--- a/src/HOL/Nat.thy	Sun Aug 14 23:51:47 2022 +0100
+++ b/src/HOL/Nat.thy	Mon Aug 15 12:50:24 2022 +0100
@@ -1768,14 +1768,6 @@
 lemma of_nat_eq_iff [simp]: "of_nat m = of_nat n \<longleftrightarrow> m = n"
   by (auto intro: inj_of_nat injD)
 
-lemma one_plus_of_nat_neq_zero [simp]:
-  "1 + of_nat n \<noteq> 0"
-proof -
-  have "of_nat (Suc n) \<noteq> of_nat 0"
-    unfolding of_nat_eq_iff by simp
-  then show ?thesis by simp
-qed
-
 text \<open>Special cases where either operand is zero\<close>
 
 lemma of_nat_0_eq_iff [simp]: "0 = of_nat n \<longleftrightarrow> 0 = n"