src/FOL/ex/First_Order_Logic.thy
changeset 61935 6512e84cc9f5
parent 61934 02610a806467
child 61936 c51ce9ed0b1c
--- a/src/FOL/ex/First_Order_Logic.thy	Sat Dec 26 16:10:00 2015 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,161 +0,0 @@
-(*  Title:      FOL/ex/First_Order_Logic.thy
-    Author:     Makarius
-*)
-
-section \<open>A simple formulation of First-Order Logic\<close>
-
-text \<open>
-  The subsequent theory development illustrates single-sorted intuitionistic
-  first-order logic with equality, formulated within the Pure framework. So
-  this is strictly speaking an example of Isabelle/Pure, not Isabelle/FOL.
-\<close>
-
-theory First_Order_Logic
-imports Pure
-begin
-
-subsection \<open>Abstract syntax\<close>
-
-typedecl i
-typedecl o
-
-judgment Trueprop :: "o \<Rightarrow> prop"  ("_" 5)
-
-
-subsection \<open>Propositional logic\<close>
-
-axiomatization false :: o  ("\<bottom>")
-  where falseE [elim]: "\<bottom> \<Longrightarrow> A"
-
-
-axiomatization imp :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<longrightarrow>" 25)
-  where impI [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> A \<longrightarrow> B"
-    and mp [dest]: "A \<longrightarrow> B \<Longrightarrow> A \<Longrightarrow> B"
-
-
-axiomatization conj :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<and>" 35)
-  where conjI [intro]: "A \<Longrightarrow> B \<Longrightarrow> A \<and> B"
-    and conjD1: "A \<and> B \<Longrightarrow> A"
-    and conjD2: "A \<and> B \<Longrightarrow> B"
-
-theorem conjE [elim]:
-  assumes "A \<and> B"
-  obtains A and B
-proof
-  from \<open>A \<and> B\<close> show A
-    by (rule conjD1)
-  from \<open>A \<and> B\<close> show B
-    by (rule conjD2)
-qed
-
-
-axiomatization disj :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<or>" 30)
-  where disjE [elim]: "A \<or> B \<Longrightarrow> (A \<Longrightarrow> C) \<Longrightarrow> (B \<Longrightarrow> C) \<Longrightarrow> C"
-    and disjI1 [intro]: "A \<Longrightarrow> A \<or> B"
-    and disjI2 [intro]: "B \<Longrightarrow> A \<or> B"
-
-
-definition true :: o  ("\<top>")
-  where "\<top> \<equiv> \<bottom> \<longrightarrow> \<bottom>"
-
-theorem trueI [intro]: \<top>
-  unfolding true_def ..
-
-
-definition not :: "o \<Rightarrow> o"  ("\<not> _" [40] 40)
-  where "\<not> A \<equiv> A \<longrightarrow> \<bottom>"
-
-theorem notI [intro]: "(A \<Longrightarrow> \<bottom>) \<Longrightarrow> \<not> A"
-  unfolding not_def ..
-
-theorem notE [elim]: "\<not> A \<Longrightarrow> A \<Longrightarrow> B"
-  unfolding not_def
-proof -
-  assume "A \<longrightarrow> \<bottom>" and A
-  then have \<bottom> ..
-  then show B ..
-qed
-
-
-definition iff :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<longleftrightarrow>" 25)
-  where "A \<longleftrightarrow> B \<equiv> (A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
-
-theorem iffI [intro]:
-  assumes "A \<Longrightarrow> B"
-    and "B \<Longrightarrow> A"
-  shows "A \<longleftrightarrow> B"
-  unfolding iff_def
-proof
-  from \<open>A \<Longrightarrow> B\<close> show "A \<longrightarrow> B" ..
-  from \<open>B \<Longrightarrow> A\<close> show "B \<longrightarrow> A" ..
-qed
-
-theorem iff1 [elim]:
-  assumes "A \<longleftrightarrow> B" and A
-  shows B
-proof -
-  from \<open>A \<longleftrightarrow> B\<close> have "(A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
-    unfolding iff_def .
-  then have "A \<longrightarrow> B" ..
-  from this and \<open>A\<close> show B ..
-qed
-
-theorem iff2 [elim]:
-  assumes "A \<longleftrightarrow> B" and B
-  shows A
-proof -
-  from \<open>A \<longleftrightarrow> B\<close> have "(A \<longrightarrow> B) \<and> (B \<longrightarrow> A)"
-    unfolding iff_def .
-  then have "B \<longrightarrow> A" ..
-  from this and \<open>B\<close> show A ..
-qed
-
-
-subsection \<open>Equality\<close>
-
-axiomatization equal :: "i \<Rightarrow> i \<Rightarrow> o"  (infixl "=" 50)
-  where refl [intro]: "x = x"
-    and subst: "x = y \<Longrightarrow> P x \<Longrightarrow> P y"
-
-theorem trans [trans]: "x = y \<Longrightarrow> y = z \<Longrightarrow> x = z"
-  by (rule subst)
-
-theorem sym [sym]: "x = y \<Longrightarrow> y = x"
-proof -
-  assume "x = y"
-  from this and refl show "y = x"
-    by (rule subst)
-qed
-
-
-subsection \<open>Quantifiers\<close>
-
-axiomatization All :: "(i \<Rightarrow> o) \<Rightarrow> o"  (binder "\<forall>" 10)
-  where allI [intro]: "(\<And>x. P x) \<Longrightarrow> \<forall>x. P x"
-    and allD [dest]: "\<forall>x. P x \<Longrightarrow> P a"
-
-axiomatization Ex :: "(i \<Rightarrow> o) \<Rightarrow> o"  (binder "\<exists>" 10)
-  where exI [intro]: "P a \<Longrightarrow> \<exists>x. P x"
-    and exE [elim]: "\<exists>x. P x \<Longrightarrow> (\<And>x. P x \<Longrightarrow> C) \<Longrightarrow> C"
-
-
-lemma "(\<exists>x. P (f x)) \<longrightarrow> (\<exists>y. P y)"
-proof
-  assume "\<exists>x. P (f x)"
-  then obtain x where "P (f x)" ..
-  then show "\<exists>y. P y" ..
-qed
-
-lemma "(\<exists>x. \<forall>y. R x y) \<longrightarrow> (\<forall>y. \<exists>x. R x y)"
-proof
-  assume "\<exists>x. \<forall>y. R x y"
-  then obtain x where "\<forall>y. R x y" ..
-  show "\<forall>y. \<exists>x. R x y"
-  proof
-    fix y
-    from \<open>\<forall>y. R x y\<close> have "R x y" ..
-    then show "\<exists>x. R x y" ..
-  qed
-qed
-
-end