src/HOL/Probability/Regularity.thy
changeset 50087 635d73673b5e
child 50089 1badf63e5d97
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Probability/Regularity.thy	Thu Nov 15 10:49:58 2012 +0100
@@ -0,0 +1,516 @@
+(*  Title:      HOL/Probability/Projective_Family.thy
+    Author:     Fabian Immler, TU München
+*)
+
+theory Regularity
+imports Measure_Space Borel_Space
+begin
+
+instantiation nat::topological_space
+begin
+
+definition open_nat::"nat set \<Rightarrow> bool"
+  where "open_nat s = True"
+
+instance proof qed (auto simp: open_nat_def)
+end
+
+instantiation nat::metric_space
+begin
+
+definition dist_nat::"nat \<Rightarrow> nat \<Rightarrow> real"
+  where "dist_nat n m = (if n = m then 0 else 1)"
+
+instance proof qed (auto simp: open_nat_def dist_nat_def intro: exI[where x=1])
+end
+
+instance nat::complete_space
+proof
+  fix X::"nat\<Rightarrow>nat" assume "Cauchy X"
+  hence "\<exists>n. \<forall>m\<ge>n. X m = X n"
+    by (force simp: dist_nat_def Cauchy_def split: split_if_asm dest:spec[where x=1])
+  then guess n ..
+  thus "convergent X"
+    apply (intro convergentI[where L="X n"] tendstoI)
+    unfolding eventually_sequentially dist_nat_def
+    apply (intro exI[where x=n])
+    apply (intro allI)
+    apply (drule_tac x=na in spec)
+    apply simp
+    done
+qed
+
+instance nat::enumerable_basis
+proof
+  have "topological_basis (range (\<lambda>n::nat. {n}))"
+    by (intro topological_basisI) (auto simp: open_nat_def)
+  thus "\<exists>f::nat\<Rightarrow>nat set. topological_basis (range f)" by blast
+qed
+
+subsection {* Regularity of Measures *}
+
+lemma ereal_approx_SUP:
+  fixes x::ereal
+  assumes A_notempty: "A \<noteq> {}"
+  assumes f_bound: "\<And>i. i \<in> A \<Longrightarrow> f i \<le> x"
+  assumes f_fin: "\<And>i. i \<in> A \<Longrightarrow> f i \<noteq> \<infinity>"
+  assumes f_nonneg: "\<And>i. 0 \<le> f i"
+  assumes approx: "\<And>e. (e::real) > 0 \<Longrightarrow> \<exists>i \<in> A. x \<le> f i + e"
+  shows "x = (SUP i : A. f i)"
+proof (subst eq_commute, rule ereal_SUPI)
+  show "\<And>i. i \<in> A \<Longrightarrow> f i \<le> x" using f_bound by simp
+next
+  fix y :: ereal assume f_le_y: "(\<And>i::'a. i \<in> A \<Longrightarrow> f i \<le> y)"
+  with A_notempty f_nonneg have "y \<ge> 0" by auto (metis order_trans)
+  show "x \<le> y"
+  proof (rule ccontr)
+    assume "\<not> x \<le> y" hence "x > y" by simp
+    hence y_fin: "\<bar>y\<bar> \<noteq> \<infinity>" using `y \<ge> 0` by auto
+    have x_fin: "\<bar>x\<bar> \<noteq> \<infinity>" using `x > y` f_fin approx[where e = 1] by auto
+    def e \<equiv> "real ((x - y) / 2)"
+    have e: "x > y + e" "e > 0" using `x > y` y_fin x_fin by (auto simp: e_def field_simps)
+    note e(1)
+    also from approx[OF `e > 0`] obtain i where i: "i \<in> A" "x \<le> f i + e" by blast
+    note i(2)
+    finally have "y < f i" using y_fin f_fin by (metis add_right_mono linorder_not_le)
+    moreover have "f i \<le> y" by (rule f_le_y) fact
+    ultimately show False by simp
+  qed
+qed
+
+lemma ereal_approx_INF:
+  fixes x::ereal
+  assumes A_notempty: "A \<noteq> {}"
+  assumes f_bound: "\<And>i. i \<in> A \<Longrightarrow> x \<le> f i"
+  assumes f_fin: "\<And>i. i \<in> A \<Longrightarrow> f i \<noteq> \<infinity>"
+  assumes f_nonneg: "\<And>i. 0 \<le> f i"
+  assumes approx: "\<And>e. (e::real) > 0 \<Longrightarrow> \<exists>i \<in> A. f i \<le> x + e"
+  shows "x = (INF i : A. f i)"
+proof (subst eq_commute, rule ereal_INFI)
+  show "\<And>i. i \<in> A \<Longrightarrow> x \<le> f i" using f_bound by simp
+next
+  fix y :: ereal assume f_le_y: "(\<And>i::'a. i \<in> A \<Longrightarrow> y \<le> f i)"
+  with A_notempty f_fin have "y \<noteq> \<infinity>" by force
+  show "y \<le> x"
+  proof (rule ccontr)
+    assume "\<not> y \<le> x" hence "y > x" by simp hence "y \<noteq> - \<infinity>" by auto
+    hence y_fin: "\<bar>y\<bar> \<noteq> \<infinity>" using `y \<noteq> \<infinity>` by auto
+    have x_fin: "\<bar>x\<bar> \<noteq> \<infinity>" using `y > x` f_fin f_nonneg approx[where e = 1] A_notempty
+      apply auto by (metis ereal_infty_less_eq(2) f_le_y)
+    def e \<equiv> "real ((y - x) / 2)"
+    have e: "y > x + e" "e > 0" using `y > x` y_fin x_fin by (auto simp: e_def field_simps)
+    from approx[OF `e > 0`] obtain i where i: "i \<in> A" "x + e \<ge> f i" by blast
+    note i(2)
+    also note e(1)
+    finally have "y > f i" .
+    moreover have "y \<le> f i" by (rule f_le_y) fact
+    ultimately show False by simp
+  qed
+qed
+
+lemma INF_approx_ereal:
+  fixes x::ereal and e::real
+  assumes "e > 0"
+  assumes INF: "x = (INF i : A. f i)"
+  assumes "\<bar>x\<bar> \<noteq> \<infinity>"
+  shows "\<exists>i \<in> A. f i < x + e"
+proof (rule ccontr, clarsimp)
+  assume "\<forall>i\<in>A. \<not> f i < x + e"
+  moreover
+  from INF have "\<And>y. (\<And>i. i \<in> A \<Longrightarrow> y \<le> f i) \<Longrightarrow> y \<le> x" by (auto intro: INF_greatest)
+  ultimately
+  have "(INF i : A. f i) = x + e" using `e > 0`
+    by (intro ereal_INFI)
+      (force, metis add.comm_neutral add_left_mono ereal_less(1)
+        linorder_not_le not_less_iff_gr_or_eq)
+  thus False using assms by auto
+qed
+
+lemma SUP_approx_ereal:
+  fixes x::ereal and e::real
+  assumes "e > 0"
+  assumes SUP: "x = (SUP i : A. f i)"
+  assumes "\<bar>x\<bar> \<noteq> \<infinity>"
+  shows "\<exists>i \<in> A. x \<le> f i + e"
+proof (rule ccontr, clarsimp)
+  assume "\<forall>i\<in>A. \<not> x \<le> f i + e"
+  moreover
+  from SUP have "\<And>y. (\<And>i. i \<in> A \<Longrightarrow> f i \<le> y) \<Longrightarrow> y \<ge> x" by (auto intro: SUP_least)
+  ultimately
+  have "(SUP i : A. f i) = x - e" using `e > 0` `\<bar>x\<bar> \<noteq> \<infinity>`
+    by (intro ereal_SUPI)
+       (metis PInfty_neq_ereal(2) abs_ereal.simps(1) ereal_minus_le linorder_linear,
+        metis ereal_between(1) ereal_less(2) less_eq_ereal_def order_trans)
+  thus False using assms by auto
+qed
+
+lemma
+  fixes M::"'a::{enumerable_basis, complete_space} measure"
+  assumes sb: "sets M = sets borel"
+  assumes "emeasure M (space M) \<noteq> \<infinity>"
+  assumes "B \<in> sets borel"
+  shows inner_regular: "emeasure M B =
+    (SUP K : {K. K \<subseteq> B \<and> compact K}. emeasure M K)" (is "?inner B")
+  and outer_regular: "emeasure M B =
+    (INF U : {U. B \<subseteq> U \<and> open U}. emeasure M U)" (is "?outer B")
+proof -
+  have Us: "UNIV = space M" by (metis assms(1) sets_eq_imp_space_eq space_borel)
+  hence sU: "space M = UNIV" by simp
+  interpret finite_measure M by rule fact
+  have approx_inner: "\<And>A. A \<in> sets M \<Longrightarrow>
+    (\<And>e. e > 0 \<Longrightarrow> \<exists>K. K \<subseteq> A \<and> compact K \<and> emeasure M A \<le> emeasure M K + ereal e) \<Longrightarrow> ?inner A"
+    by (rule ereal_approx_SUP)
+      (force intro!: emeasure_mono simp: compact_imp_closed emeasure_eq_measure)+
+  have approx_outer: "\<And>A. A \<in> sets M \<Longrightarrow>
+    (\<And>e. e > 0 \<Longrightarrow> \<exists>B. A \<subseteq> B \<and> open B \<and> emeasure M B \<le> emeasure M A + ereal e) \<Longrightarrow> ?outer A"
+    by (rule ereal_approx_INF)
+       (force intro!: emeasure_mono simp: emeasure_eq_measure sb)+
+  from countable_dense_setE guess x::"nat \<Rightarrow> 'a"  . note x = this
+  {
+    fix r::real assume "r > 0" hence "\<And>y. open (ball y r)" "\<And>y. ball y r \<noteq> {}" by auto
+    with x[OF this]
+    have x: "space M = (\<Union>n. cball (x n) r)"
+      by (auto simp add: sU) (metis dist_commute order_less_imp_le)
+    have "(\<lambda>k. emeasure M (\<Union>n\<in>{0..k}. cball (x n) r)) ----> M (\<Union>k. (\<Union>n\<in>{0..k}. cball (x n) r))"
+      by (rule Lim_emeasure_incseq)
+        (auto intro!: borel_closed bexI simp: closed_cball incseq_def Us sb)
+    also have "(\<Union>k. (\<Union>n\<in>{0..k}. cball (x n) r)) = space M"
+      unfolding x by force
+    finally have "(\<lambda>k. M (\<Union>n\<in>{0..k}. cball (x n) r)) ----> M (space M)" .
+  } note M_space = this
+  {
+    fix e ::real and n :: nat assume "e > 0" "n > 0"
+    hence "1/n > 0" "e * 2 powr - n > 0" by (auto intro: mult_pos_pos)
+    from M_space[OF `1/n>0`]
+    have "(\<lambda>k. measure M (\<Union>i\<in>{0..k}. cball (x i) (1/real n))) ----> measure M (space M)"
+      unfolding emeasure_eq_measure by simp
+    from metric_LIMSEQ_D[OF this `0 < e * 2 powr -n`]
+    obtain k where "dist (measure M (\<Union>i\<in>{0..k}. cball (x i) (1/real n))) (measure M (space M)) <
+      e * 2 powr -n"
+      by auto
+    hence "measure M (\<Union>i\<in>{0..k}. cball (x i) (1/real n)) \<ge>
+      measure M (space M) - e * 2 powr -real n"
+      by (auto simp: dist_real_def)
+    hence "\<exists>k. measure M (\<Union>i\<in>{0..k}. cball (x i) (1/real n)) \<ge>
+      measure M (space M) - e * 2 powr - real n" ..
+  } note k=this
+  hence "\<forall>e\<in>{0<..}. \<forall>(n::nat)\<in>{0<..}. \<exists>k.
+    measure M (\<Union>i\<in>{0..k}. cball (x i) (1/real n)) \<ge> measure M (space M) - e * 2 powr - real n"
+    by blast
+  then obtain k where k: "\<forall>e\<in>{0<..}. \<forall>n\<in>{0<..}. measure M (space M) - e * 2 powr - real (n::nat)
+    \<le> measure M (\<Union>i\<in>{0..k e n}. cball (x i) (1 / n))"
+    apply atomize_elim unfolding bchoice_iff .
+  hence k: "\<And>e n. e > 0 \<Longrightarrow> n > 0 \<Longrightarrow> measure M (space M) - e * 2 powr - n
+    \<le> measure M (\<Union>i\<in>{0..k e n}. cball (x i) (1 / n))"
+    unfolding Ball_def by blast
+  have approx_space:
+    "\<And>e. e > 0 \<Longrightarrow>
+      \<exists>K \<in> {K. K \<subseteq> space M \<and> compact K}. emeasure M (space M) \<le> emeasure M K + ereal e"
+      (is "\<And>e. _ \<Longrightarrow> ?thesis e")
+  proof -
+    fix e :: real assume "e > 0"
+    def B \<equiv> "\<lambda>n. \<Union>i\<in>{0..k e (Suc n)}. cball (x i) (1 / Suc n)"
+    have "\<And>n. closed (B n)" by (auto simp: B_def closed_cball)
+    hence [simp]: "\<And>n. B n \<in> sets M" by (simp add: sb)
+    from k[OF `e > 0` zero_less_Suc]
+    have "\<And>n. measure M (space M) - measure M (B n) \<le> e * 2 powr - real (Suc n)"
+      by (simp add: algebra_simps B_def finite_measure_compl)
+    hence B_compl_le: "\<And>n::nat. measure M (space M - B n) \<le> e * 2 powr - real (Suc n)"
+      by (simp add: finite_measure_compl)
+    def K \<equiv> "\<Inter>n. B n"
+    from `closed (B _)` have "closed K" by (auto simp: K_def)
+    hence [simp]: "K \<in> sets M" by (simp add: sb)
+    have "measure M (space M) - measure M K = measure M (space M - K)"
+      by (simp add: finite_measure_compl)
+    also have "\<dots> = emeasure M (\<Union>n. space M - B n)" by (auto simp: K_def emeasure_eq_measure)
+    also have "\<dots> \<le> (\<Sum>n. emeasure M (space M - B n))"
+      by (rule emeasure_subadditive_countably) (auto simp: summable_def)
+    also have "\<dots> \<le> (\<Sum>n. ereal (e*2 powr - real (Suc n)))"
+      using B_compl_le by (intro suminf_le_pos) (simp_all add: measure_nonneg emeasure_eq_measure)
+    also have "\<dots> \<le> (\<Sum>n. ereal (e * (1 / 2) ^ Suc n))"
+      by (simp add: powr_minus inverse_eq_divide powr_realpow field_simps power_divide)
+    also have "\<dots> = (\<Sum>n. ereal e * ((1 / 2) ^ Suc n))"
+      unfolding times_ereal.simps[symmetric] ereal_power[symmetric] one_ereal_def numeral_eq_ereal
+      by simp
+    also have "\<dots> = ereal e * (\<Sum>n. ((1 / 2) ^ Suc n))"
+      by (rule suminf_cmult_ereal) (auto simp: `0 < e` less_imp_le)
+    also have "\<dots> = e" unfolding suminf_half_series_ereal by simp
+    finally have "measure M (space M) \<le> measure M K + e" by simp
+    hence "emeasure M (space M) \<le> emeasure M K + e" by (simp add: emeasure_eq_measure)
+    moreover have "compact K"
+      unfolding compact_eq_totally_bounded
+    proof safe
+      show "complete K" using `closed K` by (simp add: complete_eq_closed)
+      fix e'::real assume "0 < e'"
+      from nat_approx_posE[OF this] guess n . note n = this
+      let ?k = "x ` {0..k e (Suc n)}"
+      have "finite ?k" by simp
+      moreover have "K \<subseteq> \<Union>(\<lambda>x. ball x e') ` ?k" unfolding K_def B_def using n by force
+      ultimately show "\<exists>k. finite k \<and> K \<subseteq> \<Union>(\<lambda>x. ball x e') ` k" by blast
+    qed
+    ultimately
+    show "?thesis e " by (auto simp: sU)
+  qed
+  have closed_in_D: "\<And>A. closed A \<Longrightarrow> ?inner A \<and> ?outer A"
+  proof
+    fix A::"'a set" assume "closed A" hence "A \<in> sets borel" by (simp add: compact_imp_closed)
+    hence [simp]: "A \<in> sets M" by (simp add: sb)
+    show "?inner A"
+    proof (rule approx_inner)
+      fix e::real assume "e > 0"
+      from approx_space[OF this] obtain K where
+        K: "K \<subseteq> space M" "compact K" "emeasure M (space M) \<le> emeasure M K + e"
+        by (auto simp: emeasure_eq_measure)
+      hence [simp]: "K \<in> sets M" by (simp add: sb compact_imp_closed)
+      have "M A - M (A \<inter> K) = measure M A - measure M (A \<inter> K)"
+        by (simp add: emeasure_eq_measure)
+      also have "\<dots> = measure M (A - A \<inter> K)"
+        by (subst finite_measure_Diff) auto
+      also have "A - A \<inter> K = A \<union> K - K" by auto
+      also have "measure M \<dots> = measure M (A \<union> K) - measure M K"
+        by (subst finite_measure_Diff) auto
+      also have "\<dots> \<le> measure M (space M) - measure M K"
+        by (simp add: emeasure_eq_measure sU sb finite_measure_mono)
+      also have "\<dots> \<le> e" using K by (simp add: emeasure_eq_measure)
+      finally have "emeasure M A \<le> emeasure M (A \<inter> K) + ereal e"
+        by (simp add: emeasure_eq_measure algebra_simps)
+      moreover have "A \<inter> K \<subseteq> A" "compact (A \<inter> K)" using `closed A` `compact K` by auto
+      ultimately show "\<exists>K \<subseteq> A. compact K \<and> emeasure M A \<le> emeasure M K + ereal e"
+        by blast
+    qed simp
+    show "?outer A"
+    proof cases
+      assume "A \<noteq> {}"
+      let ?G = "\<lambda>d. {x. infdist x A < d}"
+      {
+        fix d
+        have "?G d = (\<lambda>x. infdist x A) -` {..<d}" by auto
+        also have "open \<dots>"
+          by (intro continuous_open_vimage) (auto intro!: continuous_infdist continuous_at_id)
+        finally have "open (?G d)" .
+      } note open_G = this
+      from in_closed_iff_infdist_zero[OF `closed A` `A \<noteq> {}`]
+      have "A = {x. infdist x A = 0}" by auto
+      also have "\<dots> = (\<Inter>i. ?G (1/real (Suc i)))"
+      proof (auto, rule ccontr)
+        fix x
+        assume "infdist x A \<noteq> 0"
+        hence pos: "infdist x A > 0" using infdist_nonneg[of x A] by simp
+        from nat_approx_posE[OF this] guess n .
+        moreover
+        assume "\<forall>i. infdist x A < 1 / real (Suc i)"
+        hence "infdist x A < 1 / real (Suc n)" by auto
+        ultimately show False by simp
+      qed
+      also have "M \<dots> = (INF n. emeasure M (?G (1 / real (Suc n))))"
+      proof (rule INF_emeasure_decseq[symmetric], safe)
+        fix i::nat
+        from open_G[of "1 / real (Suc i)"]
+        show "?G (1 / real (Suc i)) \<in> sets M" by (simp add: sb borel_open)
+      next
+        show "decseq (\<lambda>i. {x. infdist x A < 1 / real (Suc i)})"
+          by (auto intro: less_trans intro!: divide_strict_left_mono mult_pos_pos
+            simp: decseq_def le_eq_less_or_eq)
+      qed simp
+      finally
+      have "emeasure M A = (INF n. emeasure M {x. infdist x A < 1 / real (Suc n)})" .
+      moreover
+      have "\<dots> \<ge> (INF U:{U. A \<subseteq> U \<and> open U}. emeasure M U)"
+      proof (intro INF_mono)
+        fix m
+        have "?G (1 / real (Suc m)) \<in> {U. A \<subseteq> U \<and> open U}" using open_G by auto
+        moreover have "M (?G (1 / real (Suc m))) \<le> M (?G (1 / real (Suc m)))" by simp
+        ultimately show "\<exists>U\<in>{U. A \<subseteq> U \<and> open U}.
+          emeasure M U \<le> emeasure M {x. infdist x A < 1 / real (Suc m)}"
+          by blast
+      qed
+      moreover
+      have "emeasure M A \<le> (INF U:{U. A \<subseteq> U \<and> open U}. emeasure M U)"
+        by (rule INF_greatest) (auto intro!: emeasure_mono simp: sb)
+      ultimately show ?thesis by simp
+    qed (auto intro!: ereal_INFI)
+  qed
+  let ?D = "{B \<in> sets M. ?inner B \<and> ?outer B}"
+  interpret dynkin: dynkin_system "space M" ?D
+  proof (rule dynkin_systemI)
+    have "{U::'a set. space M \<subseteq> U \<and> open U} = {space M}" by (auto simp add: sU)
+    hence "?outer (space M)" by (simp add: min_def INF_def)
+    moreover
+    have "?inner (space M)"
+    proof (rule ereal_approx_SUP)
+      fix e::real assume "0 < e"
+      thus "\<exists>K\<in>{K. K \<subseteq> space M \<and> compact K}. emeasure M (space M) \<le> emeasure M K + ereal e"
+        by (rule approx_space)
+    qed (auto intro: emeasure_mono simp: sU sb intro!: exI[where x="{}"])
+    ultimately show "space M \<in> ?D" by (simp add: sU sb)
+  next
+    fix B assume "B \<in> ?D" thus "B \<subseteq> space M" by (simp add: sU)
+    from `B \<in> ?D` have [simp]: "B \<in> sets M" and "?inner B" "?outer B" by auto
+    hence inner: "emeasure M B = (SUP K:{K. K \<subseteq> B \<and> compact K}. emeasure M K)"
+      and outer: "emeasure M B = (INF U:{U. B \<subseteq> U \<and> open U}. emeasure M U)" by auto
+    have "M (space M - B) = M (space M) - emeasure M B" by (auto simp: emeasure_compl)
+    also have "\<dots> = (INF K:{K. K \<subseteq> B \<and> compact K}. M (space M) -  M K)"
+      unfolding inner by (subst INFI_ereal_cminus) force+
+    also have "\<dots> = (INF U:{U. U \<subseteq> B \<and> compact U}. M (space M - U))"
+      by (rule INF_cong) (auto simp add: emeasure_compl sb compact_imp_closed)
+    also have "\<dots> \<ge> (INF U:{U. U \<subseteq> B \<and> closed U}. M (space M - U))"
+      by (rule INF_superset_mono) (auto simp add: compact_imp_closed)
+    also have "(INF U:{U. U \<subseteq> B \<and> closed U}. M (space M - U)) =
+      (INF U:{U. space M - B \<subseteq> U \<and> open U}. emeasure M U)"
+      by (subst INF_image[of "\<lambda>u. space M - u", symmetric])
+         (rule INF_cong, auto simp add: sU intro!: INF_cong)
+    finally have
+      "(INF U:{U. space M - B \<subseteq> U \<and> open U}. emeasure M U) \<le> emeasure M (space M - B)" .
+    moreover have
+      "(INF U:{U. space M - B \<subseteq> U \<and> open U}. emeasure M U) \<ge> emeasure M (space M - B)"
+      by (auto simp: sb sU intro!: INF_greatest emeasure_mono)
+    ultimately have "?outer (space M - B)" by simp
+    moreover
+    {
+      have "M (space M - B) = M (space M) - emeasure M B" by (auto simp: emeasure_compl)
+      also have "\<dots> = (SUP U: {U. B \<subseteq> U \<and> open U}. M (space M) -  M U)"
+        unfolding outer by (subst SUPR_ereal_cminus) auto
+      also have "\<dots> = (SUP U:{U. B \<subseteq> U \<and> open U}. M (space M - U))"
+        by (rule SUP_cong) (auto simp add: emeasure_compl sb compact_imp_closed)
+      also have "\<dots> = (SUP K:{K. K \<subseteq> space M - B \<and> closed K}. emeasure M K)"
+        by (subst SUP_image[of "\<lambda>u. space M - u", symmetric])
+           (rule SUP_cong, auto simp: sU)
+      also have "\<dots> = (SUP K:{K. K \<subseteq> space M - B \<and> compact K}. emeasure M K)"
+      proof (safe intro!: antisym SUP_least)
+        fix K assume "closed K" "K \<subseteq> space M - B"
+        from closed_in_D[OF `closed K`]
+        have K_inner: "emeasure M K = (SUP K:{Ka. Ka \<subseteq> K \<and> compact Ka}. emeasure M K)" by simp
+        show "emeasure M K \<le> (SUP K:{K. K \<subseteq> space M - B \<and> compact K}. emeasure M K)"
+          unfolding K_inner using `K \<subseteq> space M - B`
+          by (auto intro!: SUP_upper SUP_least)
+      qed (fastforce intro!: SUP_least SUP_upper simp: compact_imp_closed)
+      finally have "?inner (space M - B)" .
+    } hence "?inner (space M - B)" .
+    ultimately show "space M - B \<in> ?D" by auto
+  next
+    fix D :: "nat \<Rightarrow> _"
+    assume "range D \<subseteq> ?D" hence "range D \<subseteq> sets M" by auto
+    moreover assume "disjoint_family D"
+    ultimately have M[symmetric]: "(\<Sum>i. M (D i)) = M (\<Union>i. D i)" by (rule suminf_emeasure)
+    also have "(\<lambda>n. \<Sum>i\<in>{0..<n}. M (D i)) ----> (\<Sum>i. M (D i))"
+      by (intro summable_sumr_LIMSEQ_suminf summable_ereal_pos emeasure_nonneg)
+    finally have measure_LIMSEQ: "(\<lambda>n. \<Sum>i = 0..<n. measure M (D i)) ----> measure M (\<Union>i. D i)"
+      by (simp add: emeasure_eq_measure)
+    have "(\<Union>i. D i) \<in> sets M" using `range D \<subseteq> sets M` by auto
+    moreover
+    hence "?inner (\<Union>i. D i)"
+    proof (rule approx_inner)
+      fix e::real assume "e > 0"
+      with measure_LIMSEQ
+      have "\<exists>no. \<forall>n\<ge>no. \<bar>(\<Sum>i = 0..<n. measure M (D i)) -measure M (\<Union>x. D x)\<bar> < e/2"
+        by (auto simp: LIMSEQ_def dist_real_def simp del: less_divide_eq_numeral1)
+      hence "\<exists>n0. \<bar>(\<Sum>i = 0..<n0. measure M (D i)) - measure M (\<Union>x. D x)\<bar> < e/2" by auto
+      then obtain n0 where n0: "\<bar>(\<Sum>i = 0..<n0. measure M (D i)) - measure M (\<Union>i. D i)\<bar> < e/2"
+        unfolding choice_iff by blast
+      have "ereal (\<Sum>i = 0..<n0. measure M (D i)) = (\<Sum>i = 0..<n0. M (D i))"
+        by (auto simp add: emeasure_eq_measure)
+      also have "\<dots> = (\<Sum>i<n0. M (D i))" by (rule setsum_cong) auto
+      also have "\<dots> \<le> (\<Sum>i. M (D i))" by (rule suminf_upper) (auto simp: emeasure_nonneg)
+      also have "\<dots> = M (\<Union>i. D i)" by (simp add: M)
+      also have "\<dots> = measure M (\<Union>i. D i)" by (simp add: emeasure_eq_measure)
+      finally have n0: "measure M (\<Union>i. D i) - (\<Sum>i = 0..<n0. measure M (D i)) < e/2"
+        using n0 by auto
+      have "\<forall>i. \<exists>K. K \<subseteq> D i \<and> compact K \<and> emeasure M (D i) \<le> emeasure M K + e/(2*Suc n0)"
+      proof
+        fix i
+        from `0 < e` have "0 < e/(2*Suc n0)" by (auto intro: divide_pos_pos)
+        have "emeasure M (D i) = (SUP K:{K. K \<subseteq> (D i) \<and> compact K}. emeasure M K)"
+          using `range D \<subseteq> ?D` by blast
+        from SUP_approx_ereal[OF `0 < e/(2*Suc n0)` this]
+        show "\<exists>K. K \<subseteq> D i \<and> compact K \<and> emeasure M (D i) \<le> emeasure M K + e/(2*Suc n0)"
+          by (auto simp: emeasure_eq_measure)
+      qed
+      then obtain K where K: "\<And>i. K i \<subseteq> D i" "\<And>i. compact (K i)"
+        "\<And>i. emeasure M (D i) \<le> emeasure M (K i) + e/(2*Suc n0)"
+        unfolding choice_iff by blast
+      let ?K = "\<Union>i\<in>{0..<n0}. K i"
+      have "disjoint_family_on K {0..<n0}" using K `disjoint_family D`
+        unfolding disjoint_family_on_def by blast
+      hence mK: "measure M ?K = (\<Sum>i = 0..<n0. measure M (K i))" using K
+        by (intro finite_measure_finite_Union) (auto simp: sb compact_imp_closed)
+      have "measure M (\<Union>i. D i) < (\<Sum>i = 0..<n0. measure M (D i)) + e/2" using n0 by simp
+      also have "(\<Sum>i = 0..<n0. measure M (D i)) \<le> (\<Sum>i = 0..<n0. measure M (K i) + e/(2*Suc n0))"
+        using K by (auto intro: setsum_mono simp: emeasure_eq_measure)
+      also have "\<dots> = (\<Sum>i = 0..<n0. measure M (K i)) + (\<Sum>i = 0..<n0. e/(2*Suc n0))"
+        by (simp add: setsum.distrib)
+      also have "\<dots> \<le> (\<Sum>i = 0..<n0. measure M (K i)) +  e / 2" using `0 < e`
+        by (auto simp: real_of_nat_def[symmetric] field_simps intro!: mult_left_mono)
+      finally
+      have "measure M (\<Union>i. D i) < (\<Sum>i = 0..<n0. measure M (K i)) + e / 2 + e / 2"
+        by auto
+      hence "M (\<Union>i. D i) < M ?K + e" by (auto simp: mK emeasure_eq_measure)
+      moreover
+      have "?K \<subseteq> (\<Union>i. D i)" using K by auto
+      moreover
+      have "compact ?K" using K by auto
+      ultimately
+      have "?K\<subseteq>(\<Union>i. D i) \<and> compact ?K \<and> emeasure M (\<Union>i. D i) \<le> emeasure M ?K + ereal e" by simp
+      thus "\<exists>K\<subseteq>\<Union>i. D i. compact K \<and> emeasure M (\<Union>i. D i) \<le> emeasure M K + ereal e" ..
+    qed
+    moreover have "?outer (\<Union>i. D i)"
+    proof (rule approx_outer[OF `(\<Union>i. D i) \<in> sets M`])
+      fix e::real assume "e > 0"
+      have "\<forall>i::nat. \<exists>U. D i \<subseteq> U \<and> open U \<and> e/(2 powr Suc i) > emeasure M U - emeasure M (D i)"
+      proof
+        fix i::nat
+        from `0 < e` have "0 < e/(2 powr Suc i)" by (auto intro: divide_pos_pos)
+        have "emeasure M (D i) = (INF U:{U. (D i) \<subseteq> U \<and> open U}. emeasure M U)"
+          using `range D \<subseteq> ?D` by blast
+        from INF_approx_ereal[OF `0 < e/(2 powr Suc i)` this]
+        show "\<exists>U. D i \<subseteq> U \<and> open U \<and> e/(2 powr Suc i) > emeasure M U - emeasure M (D i)"
+          by (auto simp: emeasure_eq_measure)
+      qed
+      then obtain U where U: "\<And>i. D i \<subseteq> U i" "\<And>i. open (U i)"
+        "\<And>i. e/(2 powr Suc i) > emeasure M (U i) - emeasure M (D i)"
+        unfolding choice_iff by blast
+      let ?U = "\<Union>i. U i"
+      have "M ?U - M (\<Union>i. D i) = M (?U - (\<Union>i. D i))" using U  `(\<Union>i. D i) \<in> sets M`
+        by (subst emeasure_Diff) (auto simp: sb)
+      also have "\<dots> \<le> M (\<Union>i. U i - D i)" using U  `range D \<subseteq> sets M`
+        by (intro emeasure_mono) (auto simp: sb intro!: countable_nat_UN Diff)
+      also have "\<dots> \<le> (\<Sum>i. M (U i - D i))" using U  `range D \<subseteq> sets M`
+        by (intro emeasure_subadditive_countably) (auto intro!: Diff simp: sb)
+      also have "\<dots> \<le> (\<Sum>i. ereal e/(2 powr Suc i))" using U `range D \<subseteq> sets M`
+        by (intro suminf_le_pos, subst emeasure_Diff)
+           (auto simp: emeasure_Diff emeasure_eq_measure sb measure_nonneg intro: less_imp_le)
+      also have "\<dots> \<le> (\<Sum>n. ereal (e * (1 / 2) ^ Suc n))"
+        by (simp add: powr_minus inverse_eq_divide powr_realpow field_simps power_divide)
+      also have "\<dots> = (\<Sum>n. ereal e * ((1 / 2) ^  Suc n))"
+        unfolding times_ereal.simps[symmetric] ereal_power[symmetric] one_ereal_def numeral_eq_ereal
+        by simp
+      also have "\<dots> = ereal e * (\<Sum>n. ((1 / 2) ^ Suc n))"
+        by (rule suminf_cmult_ereal) (auto simp: `0 < e` less_imp_le)
+      also have "\<dots> = e" unfolding suminf_half_series_ereal by simp
+      finally
+      have "emeasure M ?U \<le> emeasure M (\<Union>i. D i) + ereal e" by (simp add: emeasure_eq_measure)
+      moreover
+      have "(\<Union>i. D i) \<subseteq> ?U" using U by auto
+      moreover
+      have "open ?U" using U by auto
+      ultimately
+      have "(\<Union>i. D i) \<subseteq> ?U \<and> open ?U \<and> emeasure M ?U \<le> emeasure M (\<Union>i. D i) + ereal e" by simp
+      thus "\<exists>B. (\<Union>i. D i) \<subseteq> B \<and> open B \<and> emeasure M B \<le> emeasure M (\<Union>i. D i) + ereal e" ..
+    qed
+    ultimately show "(\<Union>i. D i) \<in> ?D" by safe
+  qed
+  have "sets borel = sigma_sets (space M) (Collect closed)" by (simp add: borel_eq_closed sU)
+  also have "\<dots> = dynkin (space M) (Collect closed)"
+  proof (rule sigma_eq_dynkin)
+    show "Collect closed \<subseteq> Pow (space M)" using Sigma_Algebra.sets_into_space by (auto simp: sU)
+    show "Int_stable (Collect closed)" by (auto simp: Int_stable_def)
+  qed
+  also have "\<dots> \<subseteq> ?D" using closed_in_D
+    by (intro dynkin.dynkin_subset) (auto simp add: compact_imp_closed sb)
+  finally have "sets borel \<subseteq> ?D" .
+  moreover have "?D \<subseteq> sets borel" by (auto simp: sb)
+  ultimately have "sets borel = ?D" by simp
+  with assms show "?inner B" and "?outer B" by auto
+qed
+
+end
+