src/HOL/Tools/Groebner_Basis/normalizer.ML
changeset 23252 67268bb40b21
child 23259 ccee01b8d1c5
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Tools/Groebner_Basis/normalizer.ML	Tue Jun 05 16:26:04 2007 +0200
@@ -0,0 +1,649 @@
+(*  Title:      HOL/Tools/Groebner_Basis/normalizer.ML
+    ID:         $Id$
+    Author:     Amine Chaieb, TU Muenchen
+*)
+
+signature NORMALIZER = 
+sig
+ val mk_cnumber : ctyp -> int -> cterm
+ val mk_cnumeral : int -> cterm
+ val semiring_normalize_conv : Proof.context -> Conv.conv
+ val semiring_normalize_tac : Proof.context -> int -> tactic
+ val semiring_normalize_wrapper :  NormalizerData.entry -> Conv.conv
+ val semiring_normalizers_conv :
+     cterm list -> cterm list * thm list -> cterm list * thm list ->
+     (cterm -> bool) * Conv.conv * Conv.conv * Conv.conv -> (cterm -> Thm.cterm -> bool) ->
+       {add: Conv.conv, mul: Conv.conv, neg: Conv.conv, main: Conv.conv, 
+        pow: Conv.conv, sub: Conv.conv}
+end
+
+structure Normalizer: NORMALIZER = 
+struct
+open Misc;
+
+local
+ val pls_const = @{cterm "Numeral.Pls"}
+   and min_const = @{cterm "Numeral.Min"}
+   and bit_const = @{cterm "Numeral.Bit"}
+   and zero = @{cpat "0"}
+   and one = @{cpat "1"}
+ fun mk_cbit 0 = @{cterm "Numeral.bit.B0"}
+  | mk_cbit 1 = @{cterm "Numeral.bit.B1"}
+  | mk_cbit _ = raise CTERM ("mk_cbit", []);
+
+in
+
+fun mk_cnumeral 0 = pls_const
+  | mk_cnumeral ~1 = min_const
+  | mk_cnumeral i =
+      let val (q, r) = IntInf.divMod (i, 2)
+      in Thm.capply (Thm.capply bit_const (mk_cnumeral q)) (mk_cbit (IntInf.toInt r)) 
+      end;
+
+fun mk_cnumber cT = 
+ let 
+  val [nb_of, z, on] = 
+    map (Drule.cterm_rule (instantiate' [SOME cT] [])) [@{cpat "number_of"}, zero, one]
+  fun h 0 = z
+    | h 1 = on
+    | h x = Thm.capply nb_of (mk_cnumeral x)
+ in h end;
+end;
+
+
+(* Very basic stuff for terms *)
+val dest_numeral = term_of #> HOLogic.dest_number #> snd;
+val is_numeral = can dest_numeral;
+
+val numeral01_conv = Simplifier.rewrite
+                         (HOL_basic_ss addsimps [numeral_1_eq_1, numeral_0_eq_0]);
+val zero1_numeral_conv = 
+ Simplifier.rewrite (HOL_basic_ss addsimps [numeral_1_eq_1 RS sym, numeral_0_eq_0 RS sym]);
+val zerone_conv = fn cv => zero1_numeral_conv then_conv cv then_conv numeral01_conv;
+val natarith = [@{thm "add_nat_number_of"}, @{thm "diff_nat_number_of"},
+                @{thm "mult_nat_number_of"}, @{thm "eq_nat_number_of"}, 
+                @{thm "less_nat_number_of"}];
+val nat_add_conv = 
+ zerone_conv 
+  (Simplifier.rewrite 
+    (HOL_basic_ss 
+       addsimps arith_simps @ natarith @ rel_simps
+             @ [if_False, if_True, add_0, add_Suc, add_number_of_left, Suc_eq_add_numeral_1]
+             @ map (fn th => th RS sym) numerals));
+
+val nat_mul_conv = nat_add_conv;
+val zeron_tm = @{cterm "0::nat"};
+val onen_tm  = @{cterm "1::nat"};
+val true_tm = @{cterm "True"};
+
+
+(* The main function! *)
+fun semiring_normalizers_conv vars (sr_ops, sr_rules) (r_ops, r_rules)
+  (is_semiring_constant, semiring_add_conv, semiring_mul_conv, semiring_pow_conv) =
+let
+
+val [pthm_02, pthm_03, pthm_04, pthm_05, pthm_07, pthm_08,
+     pthm_09, pthm_10, pthm_11, pthm_12, pthm_13, pthm_14, pthm_15, pthm_16,
+     pthm_17, pthm_18, pthm_19, pthm_21, pthm_22, pthm_23, pthm_24,
+     pthm_25, pthm_26, pthm_27, pthm_28, pthm_29, pthm_30, pthm_31, pthm_32,
+     pthm_33, pthm_34, pthm_35, pthm_36, pthm_37, pthm_38,pthm_39,pthm_40] = sr_rules;
+
+val [ca, cb, cc, cd, cm, cn, cp, cq, cx, cy, cz, clx, crx, cly, cry] = vars;
+val [add_pat, mul_pat, pow_pat, zero_tm, one_tm] = sr_ops;
+val [add_tm, mul_tm, pow_tm] = map (Thm.dest_fun o Thm.dest_fun) [add_pat, mul_pat, pow_pat];
+
+val dest_add = dest_binop add_tm
+val dest_mul = dest_binop mul_tm
+fun dest_pow tm =
+ let val (l,r) = dest_binop pow_tm tm
+ in if is_numeral r then (l,r) else raise CTERM ("dest_pow",[tm])
+ end;
+val is_add = is_binop add_tm
+val is_mul = is_binop mul_tm
+fun is_pow tm = is_binop pow_tm tm andalso is_numeral(Thm.dest_arg tm);
+
+val (neg_mul,sub_add,sub_tm,neg_tm,dest_sub,is_sub,cx',cy') =
+  (case (r_ops, r_rules) of
+    ([], []) => (TrueI, TrueI, true_tm, true_tm, (fn t => (t,t)), K false, true_tm, true_tm)
+  | ([sub_pat, neg_pat], [neg_mul, sub_add]) =>
+      let
+        val sub_tm = Thm.dest_fun (Thm.dest_fun sub_pat)
+        val neg_tm = Thm.dest_fun neg_pat
+        val dest_sub = dest_binop sub_tm
+        val is_sub = is_binop sub_tm
+      in (neg_mul,sub_add,sub_tm,neg_tm,dest_sub,is_sub, neg_mul |> concl |> Thm.dest_arg,
+          sub_add |> concl |> Thm.dest_arg |> Thm.dest_arg)
+      end);
+in fn variable_order =>
+ let
+
+(* Conversion for "x^n * x^m", with either x^n = x and/or x^m = x possible.  *)
+(* Also deals with "const * const", but both terms must involve powers of    *)
+(* the same variable, or both be constants, or behaviour may be incorrect.   *)
+
+ fun powvar_mul_conv tm =
+  let
+  val (l,r) = dest_mul tm
+  in if is_semiring_constant l andalso is_semiring_constant r
+     then semiring_mul_conv tm
+     else
+      ((let
+         val (lx,ln) = dest_pow l
+        in
+         ((let val (rx,rn) = dest_pow r
+               val th1 = inst_thm [(cx,lx),(cp,ln),(cq,rn)] pthm_29
+                val (tm1,tm2) = Thm.dest_comb(concl th1) in
+               transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv tm2)) end)
+           handle CTERM _ =>
+            (let val th1 = inst_thm [(cx,lx),(cq,ln)] pthm_31
+                 val (tm1,tm2) = Thm.dest_comb(concl th1) in
+               transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv tm2)) end)) end)
+       handle CTERM _ =>
+           ((let val (rx,rn) = dest_pow r
+                val th1 = inst_thm [(cx,rx),(cq,rn)] pthm_30
+                val (tm1,tm2) = Thm.dest_comb(concl th1) in
+               transitive th1 (Drule.arg_cong_rule tm1 (nat_add_conv tm2)) end)
+           handle CTERM _ => inst_thm [(cx,l)] pthm_32
+
+))
+ end;
+
+(* Remove "1 * m" from a monomial, and just leave m.                         *)
+
+ fun monomial_deone th =
+       (let val (l,r) = dest_mul(concl th) in
+           if l aconvc one_tm
+          then transitive th (inst_thm [(ca,r)] pthm_13)  else th end)
+       handle CTERM _ => th;
+
+(* Conversion for "(monomial)^n", where n is a numeral.                      *)
+
+ val monomial_pow_conv =
+  let
+   fun monomial_pow tm bod ntm =
+    if not(is_comb bod)
+    then reflexive tm
+    else
+     if is_semiring_constant bod
+     then semiring_pow_conv tm
+     else
+      let
+      val (lopr,r) = Thm.dest_comb bod
+      in if not(is_comb lopr)
+         then reflexive tm
+        else
+          let
+          val (opr,l) = Thm.dest_comb lopr
+         in
+           if opr aconvc pow_tm andalso is_numeral r
+          then
+            let val th1 = inst_thm [(cx,l),(cp,r),(cq,ntm)] pthm_34
+                val (l,r) = Thm.dest_comb(concl th1)
+           in transitive th1 (Drule.arg_cong_rule l (nat_mul_conv r))
+           end
+           else
+            if opr aconvc mul_tm
+            then
+             let
+              val th1 = inst_thm [(cx,l),(cy,r),(cq,ntm)] pthm_33
+             val (xy,z) = Thm.dest_comb(concl th1)
+              val (x,y) = Thm.dest_comb xy
+              val thl = monomial_pow y l ntm
+              val thr = monomial_pow z r ntm
+             in transitive th1 (combination (Drule.arg_cong_rule x thl) thr)
+             end
+             else reflexive tm
+          end
+      end
+  in fn tm =>
+   let
+    val (lopr,r) = Thm.dest_comb tm
+    val (opr,l) = Thm.dest_comb lopr
+   in if not (opr aconvc pow_tm) orelse not(is_numeral r)
+      then raise CTERM ("monomial_pow_conv", [tm])
+      else if r aconvc zeron_tm
+      then inst_thm [(cx,l)] pthm_35
+      else if r aconvc onen_tm
+      then inst_thm [(cx,l)] pthm_36
+      else monomial_deone(monomial_pow tm l r)
+   end
+  end;
+
+(* Multiplication of canonical monomials.                                    *)
+ val monomial_mul_conv =
+  let
+   fun powvar tm =
+    if is_semiring_constant tm then one_tm
+    else
+     ((let val (lopr,r) = Thm.dest_comb tm
+           val (opr,l) = Thm.dest_comb lopr
+       in if opr aconvc pow_tm andalso is_numeral r then l 
+          else raise CTERM ("monomial_mul_conv",[tm]) end)
+     handle CTERM _ => tm)   (* FIXME !? *)
+   fun  vorder x y =
+    if x aconvc y then 0
+    else
+     if x aconvc one_tm then ~1
+     else if y aconvc one_tm then 1
+      else if variable_order x y then ~1 else 1
+   fun monomial_mul tm l r =
+    ((let val (lx,ly) = dest_mul l val vl = powvar lx
+      in
+      ((let
+        val (rx,ry) = dest_mul r
+         val vr = powvar rx
+         val ord = vorder vl vr
+        in
+         if ord = 0
+        then
+          let
+             val th1 = inst_thm [(clx,lx),(cly,ly),(crx,rx),(cry,ry)] pthm_15
+             val (tm1,tm2) = Thm.dest_comb(concl th1)
+             val (tm3,tm4) = Thm.dest_comb tm1
+             val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv tm4)) tm2
+             val th3 = transitive th1 th2
+              val  (tm5,tm6) = Thm.dest_comb(concl th3)
+              val  (tm7,tm8) = Thm.dest_comb tm6
+             val  th4 = monomial_mul tm6 (Thm.dest_arg tm7) tm8
+         in  transitive th3 (Drule.arg_cong_rule tm5 th4)
+         end
+         else
+          let val th0 = if ord < 0 then pthm_16 else pthm_17
+             val th1 = inst_thm [(clx,lx),(cly,ly),(crx,rx),(cry,ry)] th0
+             val (tm1,tm2) = Thm.dest_comb(concl th1)
+             val (tm3,tm4) = Thm.dest_comb tm2
+         in transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4))
+         end
+        end)
+       handle CTERM _ =>
+        (let val vr = powvar r val ord = vorder vl vr
+        in
+          if ord = 0 then
+           let
+           val th1 = inst_thm [(clx,lx),(cly,ly),(crx,r)] pthm_18
+                 val (tm1,tm2) = Thm.dest_comb(concl th1)
+           val (tm3,tm4) = Thm.dest_comb tm1
+           val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv tm4)) tm2
+          in transitive th1 th2
+          end
+          else
+          if ord < 0 then
+            let val th1 = inst_thm [(clx,lx),(cly,ly),(crx,r)] pthm_19
+                val (tm1,tm2) = Thm.dest_comb(concl th1)
+                val (tm3,tm4) = Thm.dest_comb tm2
+           in transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4))
+           end
+           else inst_thm [(ca,l),(cb,r)] pthm_09
+        end)) end)
+     handle CTERM _ =>
+      (let val vl = powvar l in
+        ((let
+          val (rx,ry) = dest_mul r
+          val vr = powvar rx
+           val ord = vorder vl vr
+         in if ord = 0 then
+              let val th1 = inst_thm [(clx,l),(crx,rx),(cry,ry)] pthm_21
+                 val (tm1,tm2) = Thm.dest_comb(concl th1)
+                 val (tm3,tm4) = Thm.dest_comb tm1
+             in transitive th1 (Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (powvar_mul_conv tm4)) tm2)
+             end
+             else if ord > 0 then
+                 let val th1 = inst_thm [(clx,l),(crx,rx),(cry,ry)] pthm_22
+                     val (tm1,tm2) = Thm.dest_comb(concl th1)
+                    val (tm3,tm4) = Thm.dest_comb tm2
+                in transitive th1 (Drule.arg_cong_rule tm1 (monomial_mul tm2 (Thm.dest_arg tm3) tm4))
+                end
+             else reflexive tm
+         end)
+        handle CTERM _ =>
+          (let val vr = powvar r
+               val  ord = vorder vl vr
+          in if ord = 0 then powvar_mul_conv tm
+              else if ord > 0 then inst_thm [(ca,l),(cb,r)] pthm_09
+              else reflexive tm
+          end)) end))
+  in fn tm => let val (l,r) = dest_mul tm in monomial_deone(monomial_mul tm l r)
+             end
+  end;
+(* Multiplication by monomial of a polynomial.                               *)
+
+ val polynomial_monomial_mul_conv =
+  let
+   fun pmm_conv tm =
+    let val (l,r) = dest_mul tm
+    in
+    ((let val (y,z) = dest_add r
+          val th1 = inst_thm [(cx,l),(cy,y),(cz,z)] pthm_37
+          val (tm1,tm2) = Thm.dest_comb(concl th1)
+          val (tm3,tm4) = Thm.dest_comb tm1
+          val th2 = combination (Drule.arg_cong_rule tm3 (monomial_mul_conv tm4)) (pmm_conv tm2)
+      in transitive th1 th2
+      end)
+     handle CTERM _ => monomial_mul_conv tm)
+   end
+ in pmm_conv
+ end;
+
+(* Addition of two monomials identical except for constant multiples.        *)
+
+fun monomial_add_conv tm =
+ let val (l,r) = dest_add tm
+ in if is_semiring_constant l andalso is_semiring_constant r
+    then semiring_add_conv tm
+    else
+     let val th1 =
+           if is_mul l andalso is_semiring_constant(Thm.dest_arg1 l)
+           then if is_mul r andalso is_semiring_constant(Thm.dest_arg1 r) then
+                    inst_thm [(ca,Thm.dest_arg1 l),(cm,Thm.dest_arg r), (cb,Thm.dest_arg1 r)] pthm_02
+                else inst_thm [(ca,Thm.dest_arg1 l),(cm,r)] pthm_03
+           else if is_mul r andalso is_semiring_constant(Thm.dest_arg1 r)
+           then inst_thm [(cm,l),(ca,Thm.dest_arg1 r)] pthm_04
+           else inst_thm [(cm,r)] pthm_05
+         val (tm1,tm2) = Thm.dest_comb(concl th1)
+         val (tm3,tm4) = Thm.dest_comb tm1
+         val th2 = Drule.arg_cong_rule tm3 (semiring_add_conv tm4)
+         val th3 = transitive th1 (Drule.fun_cong_rule th2 tm2)
+         val tm5 = concl th3
+      in
+      if (Thm.dest_arg1 tm5) aconvc zero_tm
+      then transitive th3 (inst_thm [(ca,Thm.dest_arg tm5)] pthm_11)
+      else monomial_deone th3
+     end
+ end;
+
+(* Ordering on monomials.                                                    *)
+
+fun striplist dest =
+ let fun strip x acc =
+   ((let val (l,r) = dest x in
+        strip l (strip r acc) end)
+    handle CTERM _ => x::acc)    (* FIXME !? *)
+ in fn x => strip x []
+ end;
+
+
+fun powervars tm =
+ let val ptms = striplist dest_mul tm
+ in if is_semiring_constant (hd ptms) then tl ptms else ptms
+ end;
+val num_0 = 0;
+val num_1 = 1;
+fun dest_varpow tm =
+ ((let val (x,n) = dest_pow tm in (x,dest_numeral n) end)
+   handle CTERM _ =>
+   (tm,(if is_semiring_constant tm then num_0 else num_1)));
+
+val morder =
+ let fun lexorder l1 l2 =
+  case (l1,l2) of
+    ([],[]) => 0
+  | (vps,[]) => ~1
+  | ([],vps) => 1
+  | (((x1,n1)::vs1),((x2,n2)::vs2)) =>
+     if variable_order x1 x2 then 1
+     else if variable_order x2 x1 then ~1
+     else if n1 < n2 then ~1
+     else if n2 < n1 then 1
+     else lexorder vs1 vs2
+ in fn tm1 => fn tm2 =>
+  let val vdegs1 = map dest_varpow (powervars tm1)
+      val vdegs2 = map dest_varpow (powervars tm2)
+      val deg1 = fold_rev ((curry (op +)) o snd) vdegs1 num_0
+      val deg2 = fold_rev ((curry (op +)) o snd) vdegs2 num_0
+  in if deg1 < deg2 then ~1 else if deg1 > deg2 then 1
+                            else lexorder vdegs1 vdegs2
+  end
+ end;
+
+(* Addition of two polynomials.                                              *)
+
+val polynomial_add_conv =
+ let
+ fun dezero_rule th =
+  let
+   val tm = concl th
+  in
+   if not(is_add tm) then th else
+   let val (lopr,r) = Thm.dest_comb tm
+       val l = Thm.dest_arg lopr
+   in
+    if l aconvc zero_tm
+    then transitive th (inst_thm [(ca,r)] pthm_07)   else
+        if r aconvc zero_tm
+        then transitive th (inst_thm [(ca,l)] pthm_08)  else th
+   end
+  end
+ fun padd tm =
+  let
+   val (l,r) = dest_add tm
+  in
+   if l aconvc zero_tm then inst_thm [(ca,r)] pthm_07
+   else if r aconvc zero_tm then inst_thm [(ca,l)] pthm_08
+   else
+    if is_add l
+    then
+     let val (a,b) = dest_add l
+     in
+     if is_add r then
+      let val (c,d) = dest_add r
+          val ord = morder a c
+      in
+       if ord = 0 then
+        let val th1 = inst_thm [(ca,a),(cb,b),(cc,c),(cd,d)] pthm_23
+            val (tm1,tm2) = Thm.dest_comb(concl th1)
+            val (tm3,tm4) = Thm.dest_comb tm1
+            val th2 = Drule.arg_cong_rule tm3 (monomial_add_conv tm4)
+        in dezero_rule (transitive th1 (combination th2 (padd tm2)))
+        end
+       else (* ord <> 0*)
+        let val th1 =
+                if ord > 0 then inst_thm [(ca,a),(cb,b),(cc,r)] pthm_24
+                else inst_thm [(ca,l),(cc,c),(cd,d)] pthm_25
+            val (tm1,tm2) = Thm.dest_comb(concl th1)
+        in dezero_rule (transitive th1 (Drule.arg_cong_rule tm1 (padd tm2)))
+        end
+      end
+     else (* not (is_add r)*)
+      let val ord = morder a r
+      in
+       if ord = 0 then
+        let val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_26
+            val (tm1,tm2) = Thm.dest_comb(concl th1)
+            val (tm3,tm4) = Thm.dest_comb tm1
+            val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (monomial_add_conv tm4)) tm2
+        in dezero_rule (transitive th1 th2)
+        end
+       else (* ord <> 0*)
+        if ord > 0 then
+          let val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_24
+              val (tm1,tm2) = Thm.dest_comb(concl th1)
+          in dezero_rule (transitive th1 (Drule.arg_cong_rule tm1 (padd tm2)))
+          end
+        else dezero_rule (inst_thm [(ca,l),(cc,r)] pthm_27)
+      end
+    end
+   else (* not (is_add l)*)
+    if is_add r then
+      let val (c,d) = dest_add r
+          val  ord = morder l c
+      in
+       if ord = 0 then
+         let val th1 = inst_thm [(ca,l),(cc,c),(cd,d)] pthm_28
+             val (tm1,tm2) = Thm.dest_comb(concl th1)
+             val (tm3,tm4) = Thm.dest_comb tm1
+             val th2 = Drule.fun_cong_rule (Drule.arg_cong_rule tm3 (monomial_add_conv tm4)) tm2
+         in dezero_rule (transitive th1 th2)
+         end
+       else
+        if ord > 0 then reflexive tm
+        else
+         let val th1 = inst_thm [(ca,l),(cc,c),(cd,d)] pthm_25
+             val (tm1,tm2) = Thm.dest_comb(concl th1)
+         in dezero_rule (transitive th1 (Drule.arg_cong_rule tm1 (padd tm2)))
+         end
+      end
+    else
+     let val ord = morder l r
+     in
+      if ord = 0 then monomial_add_conv tm
+      else if ord > 0 then dezero_rule(reflexive tm)
+      else dezero_rule (inst_thm [(ca,l),(cc,r)] pthm_27)
+     end
+  end
+ in padd
+ end;
+
+(* Multiplication of two polynomials.                                        *)
+
+val polynomial_mul_conv =
+ let
+  fun pmul tm =
+   let val (l,r) = dest_mul tm
+   in
+    if not(is_add l) then polynomial_monomial_mul_conv tm
+    else
+     if not(is_add r) then
+      let val th1 = inst_thm [(ca,l),(cb,r)] pthm_09
+      in transitive th1 (polynomial_monomial_mul_conv(concl th1))
+      end
+     else
+       let val (a,b) = dest_add l
+           val th1 = inst_thm [(ca,a),(cb,b),(cc,r)] pthm_10
+           val (tm1,tm2) = Thm.dest_comb(concl th1)
+           val (tm3,tm4) = Thm.dest_comb tm1
+           val th2 = Drule.arg_cong_rule tm3 (polynomial_monomial_mul_conv tm4)
+           val th3 = transitive th1 (combination th2 (pmul tm2))
+       in transitive th3 (polynomial_add_conv (concl th3))
+       end
+   end
+ in fn tm =>
+   let val (l,r) = dest_mul tm
+   in
+    if l aconvc zero_tm then inst_thm [(ca,r)] pthm_11
+    else if r aconvc zero_tm then inst_thm [(ca,l)] pthm_12
+    else if l aconvc one_tm then inst_thm [(ca,r)] pthm_13
+    else if r aconvc one_tm then inst_thm [(ca,l)] pthm_14
+    else pmul tm
+   end
+ end;
+
+(* Power of polynomial (optimized for the monomial and trivial cases).       *)
+
+val Succ = @{cterm "Suc"};
+val num_conv = fn n =>
+        nat_add_conv (Thm.capply (Succ) (mk_cnumber @{ctyp "nat"} ((dest_numeral n) - 1)))
+                     |> Thm.symmetric;
+
+
+val polynomial_pow_conv =
+ let
+  fun ppow tm =
+    let val (l,n) = dest_pow tm
+    in
+     if n aconvc zeron_tm then inst_thm [(cx,l)] pthm_35
+     else if n aconvc onen_tm then inst_thm [(cx,l)] pthm_36
+     else
+         let val th1 = num_conv n
+             val th2 = inst_thm [(cx,l),(cq,Thm.dest_arg (concl th1))] pthm_38
+             val (tm1,tm2) = Thm.dest_comb(concl th2)
+             val th3 = transitive th2 (Drule.arg_cong_rule tm1 (ppow tm2))
+             val th4 = transitive (Drule.arg_cong_rule (Thm.dest_fun tm) th1) th3
+         in transitive th4 (polynomial_mul_conv (concl th4))
+         end
+    end
+ in fn tm =>
+       if is_add(Thm.dest_arg1 tm) then ppow tm else monomial_pow_conv tm
+ end;
+
+(* Negation.                                                                 *)
+
+val polynomial_neg_conv =
+ fn tm =>
+   let val (l,r) = Thm.dest_comb tm in
+        if not (l aconvc neg_tm) then raise CTERM ("polynomial_neg_conv",[tm]) else
+        let val th1 = inst_thm [(cx',r)] neg_mul
+            val th2 = transitive th1 (arg1_conv semiring_mul_conv (concl th1))
+        in transitive th2 (polynomial_monomial_mul_conv (concl th2))
+        end
+   end;
+
+
+(* Subtraction.                                                              *)
+val polynomial_sub_conv = fn tm =>
+  let val (l,r) = dest_sub tm
+      val th1 = inst_thm [(cx',l),(cy',r)] sub_add
+      val (tm1,tm2) = Thm.dest_comb(concl th1)
+      val th2 = Drule.arg_cong_rule tm1 (polynomial_neg_conv tm2)
+  in transitive th1 (transitive th2 (polynomial_add_conv (concl th2)))
+  end;
+
+(* Conversion from HOL term.                                                 *)
+
+fun polynomial_conv tm =
+ if not(is_comb tm) orelse is_semiring_constant tm
+ then reflexive tm
+ else
+  let val (lopr,r) = Thm.dest_comb tm
+  in if lopr aconvc neg_tm then
+       let val th1 = Drule.arg_cong_rule lopr (polynomial_conv r)
+       in transitive th1 (polynomial_neg_conv (concl th1))
+       end
+     else
+       if not(is_comb lopr) then reflexive tm
+       else
+         let val (opr,l) = Thm.dest_comb lopr
+         in if opr aconvc pow_tm andalso is_numeral r
+            then
+              let val th1 = Drule.fun_cong_rule (Drule.arg_cong_rule opr (polynomial_conv l)) r
+              in transitive th1 (polynomial_pow_conv (concl th1))
+              end
+            else
+              if opr aconvc add_tm orelse opr aconvc mul_tm orelse opr aconvc sub_tm
+              then
+               let val th1 = combination (Drule.arg_cong_rule opr (polynomial_conv l)) (polynomial_conv r)
+                   val f = if opr aconvc add_tm then polynomial_add_conv
+                      else if opr aconvc mul_tm then polynomial_mul_conv
+                      else polynomial_sub_conv
+               in transitive th1 (f (concl th1))
+               end
+              else reflexive tm
+         end
+  end;
+ in
+   {main = polynomial_conv,
+    add = polynomial_add_conv,
+    mul = polynomial_mul_conv,
+    pow = polynomial_pow_conv,
+    neg = polynomial_neg_conv,
+    sub = polynomial_sub_conv}
+ end
+end;
+
+val nat_arith = @{thms "nat_arith"};
+val nat_exp_ss = HOL_basic_ss addsimps (nat_number @ nat_arith @ arith_simps @ rel_simps)
+                              addsimps [Let_def, if_False, if_True, add_0, add_Suc];
+
+fun semiring_normalize_wrapper ({vars, semiring, ring, idom}, 
+                                     {conv, dest_const, mk_const, is_const}) =
+  let
+    fun ord t u = Term.term_ord (term_of t, term_of u) = LESS
+
+    val pow_conv =
+      arg_conv (Simplifier.rewrite nat_exp_ss)
+      then_conv Simplifier.rewrite
+        (HOL_basic_ss addsimps [nth (snd semiring) 31, nth (snd semiring) 34])
+      then_conv conv
+    val dat = (is_const, conv, conv, pow_conv)
+    val {main, ...} = semiring_normalizers_conv vars semiring ring dat ord
+  in main end;
+
+fun semiring_normalize_conv ctxt tm =
+  (case NormalizerData.match ctxt tm of
+    NONE => reflexive tm
+  | SOME res => semiring_normalize_wrapper res tm);
+
+
+fun semiring_normalize_tac ctxt = SUBGOAL (fn (goal, i) =>
+  rtac (semiring_normalize_conv ctxt
+    (cterm_of (ProofContext.theory_of ctxt) (fst (Logic.dest_equals goal)))) i);
+end;