--- a/src/HOL/Library/Finite_Cartesian_Product.thy Wed Mar 18 22:17:23 2009 +0100
+++ b/src/HOL/Library/Finite_Cartesian_Product.thy Thu Mar 19 01:29:19 2009 -0700
@@ -10,202 +10,81 @@
begin
(* FIXME : ATP_Linkup is only needed for metis at a few places. We could dispense of that by changing the proofs*)
-subsection{* Dimention of sets *}
-
-definition "dimindex (S:: 'a set) = (if finite (UNIV::'a set) then card (UNIV:: 'a set) else 1)"
-
-syntax "_type_dimindex" :: "type => nat" ("(1DIM/(1'(_')))")
-translations "DIM(t)" => "CONST dimindex (CONST UNIV :: t set)"
-
-lemma dimindex_nonzero: "dimindex S \<noteq> 0"
-unfolding dimindex_def
-by (simp add: neq0_conv[symmetric] del: neq0_conv)
-
-lemma dimindex_ge_1: "dimindex S \<ge> 1"
- using dimindex_nonzero[of S] by arith
-lemma dimindex_univ: "dimindex (S :: 'a set) = DIM('a)" by (simp add: dimindex_def)
definition hassize (infixr "hassize" 12) where
"(S hassize n) = (finite S \<and> card S = n)"
-lemma dimindex_unique: " (UNIV :: 'a set) hassize n ==> DIM('a) = n"
-by (simp add: dimindex_def hassize_def)
-
-
-subsection{* An indexing type parametrized by base type. *}
-
-typedef 'a finite_image = "{1 .. DIM('a)}"
- using dimindex_ge_1 by auto
-
-lemma finite_image_image: "(UNIV :: 'a finite_image set) = Abs_finite_image ` {1 .. DIM('a)}"
-apply (auto simp add: Abs_finite_image_inverse image_def finite_image_def)
-apply (rule_tac x="Rep_finite_image x" in bexI)
-apply (simp_all add: Rep_finite_image_inverse Rep_finite_image)
-using Rep_finite_image[where ?'a = 'a]
-unfolding finite_image_def
-apply simp
-done
-
-text{* Dimension of such a type, and indexing over it. *}
-
-lemma inj_on_Abs_finite_image:
- "inj_on (Abs_finite_image:: _ \<Rightarrow> 'a finite_image) {1 .. DIM('a)}"
-by (auto simp add: inj_on_def finite_image_def Abs_finite_image_inject[where ?'a='a])
-
-lemma has_size_finite_image: "(UNIV:: 'a finite_image set) hassize dimindex (S :: 'a set)"
- unfolding hassize_def finite_image_image card_image[OF inj_on_Abs_finite_image[where ?'a='a]] by (auto simp add: dimindex_def)
-
lemma hassize_image_inj: assumes f: "inj_on f S" and S: "S hassize n"
shows "f ` S hassize n"
using f S card_image[OF f]
by (simp add: hassize_def inj_on_def)
-lemma card_finite_image: "card (UNIV:: 'a finite_image set) = dimindex(S:: 'a set)"
-using has_size_finite_image
-unfolding hassize_def by blast
-
-lemma finite_finite_image: "finite (UNIV:: 'a finite_image set)"
-using has_size_finite_image
-unfolding hassize_def by blast
-
-lemma dimindex_finite_image: "dimindex (S:: 'a finite_image set) = dimindex(T:: 'a set)"
-unfolding card_finite_image[of T, symmetric]
-by (auto simp add: dimindex_def finite_finite_image)
-
-lemma Abs_finite_image_works:
- fixes i:: "'a finite_image"
- shows " \<exists>!n \<in> {1 .. DIM('a)}. Abs_finite_image n = i"
- unfolding Bex1_def Ex1_def
- apply (rule_tac x="Rep_finite_image i" in exI)
- using Rep_finite_image_inverse[where ?'a = 'a]
- Rep_finite_image[where ?'a = 'a]
- Abs_finite_image_inverse[where ?'a='a, symmetric]
- by (auto simp add: finite_image_def)
-
-lemma Abs_finite_image_inj:
- "i \<in> {1 .. DIM('a)} \<Longrightarrow> j \<in> {1 .. DIM('a)}
- \<Longrightarrow> (((Abs_finite_image i ::'a finite_image) = Abs_finite_image j) \<longleftrightarrow> (i = j))"
- using Abs_finite_image_works[where ?'a = 'a]
- by (auto simp add: atLeastAtMost_iff Bex1_def)
-
-lemma forall_Abs_finite_image:
- "(\<forall>k:: 'a finite_image. P k) \<longleftrightarrow> (\<forall>i \<in> {1 .. DIM('a)}. P(Abs_finite_image i))"
-unfolding Ball_def atLeastAtMost_iff Ex1_def
-using Abs_finite_image_works[where ?'a = 'a, unfolded atLeastAtMost_iff Bex1_def]
-by metis
subsection {* Finite Cartesian products, with indexing and lambdas. *}
-typedef (Cart)
+typedef (open Cart)
('a, 'b) "^" (infixl "^" 15)
- = "{f:: 'b finite_image \<Rightarrow> 'a . True}" by simp
+ = "UNIV :: ('b \<Rightarrow> 'a) set"
+ morphisms Cart_nth Cart_lambda ..
-abbreviation dimset:: "('a ^ 'n) \<Rightarrow> nat set" where
- "dimset a \<equiv> {1 .. DIM('n)}"
+notation Cart_nth (infixl "$" 90)
-definition Cart_nth :: "'a ^ 'b \<Rightarrow> nat \<Rightarrow> 'a" (infixl "$" 90) where
- "x$i = Rep_Cart x (Abs_finite_image i)"
+notation (xsymbols) Cart_lambda (binder "\<chi>" 10)
lemma stupid_ext: "(\<forall>x. f x = g x) \<longleftrightarrow> (f = g)"
apply auto
apply (rule ext)
apply auto
done
-lemma Cart_eq: "((x:: 'a ^ 'b) = y) \<longleftrightarrow> (\<forall>i\<in> dimset x. x$i = y$i)"
- unfolding Cart_nth_def forall_Abs_finite_image[symmetric, where P = "\<lambda>i. Rep_Cart x i = Rep_Cart y i"] stupid_ext
- using Rep_Cart_inject[of x y] ..
-
-consts Cart_lambda :: "(nat \<Rightarrow> 'a) \<Rightarrow> 'a ^ 'b"
-notation (xsymbols) Cart_lambda (binder "\<chi>" 10)
-
-defs Cart_lambda_def: "Cart_lambda g == (SOME (f:: 'a ^ 'b). \<forall>i \<in> {1 .. DIM('b)}. f$i = g i)"
-lemma Cart_lambda_beta: " \<forall> i\<in> {1 .. DIM('b)}. (Cart_lambda g:: 'a ^ 'b)$i = g i"
- unfolding Cart_lambda_def
-proof (rule someI_ex)
- let ?p = "\<lambda>(i::nat) (k::'b finite_image). i \<in> {1 .. DIM('b)} \<and> (Abs_finite_image i = k)"
- let ?f = "Abs_Cart (\<lambda>k. g (THE i. ?p i k)):: 'a ^ 'b"
- let ?P = "\<lambda>f i. f$i = g i"
- let ?Q = "\<lambda>(f::'a ^ 'b). \<forall> i \<in> {1 .. DIM('b)}. ?P f i"
- {fix i
- assume i: "i \<in> {1 .. DIM('b)}"
- let ?j = "THE j. ?p j (Abs_finite_image i)"
- from theI'[where P = "\<lambda>j. ?p (j::nat) (Abs_finite_image i :: 'b finite_image)", OF Abs_finite_image_works[of "Abs_finite_image i :: 'b finite_image", unfolded Bex1_def]]
- have j: "?j \<in> {1 .. DIM('b)}" "(Abs_finite_image ?j :: 'b finite_image) = Abs_finite_image i" by blast+
- from i j Abs_finite_image_inject[of i ?j, where ?'a = 'b]
- have th: "?j = i" by (simp add: finite_image_def)
- have "?P ?f i"
- using th
- by (simp add: Cart_nth_def Abs_Cart_inverse Rep_Cart_inverse Cart_def) }
- hence th0: "?Q ?f" ..
- with th0 show "\<exists>f. ?Q f" unfolding Ex1_def by auto
-qed
+lemma Cart_eq: "((x:: 'a ^ 'b) = y) \<longleftrightarrow> (\<forall>i. x$i = y$i)"
+ by (simp add: Cart_nth_inject [symmetric] expand_fun_eq)
-lemma Cart_lambda_beta': "i\<in> {1 .. DIM('b)} \<Longrightarrow> (Cart_lambda g:: 'a ^ 'b)$i = g i"
- using Cart_lambda_beta by blast
+lemma Cart_lambda_beta [simp]: "Cart_lambda g $ i = g i"
+ by (simp add: Cart_lambda_inverse)
lemma Cart_lambda_unique:
fixes f :: "'a ^ 'b"
- shows "(\<forall>i\<in> {1 .. DIM('b)}. f$i = g i) \<longleftrightarrow> Cart_lambda g = f"
- by (auto simp add: Cart_eq Cart_lambda_beta)
+ shows "(\<forall>i. f$i = g i) \<longleftrightarrow> Cart_lambda g = f"
+ by (auto simp add: Cart_eq)
-lemma Cart_lambda_eta: "(\<chi> i. (g$i)) = g" by (simp add: Cart_eq Cart_lambda_beta)
+lemma Cart_lambda_eta: "(\<chi> i. (g$i)) = g"
+ by (simp add: Cart_eq)
text{* A non-standard sum to "paste" Cartesian products. *}
-typedef ('a,'b) finite_sum = "{1 .. DIM('a) + DIM('b)}"
- apply (rule exI[where x="1"])
- using dimindex_ge_1[of "UNIV :: 'a set"] dimindex_ge_1[of "UNIV :: 'b set"]
- by auto
+definition pastecart :: "'a ^ 'm \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a ^ ('m + 'n)" where
+ "pastecart f g = (\<chi> i. case i of Inl a \<Rightarrow> f$a | Inr b \<Rightarrow> g$b)"
+
+definition fstcart:: "'a ^('m + 'n) \<Rightarrow> 'a ^ 'm" where
+ "fstcart f = (\<chi> i. (f$(Inl i)))"
-definition pastecart :: "'a ^ 'm \<Rightarrow> 'a ^ 'n \<Rightarrow> 'a ^ ('m,'n) finite_sum" where
- "pastecart f g = (\<chi> i. (if i <= DIM('m) then f$i else g$(i - DIM('m))))"
+definition sndcart:: "'a ^('m + 'n) \<Rightarrow> 'a ^ 'n" where
+ "sndcart f = (\<chi> i. (f$(Inr i)))"
-definition fstcart:: "'a ^('m, 'n) finite_sum \<Rightarrow> 'a ^ 'm" where
- "fstcart f = (\<chi> i. (f$i))"
-
-definition sndcart:: "'a ^('m, 'n) finite_sum \<Rightarrow> 'a ^ 'n" where
- "sndcart f = (\<chi> i. (f$(i + DIM('m))))"
+lemma nth_pastecart_Inl [simp]: "pastecart f g $ Inl a = f$a"
+ unfolding pastecart_def by simp
-lemma finite_sum_image: "(UNIV::('a,'b) finite_sum set) = Abs_finite_sum ` {1 .. DIM('a) + DIM('b)}"
-apply (auto simp add: image_def)
-apply (rule_tac x="Rep_finite_sum x" in bexI)
-apply (simp add: Rep_finite_sum_inverse)
-using Rep_finite_sum[unfolded finite_sum_def, where ?'a = 'a and ?'b = 'b]
-apply (simp add: Rep_finite_sum)
-done
+lemma nth_pastecart_Inr [simp]: "pastecart f g $ Inr b = g$b"
+ unfolding pastecart_def by simp
+
+lemma nth_fstcart [simp]: "fstcart f $ i = f $ Inl i"
+ unfolding fstcart_def by simp
-lemma inj_on_Abs_finite_sum: "inj_on (Abs_finite_sum :: _ \<Rightarrow> ('a,'b) finite_sum) {1 .. DIM('a) + DIM('b)}"
- using Abs_finite_sum_inject[where ?'a = 'a and ?'b = 'b]
- by (auto simp add: inj_on_def finite_sum_def)
+lemma nth_sndtcart [simp]: "sndcart f $ i = f $ Inr i"
+ unfolding sndcart_def by simp
-lemma dimindex_has_size_finite_sum:
- "(UNIV::('m,'n) finite_sum set) hassize (DIM('m) + DIM('n))"
- by (simp add: finite_sum_image hassize_def card_image[OF inj_on_Abs_finite_sum[where ?'a = 'm and ?'b = 'n]] del: One_nat_def)
-
-lemma dimindex_finite_sum: "DIM(('m,'n) finite_sum) = DIM('m) + DIM('n)"
- using dimindex_has_size_finite_sum[where ?'n = 'n and ?'m = 'm, unfolded hassize_def]
- by (simp add: dimindex_def)
+lemma finite_sum_image: "(UNIV::('a + 'b) set) = range Inl \<union> range Inr"
+by (auto, case_tac x, auto)
lemma fstcart_pastecart: "fstcart (pastecart (x::'a ^'m ) (y:: 'a ^ 'n)) = x"
- by (simp add: pastecart_def fstcart_def Cart_eq Cart_lambda_beta dimindex_finite_sum)
+ by (simp add: Cart_eq)
lemma sndcart_pastecart: "sndcart (pastecart (x::'a ^'m ) (y:: 'a ^ 'n)) = y"
- by (simp add: pastecart_def sndcart_def Cart_eq Cart_lambda_beta dimindex_finite_sum)
+ by (simp add: Cart_eq)
lemma pastecart_fst_snd: "pastecart (fstcart z) (sndcart z) = z"
-proof -
- {fix i
- assume H: "i \<le> DIM('b) + DIM('c)"
- "\<not> i \<le> DIM('b)"
- from H have ith: "i - DIM('b) \<in> {1 .. DIM('c)}"
- apply simp by arith
- from H have th0: "i - DIM('b) + DIM('b) = i"
- by simp
- have "(\<chi> i. (z$(i + DIM('b))) :: 'a ^ 'c)$(i - DIM('b)) = z$i"
- unfolding Cart_lambda_beta'[where g = "\<lambda> i. z$(i + DIM('b))", OF ith] th0 ..}
-thus ?thesis by (auto simp add: pastecart_def fstcart_def sndcart_def Cart_eq Cart_lambda_beta dimindex_finite_sum)
-qed
+ by (simp add: Cart_eq pastecart_def fstcart_def sndcart_def split: sum.split)
lemma pastecart_eq: "(x = y) \<longleftrightarrow> (fstcart x = fstcart y) \<and> (sndcart x = sndcart y)"
using pastecart_fst_snd[of x] pastecart_fst_snd[of y] by metis
@@ -216,53 +95,4 @@
lemma exists_pastecart: "(\<exists>p. P p) \<longleftrightarrow> (\<exists>x y. P (pastecart x y))"
by (metis pastecart_fst_snd fstcart_pastecart sndcart_pastecart)
-text{* The finiteness lemma. *}
-
-lemma finite_cart:
- "\<forall>i \<in> {1 .. DIM('n)}. finite {x. P i x}
- \<Longrightarrow> finite {v::'a ^ 'n . (\<forall>i \<in> {1 .. DIM('n)}. P i (v$i))}"
-proof-
- assume f: "\<forall>i \<in> {1 .. DIM('n)}. finite {x. P i x}"
- {fix n
- assume n: "n \<le> DIM('n)"
- have "finite {v:: 'a ^ 'n . (\<forall>i\<in> {1 .. DIM('n)}. i \<le> n \<longrightarrow> P i (v$i))
- \<and> (\<forall>i\<in> {1 .. DIM('n)}. n < i \<longrightarrow> v$i = (SOME x. False))}"
- using n
- proof(induct n)
- case 0
- have th0: "{v . (\<forall>i \<in> {1 .. DIM('n)}. v$i = (SOME x. False))} =
- {(\<chi> i. (SOME x. False)::'a ^ 'n)}" by (auto simp add: Cart_lambda_beta Cart_eq)
- with "0.prems" show ?case by auto
- next
- case (Suc n)
- let ?h = "\<lambda>(x::'a,v:: 'a ^ 'n). (\<chi> i. if i = Suc n then x else v$i):: 'a ^ 'n"
- let ?T = "{v\<Colon>'a ^ 'n.
- (\<forall>i\<Colon>nat\<in>{1\<Colon>nat..DIM('n)}. i \<le> Suc n \<longrightarrow> P i (v$i)) \<and>
- (\<forall>i\<Colon>nat\<in>{1\<Colon>nat..DIM('n)}.
- Suc n < i \<longrightarrow> v$i = (SOME x\<Colon>'a. False))}"
- let ?S = "{x::'a . P (Suc n) x} \<times> {v:: 'a^'n. (\<forall>i \<in> {1 .. DIM('n)}. i <= n \<longrightarrow> P i (v$i)) \<and> (\<forall>i \<in> {1 .. DIM('n)}. n < i \<longrightarrow> v$i = (SOME x. False))}"
- have th0: " ?T \<subseteq> (?h ` ?S)"
- using Suc.prems
- apply (auto simp add: image_def)
- apply (rule_tac x = "x$(Suc n)" in exI)
- apply (rule conjI)
- apply (rotate_tac)
- apply (erule ballE[where x="Suc n"])
- apply simp
- apply simp
- apply (rule_tac x= "\<chi> i. if i = Suc n then (SOME x:: 'a. False) else (x:: 'a ^ 'n)$i:: 'a ^ 'n" in exI)
- by (simp add: Cart_eq Cart_lambda_beta)
- have th1: "finite ?S"
- apply (rule finite_cartesian_product)
- using f Suc.hyps Suc.prems by auto
- from finite_imageI[OF th1] have th2: "finite (?h ` ?S)" .
- from finite_subset[OF th0 th2] show ?case by blast
- qed}
-
- note th = this
- from this[of "DIM('n)"] f
- show ?thesis by auto
-qed
-
-
end