--- a/src/HOL/Lambda/ListBeta.thy Thu Aug 31 00:16:32 2000 +0200
+++ b/src/HOL/Lambda/ListBeta.thy Thu Aug 31 01:42:23 2000 +0200
@@ -6,9 +6,106 @@
Lifting beta-reduction to lists of terms, reducing exactly one element
*)
-ListBeta = ListApplication + ListOrder +
+theory ListBeta = ListApplication + ListOrder:
+
+syntax
+ "_list_beta" :: "dB => dB => bool" (infixl "=>" 50)
+translations
+ "rs => ss" == "(rs,ss) : step1 beta"
+
+lemma head_Var_reduction_aux:
+ "v -> v' ==> \<forall>rs. v = Var n $$ rs --> (\<exists>ss. rs => ss \<and> v' = Var n $$ ss)"
+ apply (erule beta.induct)
+ apply simp
+ apply (rule allI)
+ apply (rule_tac xs = rs in rev_exhaust)
+ apply simp
+ apply (force intro: append_step1I)
+ apply (rule allI)
+ apply (rule_tac xs = rs in rev_exhaust)
+ apply simp
+ apply (tactic {* mk_auto_tac (claset() addIs [disjI2 RS append_step1I], simpset()) 0 3 *})
+ -- FIXME
+ done
+
+
+lemma head_Var_reduction:
+ "Var n $$ rs -> v ==> (\<exists>ss. rs => ss \<and> v = Var n $$ ss)"
+ apply (drule head_Var_reduction_aux)
+ apply blast
+ done
-syntax "=>" :: dB => dB => bool (infixl 50)
-translations "rs => ss" == "(rs,ss) : step1 beta"
+lemma apps_betasE_aux:
+ "u -> u' ==> \<forall>r rs. u = r $$ rs -->
+ ((\<exists>r'. r -> r' \<and> u' = r'$$rs) \<or>
+ (\<exists>rs'. rs => rs' \<and> u' = r$$rs') \<or>
+ (\<exists>s t ts. r = Abs s \<and> rs = t#ts \<and> u' = s[t/0]$$ts))"
+ apply (erule beta.induct)
+ apply (clarify del: disjCI)
+ apply (case_tac r)
+ apply simp
+ apply (simp add: App_eq_foldl_conv)
+ apply (simp only: split: split_if_asm)
+ apply simp
+ apply blast
+ apply simp
+ apply (simp add: App_eq_foldl_conv)
+ apply (simp only: split: split_if_asm)
+ apply simp
+ apply simp
+ apply (clarify del: disjCI)
+ apply (drule App_eq_foldl_conv [THEN iffD1])
+ apply (simp only: split: split_if_asm)
+ apply simp
+ apply blast
+ apply (force intro: disjI1 [THEN append_step1I])
+ apply (clarify del: disjCI)
+ apply (drule App_eq_foldl_conv [THEN iffD1])
+ apply (simp only: split: split_if_asm)
+ apply simp
+ apply blast
+ apply (tactic {* mk_auto_tac (claset() addIs [disjI2 RS append_step1I],simpset()) 0 3 *})
+ -- FIXME
+ done
+
+lemma apps_betasE [elim!]:
+"[| r $$ rs -> s; !!r'. [| r -> r'; s = r' $$ rs |] ==> R;
+ !!rs'. [| rs => rs'; s = r $$ rs' |] ==> R;
+ !!t u us. [| r = Abs t; rs = u # us; s = t[u/0] $$ us |] ==> R |]
+ ==> R"
+proof -
+ assume major: "r $$ rs -> s"
+ case antecedent
+ show ?thesis
+ apply (cut_tac major [THEN apps_betasE_aux, THEN spec, THEN spec])
+ apply (assumption | rule refl | erule prems exE conjE impE disjE)+
+ done
+qed
+
+lemma apps_preserves_beta [simp]:
+ "r -> s ==> r $$ ss -> s $$ ss"
+ apply (induct_tac ss rule: rev_induct)
+ apply auto
+ done
+
+lemma apps_preserves_beta2 [simp]:
+ "r ->> s ==> r $$ ss ->> s $$ ss"
+ apply (erule rtrancl_induct)
+ apply blast
+ apply (blast intro: apps_preserves_beta rtrancl_into_rtrancl)
+ done
+
+lemma apps_preserves_betas [rulify, simp]:
+ "\<forall>ss. rs => ss --> r $$ rs -> r $$ ss"
+ apply (induct_tac rs rule: rev_induct)
+ apply simp
+ apply simp
+ apply clarify
+ apply (rule_tac xs = ss in rev_exhaust)
+ apply simp
+ apply simp
+ apply (drule Snoc_step1_SnocD)
+ apply blast
+ done
end