src/HOL/Tools/Function/induction_scheme.ML
changeset 33507 6390cc8d2714
parent 33506 afb577487b15
parent 33501 31872dd275c8
child 33508 70026e20fa4c
--- a/src/HOL/Tools/Function/induction_scheme.ML	Fri Nov 06 09:50:37 2009 -0800
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,405 +0,0 @@
-(*  Title:      HOL/Tools/Function/induction_scheme.ML
-    Author:     Alexander Krauss, TU Muenchen
-
-A method to prove induction schemes.
-*)
-
-signature INDUCTION_SCHEME =
-sig
-  val mk_ind_tac : (int -> tactic) -> (int -> tactic) -> (int -> tactic)
-                   -> Proof.context -> thm list -> tactic
-  val induct_scheme_tac : Proof.context -> thm list -> tactic
-  val setup : theory -> theory
-end
-
-
-structure Induction_Scheme : INDUCTION_SCHEME =
-struct
-
-open Function_Lib
-
-
-type rec_call_info = int * (string * typ) list * term list * term list
-
-datatype scheme_case =
-  SchemeCase of
-  {
-   bidx : int,
-   qs: (string * typ) list,
-   oqnames: string list,
-   gs: term list,
-   lhs: term list,
-   rs: rec_call_info list
-  }
-
-datatype scheme_branch = 
-  SchemeBranch of
-  {
-   P : term,
-   xs: (string * typ) list,
-   ws: (string * typ) list,
-   Cs: term list
-  }
-
-datatype ind_scheme =
-  IndScheme of
-  {
-   T: typ, (* sum of products *)
-   branches: scheme_branch list,
-   cases: scheme_case list
-  }
-
-val ind_atomize = MetaSimplifier.rewrite true @{thms induct_atomize}
-val ind_rulify = MetaSimplifier.rewrite true @{thms induct_rulify}
-
-fun meta thm = thm RS eq_reflection
-
-val sum_prod_conv = MetaSimplifier.rewrite true 
-                    (map meta (@{thm split_conv} :: @{thms sum.cases}))
-
-fun term_conv thy cv t = 
-    cv (cterm_of thy t)
-    |> prop_of |> Logic.dest_equals |> snd
-
-fun mk_relT T = HOLogic.mk_setT (HOLogic.mk_prodT (T, T))
-
-fun dest_hhf ctxt t = 
-    let 
-      val (ctxt', vars, imp) = dest_all_all_ctx ctxt t
-    in
-      (ctxt', vars, Logic.strip_imp_prems imp, Logic.strip_imp_concl imp)
-    end
-
-
-fun mk_scheme' ctxt cases concl =
-    let
-      fun mk_branch concl =
-          let
-            val (ctxt', ws, Cs, _ $ Pxs) = dest_hhf ctxt concl
-            val (P, xs) = strip_comb Pxs
-          in
-            SchemeBranch { P=P, xs=map dest_Free xs, ws=ws, Cs=Cs }
-          end
-
-      val (branches, cases') = (* correction *)
-          case Logic.dest_conjunction_list concl of
-            [conc] => 
-            let 
-              val _ $ Pxs = Logic.strip_assums_concl conc
-              val (P, _) = strip_comb Pxs
-              val (cases', conds) = take_prefix (Term.exists_subterm (curry op aconv P)) cases
-              val concl' = fold_rev (curry Logic.mk_implies) conds conc
-            in
-              ([mk_branch concl'], cases')
-            end
-          | concls => (map mk_branch concls, cases)
-
-      fun mk_case premise =
-          let
-            val (ctxt', qs, prems, _ $ Plhs) = dest_hhf ctxt premise
-            val (P, lhs) = strip_comb Plhs
-                                
-            fun bidx Q = find_index (fn SchemeBranch {P=P',...} => Q aconv P') branches
-
-            fun mk_rcinfo pr =
-                let
-                  val (ctxt'', Gvs, Gas, _ $ Phyp) = dest_hhf ctxt' pr
-                  val (P', rcs) = strip_comb Phyp
-                in
-                  (bidx P', Gvs, Gas, rcs)
-                end
-                
-            fun is_pred v = exists (fn SchemeBranch {P,...} => v aconv P) branches
-
-            val (gs, rcprs) = 
-                take_prefix (not o Term.exists_subterm is_pred) prems
-          in
-            SchemeCase {bidx=bidx P, qs=qs, oqnames=map fst qs(*FIXME*), gs=gs, lhs=lhs, rs=map mk_rcinfo rcprs}
-          end
-
-      fun PT_of (SchemeBranch { xs, ...}) =
-            foldr1 HOLogic.mk_prodT (map snd xs)
-
-      val ST = Balanced_Tree.make (uncurry SumTree.mk_sumT) (map PT_of branches)
-    in
-      IndScheme {T=ST, cases=map mk_case cases', branches=branches }
-    end
-
-
-
-fun mk_completeness ctxt (IndScheme {cases, branches, ...}) bidx =
-    let
-      val SchemeBranch { xs, ws, Cs, ... } = nth branches bidx
-      val relevant_cases = filter (fn SchemeCase {bidx=bidx', ...} => bidx' = bidx) cases
-
-      val allqnames = fold (fn SchemeCase {qs, ...} => fold (insert (op =) o Free) qs) relevant_cases []
-      val (Pbool :: xs') = map Free (Variable.variant_frees ctxt allqnames (("P", HOLogic.boolT) :: xs))
-      val Cs' = map (Pattern.rewrite_term (ProofContext.theory_of ctxt) (filter_out (op aconv) (map Free xs ~~ xs')) []) Cs
-                       
-      fun mk_case (SchemeCase {qs, oqnames, gs, lhs, ...}) =
-          HOLogic.mk_Trueprop Pbool
-                     |> fold_rev (fn x_l => curry Logic.mk_implies (HOLogic.mk_Trueprop(HOLogic.mk_eq x_l)))
-                                 (xs' ~~ lhs)
-                     |> fold_rev (curry Logic.mk_implies) gs
-                     |> fold_rev mk_forall_rename (oqnames ~~ map Free qs)
-    in
-      HOLogic.mk_Trueprop Pbool
-       |> fold_rev (curry Logic.mk_implies o mk_case) relevant_cases
-       |> fold_rev (curry Logic.mk_implies) Cs'
-       |> fold_rev (Logic.all o Free) ws
-       |> fold_rev mk_forall_rename (map fst xs ~~ xs')
-       |> mk_forall_rename ("P", Pbool)
-    end
-
-fun mk_wf ctxt R (IndScheme {T, ...}) =
-    HOLogic.Trueprop $ (Const (@{const_name wf}, mk_relT T --> HOLogic.boolT) $ R)
-
-fun mk_ineqs R (IndScheme {T, cases, branches}) =
-    let
-      fun inject i ts =
-          SumTree.mk_inj T (length branches) (i + 1) (foldr1 HOLogic.mk_prod ts)
-
-      val thesis = Free ("thesis", HOLogic.boolT) (* FIXME *)
-
-      fun mk_pres bdx args = 
-          let
-            val SchemeBranch { xs, ws, Cs, ... } = nth branches bdx
-            fun replace (x, v) t = betapply (lambda (Free x) t, v)
-            val Cs' = map (fold replace (xs ~~ args)) Cs
-            val cse = 
-                HOLogic.mk_Trueprop thesis
-                |> fold_rev (curry Logic.mk_implies) Cs'
-                |> fold_rev (Logic.all o Free) ws
-          in
-            Logic.mk_implies (cse, HOLogic.mk_Trueprop thesis)
-          end
-
-      fun f (SchemeCase {bidx, qs, oqnames, gs, lhs, rs, ...}) = 
-          let
-            fun g (bidx', Gvs, Gas, rcarg) =
-                let val export = 
-                         fold_rev (curry Logic.mk_implies) Gas
-                         #> fold_rev (curry Logic.mk_implies) gs
-                         #> fold_rev (Logic.all o Free) Gvs
-                         #> fold_rev mk_forall_rename (oqnames ~~ map Free qs)
-                in
-                (HOLogic.mk_mem (HOLogic.mk_prod (inject bidx' rcarg, inject bidx lhs), R)
-                 |> HOLogic.mk_Trueprop
-                 |> export,
-                 mk_pres bidx' rcarg
-                 |> export
-                 |> Logic.all thesis)
-                end
-          in
-            map g rs
-          end
-    in
-      map f cases
-    end
-
-
-fun mk_hol_imp a b = HOLogic.imp $ a $ b
-
-fun mk_ind_goal thy branches =
-    let
-      fun brnch (SchemeBranch { P, xs, ws, Cs, ... }) =
-          HOLogic.mk_Trueprop (list_comb (P, map Free xs))
-          |> fold_rev (curry Logic.mk_implies) Cs
-          |> fold_rev (Logic.all o Free) ws
-          |> term_conv thy ind_atomize
-          |> ObjectLogic.drop_judgment thy
-          |> tupled_lambda (foldr1 HOLogic.mk_prod (map Free xs))
-    in
-      SumTree.mk_sumcases HOLogic.boolT (map brnch branches)
-    end
-
-
-fun mk_induct_rule ctxt R x complete_thms wf_thm ineqss (IndScheme {T, cases=scases, branches}) =
-    let
-      val n = length branches
-
-      val scases_idx = map_index I scases
-
-      fun inject i ts =
-          SumTree.mk_inj T n (i + 1) (foldr1 HOLogic.mk_prod ts)
-      val P_of = nth (map (fn (SchemeBranch { P, ... }) => P) branches)
-
-      val thy = ProofContext.theory_of ctxt
-      val cert = cterm_of thy 
-
-      val P_comp = mk_ind_goal thy branches
-
-      (* Inductive Hypothesis: !!z. (z,x):R ==> P z *)
-      val ihyp = Term.all T $ Abs ("z", T, 
-               Logic.mk_implies
-                 (HOLogic.mk_Trueprop (
-                  Const ("op :", HOLogic.mk_prodT (T, T) --> mk_relT T --> HOLogic.boolT) 
-                    $ (HOLogic.pair_const T T $ Bound 0 $ x) 
-                    $ R),
-                   HOLogic.mk_Trueprop (P_comp $ Bound 0)))
-           |> cert
-
-      val aihyp = assume ihyp
-
-     (* Rule for case splitting along the sum types *)
-      val xss = map (fn (SchemeBranch { xs, ... }) => map Free xs) branches
-      val pats = map_index (uncurry inject) xss
-      val sum_split_rule = Pat_Completeness.prove_completeness thy [x] (P_comp $ x) xss (map single pats)
-
-      fun prove_branch (bidx, (SchemeBranch { P, xs, ws, Cs, ... }, (complete_thm, pat))) =
-          let
-            val fxs = map Free xs
-            val branch_hyp = assume (cert (HOLogic.mk_Trueprop (HOLogic.mk_eq (x, pat))))
-                             
-            val C_hyps = map (cert #> assume) Cs
-
-            val (relevant_cases, ineqss') = filter (fn ((_, SchemeCase {bidx=bidx', ...}), _) => bidx' = bidx) (scases_idx ~~ ineqss)
-                                            |> split_list
-                           
-            fun prove_case (cidx, SchemeCase {qs, oqnames, gs, lhs, rs, ...}) ineq_press =
-                let
-                  val case_hyps = map (assume o cert o HOLogic.mk_Trueprop o HOLogic.mk_eq) (fxs ~~ lhs)
-                           
-                  val cqs = map (cert o Free) qs
-                  val ags = map (assume o cert) gs
-                            
-                  val replace_x_ss = HOL_basic_ss addsimps (branch_hyp :: case_hyps)
-                  val sih = full_simplify replace_x_ss aihyp
-                            
-                  fun mk_Prec (idx, Gvs, Gas, rcargs) (ineq, pres) =
-                      let
-                        val cGas = map (assume o cert) Gas
-                        val cGvs = map (cert o Free) Gvs
-                        val import = fold forall_elim (cqs @ cGvs)
-                                     #> fold Thm.elim_implies (ags @ cGas)
-                        val ipres = pres
-                                     |> forall_elim (cert (list_comb (P_of idx, rcargs)))
-                                     |> import
-                      in
-                        sih |> forall_elim (cert (inject idx rcargs))
-                            |> Thm.elim_implies (import ineq) (* Psum rcargs *)
-                            |> Conv.fconv_rule sum_prod_conv
-                            |> Conv.fconv_rule ind_rulify
-                            |> (fn th => th COMP ipres) (* P rs *)
-                            |> fold_rev (implies_intr o cprop_of) cGas
-                            |> fold_rev forall_intr cGvs
-                      end
-                      
-                  val P_recs = map2 mk_Prec rs ineq_press   (*  [P rec1, P rec2, ... ]  *)
-                               
-                  val step = HOLogic.mk_Trueprop (list_comb (P, lhs))
-                             |> fold_rev (curry Logic.mk_implies o prop_of) P_recs
-                             |> fold_rev (curry Logic.mk_implies) gs
-                             |> fold_rev (Logic.all o Free) qs
-                             |> cert
-                             
-                  val Plhs_to_Pxs_conv = 
-                      foldl1 (uncurry Conv.combination_conv) 
-                      (Conv.all_conv :: map (fn ch => K (Thm.symmetric (ch RS eq_reflection))) case_hyps)
-
-                  val res = assume step
-                                   |> fold forall_elim cqs
-                                   |> fold Thm.elim_implies ags
-                                   |> fold Thm.elim_implies P_recs (* P lhs *) 
-                                   |> Conv.fconv_rule (Conv.arg_conv Plhs_to_Pxs_conv) (* P xs *)
-                                   |> fold_rev (implies_intr o cprop_of) (ags @ case_hyps)
-                                   |> fold_rev forall_intr cqs (* !!qs. Gas ==> xs = lhss ==> P xs *)
-                in
-                  (res, (cidx, step))
-                end
-
-            val (cases, steps) = split_list (map2 prove_case relevant_cases ineqss')
-
-            val bstep = complete_thm
-                |> forall_elim (cert (list_comb (P, fxs)))
-                |> fold (forall_elim o cert) (fxs @ map Free ws)
-                |> fold Thm.elim_implies C_hyps             (* FIXME: optimization using rotate_prems *)
-                |> fold Thm.elim_implies cases (* P xs *)
-                |> fold_rev (implies_intr o cprop_of) C_hyps
-                |> fold_rev (forall_intr o cert o Free) ws
-
-            val Pxs = cert (HOLogic.mk_Trueprop (P_comp $ x))
-                     |> Goal.init
-                     |> (MetaSimplifier.rewrite_goals_tac (map meta (branch_hyp :: @{thm split_conv} :: @{thms sum.cases}))
-                         THEN CONVERSION ind_rulify 1)
-                     |> Seq.hd
-                     |> Thm.elim_implies (Conv.fconv_rule Drule.beta_eta_conversion bstep)
-                     |> Goal.finish ctxt
-                     |> implies_intr (cprop_of branch_hyp)
-                     |> fold_rev (forall_intr o cert) fxs
-          in
-            (Pxs, steps)
-          end
-
-      val (branches, steps) = split_list (map_index prove_branch (branches ~~ (complete_thms ~~ pats)))
-                              |> apsnd flat
-                           
-      val istep = sum_split_rule
-                |> fold (fn b => fn th => Drule.compose_single (b, 1, th)) branches
-                |> implies_intr ihyp
-                |> forall_intr (cert x) (* "!!x. (!!y<x. P y) ==> P x" *)
-         
-      val induct_rule =
-          @{thm "wf_induct_rule"}
-            |> (curry op COMP) wf_thm 
-            |> (curry op COMP) istep
-
-      val steps_sorted = map snd (sort (int_ord o pairself fst) steps)
-    in
-      (steps_sorted, induct_rule)
-    end
-
-
-fun mk_ind_tac comp_tac pres_tac term_tac ctxt facts = (ALLGOALS (Method.insert_tac facts)) THEN HEADGOAL 
-(SUBGOAL (fn (t, i) =>
-  let
-    val (ctxt', _, cases, concl) = dest_hhf ctxt t
-    val scheme as IndScheme {T=ST, branches, ...} = mk_scheme' ctxt' cases concl
-(*     val _ = tracing (makestring scheme)*)
-    val ([Rn,xn], ctxt'') = Variable.variant_fixes ["R","x"] ctxt'
-    val R = Free (Rn, mk_relT ST)
-    val x = Free (xn, ST)
-    val cert = cterm_of (ProofContext.theory_of ctxt)
-
-    val ineqss = mk_ineqs R scheme
-                   |> map (map (pairself (assume o cert)))
-    val complete = map_range (mk_completeness ctxt scheme #> cert #> assume) (length branches)
-    val wf_thm = mk_wf ctxt R scheme |> cert |> assume
-
-    val (descent, pres) = split_list (flat ineqss)
-    val newgoals = complete @ pres @ wf_thm :: descent 
-
-    val (steps, indthm) = mk_induct_rule ctxt'' R x complete wf_thm ineqss scheme
-
-    fun project (i, SchemeBranch {xs, ...}) =
-        let
-          val inst = cert (SumTree.mk_inj ST (length branches) (i + 1) (foldr1 HOLogic.mk_prod (map Free xs)))
-        in
-          indthm |> Drule.instantiate' [] [SOME inst]
-                 |> simplify SumTree.sumcase_split_ss
-                 |> Conv.fconv_rule ind_rulify
-(*                 |> (fn thm => (tracing (makestring thm); thm))*)
-        end                  
-
-    val res = Conjunction.intr_balanced (map_index project branches)
-                 |> fold_rev implies_intr (map cprop_of newgoals @ steps)
-                 |> (fn thm => Thm.generalize ([], [Rn]) (Thm.maxidx_of thm + 1) thm)
-
-    val nbranches = length branches
-    val npres = length pres
-  in
-    Thm.compose_no_flatten false (res, length newgoals) i
-    THEN term_tac (i + nbranches + npres)
-    THEN (EVERY (map (TRY o pres_tac) ((i + nbranches + npres - 1) downto (i + nbranches))))
-    THEN (EVERY (map (TRY o comp_tac) ((i + nbranches - 1) downto i)))
-  end))
-
-
-fun induct_scheme_tac ctxt =
-  mk_ind_tac (K all_tac) (assume_tac APPEND' Goal.assume_rule_tac ctxt) (K all_tac) ctxt;
-
-val setup =
-  Method.setup @{binding induct_scheme} (Scan.succeed (RAW_METHOD o induct_scheme_tac))
-    "proves an induction principle"
-
-end