj_eq", [ct])))
- end
-
-end
-
-end