src/HOL/Isar_Examples/Higher_Order_Logic.thy
changeset 61935 6512e84cc9f5
parent 61759 49353865e539
child 61936 c51ce9ed0b1c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Isar_Examples/Higher_Order_Logic.thy	Sat Dec 26 19:27:46 2015 +0100
@@ -0,0 +1,327 @@
+(*  Title:      HOL/Isar_Examples/Higher_Order_Logic.thy
+    Author:     Makarius
+*)
+
+section \<open>Foundations of HOL\<close>
+
+theory Higher_Order_Logic
+imports Pure
+begin
+
+text \<open>
+  The following theory development demonstrates Higher-Order Logic itself,
+  represented directly within the Pure framework of Isabelle. The ``HOL''
+  logic given here is essentially that of Gordon @{cite "Gordon:1985:HOL"},
+  although we prefer to present basic concepts in a slightly more conventional
+  manner oriented towards plain Natural Deduction.
+\<close>
+
+
+subsection \<open>Pure Logic\<close>
+
+class type
+default_sort type
+
+typedecl o
+instance o :: type ..
+instance "fun" :: (type, type) type ..
+
+
+subsubsection \<open>Basic logical connectives\<close>
+
+judgment Trueprop :: "o \<Rightarrow> prop"  ("_" 5)
+
+axiomatization imp :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<longrightarrow>" 25)
+  where impI [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> A \<longrightarrow> B"
+    and impE [dest, trans]: "A \<longrightarrow> B \<Longrightarrow> A \<Longrightarrow> B"
+
+axiomatization All :: "('a \<Rightarrow> o) \<Rightarrow> o"  (binder "\<forall>" 10)
+  where allI [intro]: "(\<And>x. P x) \<Longrightarrow> \<forall>x. P x"
+    and allE [dest]: "\<forall>x. P x \<Longrightarrow> P a"
+
+
+subsubsection \<open>Extensional equality\<close>
+
+axiomatization equal :: "'a \<Rightarrow> 'a \<Rightarrow> o"  (infixl "=" 50)
+  where refl [intro]: "x = x"
+    and subst: "x = y \<Longrightarrow> P x \<Longrightarrow> P y"
+
+axiomatization
+  where ext [intro]: "(\<And>x. f x = g x) \<Longrightarrow> f = g"
+    and iff [intro]: "(A \<Longrightarrow> B) \<Longrightarrow> (B \<Longrightarrow> A) \<Longrightarrow> A = B"
+
+theorem sym [sym]:
+  assumes "x = y"
+  shows "y = x"
+  using assms by (rule subst) (rule refl)
+
+lemma [trans]: "x = y \<Longrightarrow> P y \<Longrightarrow> P x"
+  by (rule subst) (rule sym)
+
+lemma [trans]: "P x \<Longrightarrow> x = y \<Longrightarrow> P y"
+  by (rule subst)
+
+theorem trans [trans]: "x = y \<Longrightarrow> y = z \<Longrightarrow> x = z"
+  by (rule subst)
+
+theorem iff1 [elim]: "A = B \<Longrightarrow> A \<Longrightarrow> B"
+  by (rule subst)
+
+theorem iff2 [elim]: "A = B \<Longrightarrow> B \<Longrightarrow> A"
+  by (rule subst) (rule sym)
+
+
+subsubsection \<open>Derived connectives\<close>
+
+definition false :: o  ("\<bottom>") where "\<bottom> \<equiv> \<forall>A. A"
+
+theorem falseE [elim]:
+  assumes "\<bottom>"
+  shows A
+proof -
+  from \<open>\<bottom>\<close> have "\<forall>A. A" unfolding false_def .
+  then show A ..
+qed
+
+
+definition true :: o  ("\<top>") where "\<top> \<equiv> \<bottom> \<longrightarrow> \<bottom>"
+
+theorem trueI [intro]: \<top>
+  unfolding true_def ..
+
+
+definition not :: "o \<Rightarrow> o"  ("\<not> _" [40] 40)
+  where "not \<equiv> \<lambda>A. A \<longrightarrow> \<bottom>"
+
+abbreviation not_equal :: "'a \<Rightarrow> 'a \<Rightarrow> o"  (infixl "\<noteq>" 50)
+  where "x \<noteq> y \<equiv> \<not> (x = y)"
+
+theorem notI [intro]:
+  assumes "A \<Longrightarrow> \<bottom>"
+  shows "\<not> A"
+  using assms unfolding not_def ..
+
+theorem notE [elim]:
+  assumes "\<not> A" and A
+  shows B
+proof -
+  from \<open>\<not> A\<close> have "A \<longrightarrow> \<bottom>" unfolding not_def .
+  from this and \<open>A\<close> have "\<bottom>" ..
+  then show B ..
+qed
+
+lemma notE': "A \<Longrightarrow> \<not> A \<Longrightarrow> B"
+  by (rule notE)
+
+lemmas contradiction = notE notE'  \<comment> \<open>proof by contradiction in any order\<close>
+
+
+definition conj :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<and>" 35)
+  where "conj \<equiv> \<lambda>A B. \<forall>C. (A \<longrightarrow> B \<longrightarrow> C) \<longrightarrow> C"
+
+theorem conjI [intro]:
+  assumes A and B
+  shows "A \<and> B"
+  unfolding conj_def
+proof
+  fix C
+  show "(A \<longrightarrow> B \<longrightarrow> C) \<longrightarrow> C"
+  proof
+    assume "A \<longrightarrow> B \<longrightarrow> C"
+    also note \<open>A\<close>
+    also note \<open>B\<close>
+    finally show C .
+  qed
+qed
+
+theorem conjE [elim]:
+  assumes "A \<and> B"
+  obtains A and B
+proof
+  from \<open>A \<and> B\<close> have *: "(A \<longrightarrow> B \<longrightarrow> C) \<longrightarrow> C" for C
+    unfolding conj_def ..
+  show A
+  proof -
+    note * [of A]
+    also have "A \<longrightarrow> B \<longrightarrow> A"
+    proof
+      assume A
+      then show "B \<longrightarrow> A" ..
+    qed
+    finally show ?thesis .
+  qed
+  show B
+  proof -
+    note * [of B]
+    also have "A \<longrightarrow> B \<longrightarrow> B"
+    proof
+      show "B \<longrightarrow> B" ..
+    qed
+    finally show ?thesis .
+  qed
+qed
+
+
+definition disj :: "o \<Rightarrow> o \<Rightarrow> o"  (infixr "\<or>" 30)
+  where "disj \<equiv> \<lambda>A B. \<forall>C. (A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
+
+theorem disjI1 [intro]:
+  assumes A
+  shows "A \<or> B"
+  unfolding disj_def
+proof
+  fix C
+  show "(A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
+  proof
+    assume "A \<longrightarrow> C"
+    from this and \<open>A\<close> have C ..
+    then show "(B \<longrightarrow> C) \<longrightarrow> C" ..
+  qed
+qed
+
+theorem disjI2 [intro]:
+  assumes B
+  shows "A \<or> B"
+  unfolding disj_def
+proof
+  fix C
+  show "(A \<longrightarrow> C) \<longrightarrow> (B \<longrightarrow> C) \<longrightarrow> C"
+  proof
+    show "(B \<longrightarrow> C) \<longrightarrow> C"
+    proof
+      assume "B \<longrightarrow> C"
+      from this and \<open>B\<close> show C ..
+    qed
+  qed
+qed
+
+theorem disjE [elim]:
+  assumes "A \<or> B"
+  obtains (a) A | (b) B
+proof -
+  from \<open>A \<or> B\<close> have "(A \<longrightarrow> thesis) \<longrightarrow> (B \<longrightarrow> thesis) \<longrightarrow> thesis"
+    unfolding disj_def ..
+  also have "A \<longrightarrow> thesis"
+  proof
+    assume A
+    then show thesis by (rule a)
+  qed
+  also have "B \<longrightarrow> thesis"
+  proof
+    assume B
+    then show thesis by (rule b)
+  qed
+  finally show thesis .
+qed
+
+
+definition Ex :: "('a \<Rightarrow> o) \<Rightarrow> o"  (binder "\<exists>" 10)
+  where "\<exists>x. P x \<equiv> \<forall>C. (\<forall>x. P x \<longrightarrow> C) \<longrightarrow> C"
+
+theorem exI [intro]: "P a \<Longrightarrow> \<exists>x. P x"
+  unfolding Ex_def
+proof
+  fix C
+  assume "P a"
+  show "(\<forall>x. P x \<longrightarrow> C) \<longrightarrow> C"
+  proof
+    assume "\<forall>x. P x \<longrightarrow> C"
+    then have "P a \<longrightarrow> C" ..
+    from this and \<open>P a\<close> show C ..
+  qed
+qed
+
+theorem exE [elim]:
+  assumes "\<exists>x. P x"
+  obtains (that) x where "P x"
+proof -
+  from \<open>\<exists>x. P x\<close> have "(\<forall>x. P x \<longrightarrow> thesis) \<longrightarrow> thesis"
+    unfolding Ex_def ..
+  also have "\<forall>x. P x \<longrightarrow> thesis"
+  proof
+    fix x
+    show "P x \<longrightarrow> thesis"
+    proof
+      assume "P x"
+      then show thesis by (rule that)
+    qed
+  qed
+  finally show thesis .
+qed
+
+
+subsection \<open>Classical logic\<close>
+
+text \<open>
+  The subsequent rules of classical reasoning are all equivalent.
+\<close>
+
+locale classical =
+  assumes classical: "(\<not> A \<Longrightarrow> A) \<Longrightarrow> A"
+
+theorem (in classical) Peirce's_Law: "((A \<longrightarrow> B) \<longrightarrow> A) \<longrightarrow> A"
+proof
+  assume a: "(A \<longrightarrow> B) \<longrightarrow> A"
+  show A
+  proof (rule classical)
+    assume "\<not> A"
+    have "A \<longrightarrow> B"
+    proof
+      assume A
+      with \<open>\<not> A\<close> show B by (rule contradiction)
+    qed
+    with a show A ..
+  qed
+qed
+
+theorem (in classical) double_negation:
+  assumes "\<not> \<not> A"
+  shows A
+proof (rule classical)
+  assume "\<not> A"
+  with \<open>\<not> \<not> A\<close> show ?thesis by (rule contradiction)
+qed
+
+theorem (in classical) tertium_non_datur: "A \<or> \<not> A"
+proof (rule double_negation)
+  show "\<not> \<not> (A \<or> \<not> A)"
+  proof
+    assume "\<not> (A \<or> \<not> A)"
+    have "\<not> A"
+    proof
+      assume A then have "A \<or> \<not> A" ..
+      with \<open>\<not> (A \<or> \<not> A)\<close> show \<bottom> by (rule contradiction)
+    qed
+    then have "A \<or> \<not> A" ..
+    with \<open>\<not> (A \<or> \<not> A)\<close> show \<bottom> by (rule contradiction)
+  qed
+qed
+
+theorem (in classical) classical_cases:
+  obtains A | "\<not> A"
+  using tertium_non_datur
+proof
+  assume A
+  then show thesis ..
+next
+  assume "\<not> A"
+  then show thesis ..
+qed
+
+lemma
+  assumes classical_cases: "\<And>A C. (A \<Longrightarrow> C) \<Longrightarrow> (\<not> A \<Longrightarrow> C) \<Longrightarrow> C"
+  shows "PROP classical"
+proof
+  fix A
+  assume *: "\<not> A \<Longrightarrow> A"
+  show A
+  proof (rule classical_cases)
+    assume A
+    then show A .
+  next
+    assume "\<not> A"
+    then show A by (rule *)
+  qed
+qed
+
+end