src/HOL/Library/Efficient_Nat.thy
changeset 51151 65b7ccb1d96a
parent 51150 43502299c935
parent 51144 0ede9e2266a8
child 51154 3f0896692565
--- a/src/HOL/Library/Efficient_Nat.thy	Fri Feb 15 11:36:34 2013 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,305 +0,0 @@
-(*  Title:      HOL/Library/Efficient_Nat.thy
-    Author:     Stefan Berghofer, Florian Haftmann, TU Muenchen
-*)
-
-header {* Implementation of natural numbers by target-language integers *}
-
-theory Efficient_Nat
-imports Code_Binary_Nat Code_Integer Main
-begin
-
-text {*
-  The efficiency of the generated code for natural numbers can be improved
-  drastically by implementing natural numbers by target-language
-  integers.  To do this, just include this theory.
-*}
-
-subsection {* Target language fundamentals *}
-
-text {*
-  For ML, we map @{typ nat} to target language integers, where we
-  ensure that values are always non-negative.
-*}
-
-code_type nat
-  (SML "IntInf.int")
-  (OCaml "Big'_int.big'_int")
-  (Eval "int")
-
-text {*
-  For Haskell and Scala we define our own @{typ nat} type.  The reason
-  is that we have to distinguish type class instances for @{typ nat}
-  and @{typ int}.
-*}
-
-code_include Haskell "Nat"
-{*newtype Nat = Nat Integer deriving (Eq, Show, Read);
-
-instance Num Nat where {
-  fromInteger k = Nat (if k >= 0 then k else 0);
-  Nat n + Nat m = Nat (n + m);
-  Nat n - Nat m = fromInteger (n - m);
-  Nat n * Nat m = Nat (n * m);
-  abs n = n;
-  signum _ = 1;
-  negate n = error "negate Nat";
-};
-
-instance Ord Nat where {
-  Nat n <= Nat m = n <= m;
-  Nat n < Nat m = n < m;
-};
-
-instance Real Nat where {
-  toRational (Nat n) = toRational n;
-};
-
-instance Enum Nat where {
-  toEnum k = fromInteger (toEnum k);
-  fromEnum (Nat n) = fromEnum n;
-};
-
-instance Integral Nat where {
-  toInteger (Nat n) = n;
-  divMod n m = quotRem n m;
-  quotRem (Nat n) (Nat m)
-    | (m == 0) = (0, Nat n)
-    | otherwise = (Nat k, Nat l) where (k, l) = quotRem n m;
-};
-*}
-
-code_reserved Haskell Nat
-
-code_include Scala "Nat"
-{*object Nat {
-
-  def apply(numeral: BigInt): Nat = new Nat(numeral max 0)
-  def apply(numeral: Int): Nat = Nat(BigInt(numeral))
-  def apply(numeral: String): Nat = Nat(BigInt(numeral))
-
-}
-
-class Nat private(private val value: BigInt) {
-
-  override def hashCode(): Int = this.value.hashCode()
-
-  override def equals(that: Any): Boolean = that match {
-    case that: Nat => this equals that
-    case _ => false
-  }
-
-  override def toString(): String = this.value.toString
-
-  def equals(that: Nat): Boolean = this.value == that.value
-
-  def as_BigInt: BigInt = this.value
-  def as_Int: Int = if (this.value >= scala.Int.MinValue && this.value <= scala.Int.MaxValue)
-      this.value.intValue
-    else error("Int value out of range: " + this.value.toString)
-
-  def +(that: Nat): Nat = new Nat(this.value + that.value)
-  def -(that: Nat): Nat = Nat(this.value - that.value)
-  def *(that: Nat): Nat = new Nat(this.value * that.value)
-
-  def /%(that: Nat): (Nat, Nat) = if (that.value == 0) (new Nat(0), this)
-    else {
-      val (k, l) = this.value /% that.value
-      (new Nat(k), new Nat(l))
-    }
-
-  def <=(that: Nat): Boolean = this.value <= that.value
-
-  def <(that: Nat): Boolean = this.value < that.value
-
-}
-*}
-
-code_reserved Scala Nat
-
-code_type nat
-  (Haskell "Nat.Nat")
-  (Scala "Nat")
-
-code_instance nat :: equal
-  (Haskell -)
-
-setup {*
-  fold (Numeral.add_code @{const_name nat_of_num}
-    false Code_Printer.literal_positive_numeral) ["SML", "OCaml", "Haskell", "Scala"]
-*}
-
-code_const "0::nat"
-  (SML "0")
-  (OCaml "Big'_int.zero'_big'_int")
-  (Haskell "0")
-  (Scala "Nat(0)")
-
-
-subsection {* Conversions *}
-
-text {*
-  Since natural numbers are implemented
-  using integers in ML, the coercion function @{term "int"} of type
-  @{typ "nat \<Rightarrow> int"} is simply implemented by the identity function.
-  For the @{const nat} function for converting an integer to a natural
-  number, we give a specific implementation using an ML expression that
-  returns its input value, provided that it is non-negative, and otherwise
-  returns @{text "0"}.
-*}
-
-definition int :: "nat \<Rightarrow> int" where
-  [code_abbrev]: "int = of_nat"
-
-code_const int
-  (SML "_")
-  (OCaml "_")
-
-code_const nat
-  (SML "IntInf.max/ (0,/ _)")
-  (OCaml "Big'_int.max'_big'_int/ Big'_int.zero'_big'_int")
-  (Eval "Integer.max/ 0")
-
-text {* For Haskell and Scala, things are slightly different again. *}
-
-code_const int and nat
-  (Haskell "Prelude.toInteger" and "Prelude.fromInteger")
-  (Scala "!_.as'_BigInt" and "Nat")
-
-text {* Alternativ implementation for @{const of_nat} *}
-
-lemma [code]:
-  "of_nat n = (if n = 0 then 0 else
-     let
-       (q, m) = divmod_nat n 2;
-       q' = 2 * of_nat q
-     in if m = 0 then q' else q' + 1)"
-proof -
-  from mod_div_equality have *: "of_nat n = of_nat (n div 2 * 2 + n mod 2)" by simp
-  show ?thesis
-    apply (simp add: Let_def divmod_nat_div_mod mod_2_not_eq_zero_eq_one_nat
-      of_nat_mult
-      of_nat_add [symmetric])
-    apply (auto simp add: of_nat_mult)
-    apply (simp add: * of_nat_mult add_commute mult_commute)
-    done
-qed
-
-text {* Conversion from and to code numerals *}
-
-code_const Code_Numeral.of_nat
-  (SML "IntInf.toInt")
-  (OCaml "_")
-  (Haskell "!(Prelude.fromInteger/ ./ Prelude.toInteger)")
-  (Scala "!Natural(_.as'_BigInt)")
-  (Eval "_")
-
-code_const Code_Numeral.nat_of
-  (SML "IntInf.fromInt")
-  (OCaml "_")
-  (Haskell "!(Prelude.fromInteger/ ./ Prelude.toInteger)")
-  (Scala "!Nat(_.as'_BigInt)")
-  (Eval "_")
-
-
-subsection {* Target language arithmetic *}
-
-code_const "plus \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"
-  (SML "IntInf.+/ ((_),/ (_))")
-  (OCaml "Big'_int.add'_big'_int")
-  (Haskell infixl 6 "+")
-  (Scala infixl 7 "+")
-  (Eval infixl 8 "+")
-
-code_const "minus \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"
-  (SML "IntInf.max/ (0, IntInf.-/ ((_),/ (_)))")
-  (OCaml "Big'_int.max'_big'_int/ Big'_int.zero'_big'_int/ (Big'_int.sub'_big'_int/ _/ _)")
-  (Haskell infixl 6 "-")
-  (Scala infixl 7 "-")
-  (Eval "Integer.max/ 0/ (_ -/ _)")
-
-code_const Code_Binary_Nat.dup
-  (SML "IntInf.*/ (2,/ (_))")
-  (OCaml "Big'_int.mult'_big'_int/ 2")
-  (Haskell "!(2 * _)")
-  (Scala "!(2 * _)")
-  (Eval "!(2 * _)")
-
-code_const Code_Binary_Nat.sub
-  (SML "!(raise/ Fail/ \"sub\")")
-  (OCaml "failwith/ \"sub\"")
-  (Haskell "error/ \"sub\"")
-  (Scala "!sys.error(\"sub\")")
-
-code_const "times \<Colon> nat \<Rightarrow> nat \<Rightarrow> nat"
-  (SML "IntInf.*/ ((_),/ (_))")
-  (OCaml "Big'_int.mult'_big'_int")
-  (Haskell infixl 7 "*")
-  (Scala infixl 8 "*")
-  (Eval infixl 9 "*")
-
-code_const divmod_nat
-  (SML "IntInf.divMod/ ((_),/ (_))")
-  (OCaml "Big'_int.quomod'_big'_int")
-  (Haskell "divMod")
-  (Scala infixl 8 "/%")
-  (Eval "Integer.div'_mod")
-
-code_const "HOL.equal \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool"
-  (SML "!((_ : IntInf.int) = _)")
-  (OCaml "Big'_int.eq'_big'_int")
-  (Haskell infix 4 "==")
-  (Scala infixl 5 "==")
-  (Eval infixl 6 "=")
-
-code_const "less_eq \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool"
-  (SML "IntInf.<=/ ((_),/ (_))")
-  (OCaml "Big'_int.le'_big'_int")
-  (Haskell infix 4 "<=")
-  (Scala infixl 4 "<=")
-  (Eval infixl 6 "<=")
-
-code_const "less \<Colon> nat \<Rightarrow> nat \<Rightarrow> bool"
-  (SML "IntInf.</ ((_),/ (_))")
-  (OCaml "Big'_int.lt'_big'_int")
-  (Haskell infix 4 "<")
-  (Scala infixl 4 "<")
-  (Eval infixl 6 "<")
-
-code_const Num.num_of_nat
-  (SML "!(raise/ Fail/ \"num'_of'_nat\")")
-  (OCaml "failwith/ \"num'_of'_nat\"")
-  (Haskell "error/ \"num'_of'_nat\"")
-  (Scala "!sys.error(\"num'_of'_nat\")")
-
-
-subsection {* Evaluation *}
-
-lemma [code, code del]:
-  "(Code_Evaluation.term_of \<Colon> nat \<Rightarrow> term) = Code_Evaluation.term_of" ..
-
-code_const "Code_Evaluation.term_of \<Colon> nat \<Rightarrow> term"
-  (SML "HOLogic.mk'_number/ HOLogic.natT")
-
-text {*
-  Evaluation with @{text "Quickcheck_Narrowing"} does not work yet,
-  since a couple of questions how to perform evaluations in Haskell are not that
-  clear yet.  Therefore, we simply deactivate the narrowing-based quickcheck
-  from here on.
-*}
-
-declare [[quickcheck_narrowing_active = false]] 
-
-
-code_modulename SML
-  Efficient_Nat Arith
-
-code_modulename OCaml
-  Efficient_Nat Arith
-
-code_modulename Haskell
-  Efficient_Nat Arith
-
-hide_const (open) int
-
-end
-