src/HOL/Analysis/Sigma_Algebra.thy
changeset 68607 67bb59e49834
parent 68403 223172b97d0b
child 69164 74f1b0f10b2b
--- a/src/HOL/Analysis/Sigma_Algebra.thy	Mon Jul 09 21:55:40 2018 +0100
+++ b/src/HOL/Analysis/Sigma_Algebra.thy	Tue Jul 10 09:38:35 2018 +0200
@@ -146,13 +146,13 @@
   "a \<in> M \<Longrightarrow> \<Omega> - a \<in> M"
   by auto
 
-lemma%important algebra_iff_Un:
+proposition algebra_iff_Un:
   "algebra \<Omega> M \<longleftrightarrow>
     M \<subseteq> Pow \<Omega> \<and>
     {} \<in> M \<and>
     (\<forall>a \<in> M. \<Omega> - a \<in> M) \<and>
     (\<forall>a \<in> M. \<forall> b \<in> M. a \<union> b \<in> M)" (is "_ \<longleftrightarrow> ?Un")
-proof%unimportant
+proof
   assume "algebra \<Omega> M"
   then interpret algebra \<Omega> M .
   show ?Un using sets_into_space by auto
@@ -173,12 +173,12 @@
   show "algebra \<Omega> M" proof qed fact
 qed
 
-lemma%important algebra_iff_Int:
+proposition algebra_iff_Int:
      "algebra \<Omega> M \<longleftrightarrow>
        M \<subseteq> Pow \<Omega> & {} \<in> M &
        (\<forall>a \<in> M. \<Omega> - a \<in> M) &
        (\<forall>a \<in> M. \<forall> b \<in> M. a \<inter> b \<in> M)" (is "_ \<longleftrightarrow> ?Int")
-proof%unimportant
+proof
   assume "algebra \<Omega> M"
   then interpret algebra \<Omega> M .
   show ?Int using sets_into_space by auto
@@ -1433,7 +1433,7 @@
 text%important \<open>The reason to introduce Dynkin-systems is the following induction rules for $\sigma$-algebras
 generated by a generator closed under intersection.\<close>
 
-lemma%important sigma_sets_induct_disjoint[consumes 3, case_names basic empty compl union]:
+proposition sigma_sets_induct_disjoint[consumes 3, case_names basic empty compl union]:
   assumes "Int_stable G"
     and closed: "G \<subseteq> Pow \<Omega>"
     and A: "A \<in> sigma_sets \<Omega> G"
@@ -1442,7 +1442,7 @@
     and compl: "\<And>A. A \<in> sigma_sets \<Omega> G \<Longrightarrow> P A \<Longrightarrow> P (\<Omega> - A)"
     and union: "\<And>A. disjoint_family A \<Longrightarrow> range A \<subseteq> sigma_sets \<Omega> G \<Longrightarrow> (\<And>i. P (A i)) \<Longrightarrow> P (\<Union>i::nat. A i)"
   shows "P A"
-proof%unimportant -
+proof -
   let ?D = "{ A \<in> sigma_sets \<Omega> G. P A }"
   interpret sigma_algebra \<Omega> "sigma_sets \<Omega> G"
     using closed by (rule sigma_algebra_sigma_sets)
@@ -1633,12 +1633,12 @@
 
 subsubsection \<open>Constructing simple @{typ "'a measure"}\<close>
 
-lemma%important emeasure_measure_of:
+proposition emeasure_measure_of:
   assumes M: "M = measure_of \<Omega> A \<mu>"
   assumes ms: "A \<subseteq> Pow \<Omega>" "positive (sets M) \<mu>" "countably_additive (sets M) \<mu>"
   assumes X: "X \<in> sets M"
   shows "emeasure M X = \<mu> X"
-proof%unimportant -
+proof -
   interpret sigma_algebra \<Omega> "sigma_sets \<Omega> A" by (rule sigma_algebra_sigma_sets) fact
   have "measure_space \<Omega> (sigma_sets \<Omega> A) \<mu>"
     using ms M by (simp add: measure_space_def sigma_algebra_sigma_sets)