--- a/src/HOL/Analysis/Convex_Euclidean_Space.thy Mon Jul 09 21:55:40 2018 +0100
+++ b/src/HOL/Analysis/Convex_Euclidean_Space.thy Tue Jul 10 09:38:35 2018 +0200
@@ -2005,9 +2005,9 @@
shows "c *\<^sub>R x \<in> cone hull S"
by (metis assms cone_cone_hull hull_inc mem_cone)
-proposition%important cone_hull_expl: "cone hull S = {c *\<^sub>R x | c x. c \<ge> 0 \<and> x \<in> S}"
+proposition cone_hull_expl: "cone hull S = {c *\<^sub>R x | c x. c \<ge> 0 \<and> x \<in> S}"
(is "?lhs = ?rhs")
-proof%unimportant -
+proof -
{
fix x
assume "x \<in> ?rhs"
@@ -2089,7 +2089,7 @@
"~ affine_dependent s \<Longrightarrow> ~ affine_dependent(s - t)"
by (meson Diff_subset affine_dependent_subset)
-proposition%important affine_dependent_explicit:
+proposition affine_dependent_explicit:
"affine_dependent p \<longleftrightarrow>
(\<exists>S u. finite S \<and> S \<subseteq> p \<and> sum u S = 0 \<and> (\<exists>v\<in>S. u v \<noteq> 0) \<and> sum (\<lambda>v. u v *\<^sub>R v) S = 0)"
proof -
@@ -2524,7 +2524,7 @@
subsubsection%unimportant \<open>Explicit expression for convex hull\<close>
-proposition%important convex_hull_indexed:
+proposition convex_hull_indexed:
fixes S :: "'a::real_vector set"
shows "convex hull S =
{y. \<exists>k u x. (\<forall>i\<in>{1::nat .. k}. 0 \<le> u i \<and> x i \<in> S) \<and>
@@ -4020,11 +4020,11 @@
by (auto simp: convex_hull_explicit)
qed
-theorem%important caratheodory:
+theorem caratheodory:
"convex hull p =
{x::'a::euclidean_space. \<exists>s. finite s \<and> s \<subseteq> p \<and>
card s \<le> DIM('a) + 1 \<and> x \<in> convex hull s}"
-proof%unimportant safe
+proof safe
fix x
assume "x \<in> convex hull p"
then obtain s u where "finite s" "s \<subseteq> p" "card s \<le> DIM('a) + 1"
@@ -5871,10 +5871,10 @@
done
qed
-theorem%important radon:
+theorem radon:
assumes "affine_dependent c"
obtains m p where "m \<subseteq> c" "p \<subseteq> c" "m \<inter> p = {}" "(convex hull m) \<inter> (convex hull p) \<noteq> {}"
-proof%unimportant -
+proof -
from assms[unfolded affine_dependent_explicit]
obtain s u where
"finite s" "s \<subseteq> c" "sum u s = 0" "\<exists>v\<in>s. u v \<noteq> 0" "(\<Sum>v\<in>s. u v *\<^sub>R v) = 0"
@@ -5965,12 +5965,12 @@
qed
qed
-theorem%important helly:
+theorem helly:
fixes f :: "'a::euclidean_space set set"
assumes "card f \<ge> DIM('a) + 1" "\<forall>s\<in>f. convex s"
and "\<And>t. \<lbrakk>t\<subseteq>f; card t = DIM('a) + 1\<rbrakk> \<Longrightarrow> \<Inter>t \<noteq> {}"
shows "\<Inter>f \<noteq> {}"
- apply%unimportant (rule helly_induct)
+ apply (rule helly_induct)
using assms
apply auto
done