src/Pure/Isar/class_declaration.ML
changeset 38379 67d71449e85b
parent 38376 dc67291d590b
child 38384 07c33be08476
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/Pure/Isar/class_declaration.ML	Wed Aug 11 16:02:03 2010 +0200
@@ -0,0 +1,345 @@
+(*  Title:      Pure/Isar/class_declaration.ML
+    Author:     Florian Haftmann, TU Muenchen
+
+Declaring classes and subclass relations.
+*)
+
+signature CLASS_DECLARATION =
+sig
+  val class: binding -> class list -> Element.context_i list
+    -> theory -> string * local_theory
+  val class_cmd: binding -> xstring list -> Element.context list
+    -> theory -> string * local_theory
+  val prove_subclass: tactic -> class -> local_theory -> local_theory
+  val subclass: class -> local_theory -> Proof.state
+  val subclass_cmd: xstring -> local_theory -> Proof.state
+end;
+
+structure Class_Declaration: CLASS_DECLARATION =
+struct
+
+(** class definitions **)
+
+local
+
+(* calculating class-related rules including canonical interpretation *)
+
+fun calculate thy class sups base_sort param_map assm_axiom =
+  let
+    val empty_ctxt = ProofContext.init_global thy;
+
+    (* instantiation of canonical interpretation *)
+    val aT = TFree (Name.aT, base_sort);
+    val param_map_const = (map o apsnd) Const param_map;
+    val param_map_inst = (map o apsnd)
+      (Const o apsnd (map_atyps (K aT))) param_map;
+    val const_morph = Element.inst_morphism thy
+      (Symtab.empty, Symtab.make param_map_inst);
+    val typ_morph = Element.inst_morphism thy
+      (Symtab.empty |> Symtab.update (Name.aT, TFree (Name.aT, [class])), Symtab.empty);
+    val (([raw_props], [(_, raw_inst_morph)], export_morph), _) = empty_ctxt
+      |> Expression.cert_goal_expression ([(class, (("", false),
+           Expression.Named param_map_const))], []);
+    val (props, inst_morph) = if null param_map
+      then (raw_props |> map (Morphism.term typ_morph),
+        raw_inst_morph $> typ_morph)
+      else (raw_props, raw_inst_morph); (*FIXME proper handling in
+        locale.ML / expression.ML would be desirable*)
+
+    (* witness for canonical interpretation *)
+    val prop = try the_single props;
+    val wit = Option.map (fn prop => let
+        val sup_axioms = map_filter (fst o Class.rules thy) sups;
+        val loc_intro_tac = case Locale.intros_of thy class
+          of (_, NONE) => all_tac
+           | (_, SOME intro) => ALLGOALS (Tactic.rtac intro);
+        val tac = loc_intro_tac
+          THEN ALLGOALS (ProofContext.fact_tac (sup_axioms @ the_list assm_axiom))
+      in Element.prove_witness empty_ctxt prop tac end) prop;
+    val axiom = Option.map Element.conclude_witness wit;
+
+    (* canonical interpretation *)
+    val base_morph = inst_morph
+      $> Morphism.binding_morphism (Binding.prefix false (Class.class_prefix class))
+      $> Element.satisfy_morphism (the_list wit);
+    val eq_morph = Element.eq_morphism thy (Class.these_defs thy sups);
+
+    (* assm_intro *)
+    fun prove_assm_intro thm =
+      let
+        val ((_, [thm']), _) = Variable.import true [thm] empty_ctxt;
+        val const_eq_morph = case eq_morph
+         of SOME eq_morph => const_morph $> eq_morph
+          | NONE => const_morph
+        val thm'' = Morphism.thm const_eq_morph thm';
+        val tac = ALLGOALS (ProofContext.fact_tac [thm'']);
+      in Skip_Proof.prove_global thy [] [] (Thm.prop_of thm'') (K tac) end;
+    val assm_intro = Option.map prove_assm_intro
+      (fst (Locale.intros_of thy class));
+
+    (* of_class *)
+    val of_class_prop_concl = Logic.mk_of_class (aT, class);
+    val of_class_prop = case prop of NONE => of_class_prop_concl
+      | SOME prop => Logic.mk_implies (Morphism.term const_morph
+          ((map_types o map_atyps) (K aT) prop), of_class_prop_concl);
+    val sup_of_classes = map (snd o Class.rules thy) sups;
+    val loc_axiom_intros = map Drule.export_without_context_open (Locale.axioms_of thy class);
+    val axclass_intro = #intro (AxClass.get_info thy class);
+    val base_sort_trivs = Thm.of_sort (Thm.ctyp_of thy aT, base_sort);
+    val tac = REPEAT (SOMEGOAL
+      (Tactic.match_tac (axclass_intro :: sup_of_classes
+         @ loc_axiom_intros @ base_sort_trivs)
+           ORELSE' Tactic.assume_tac));
+    val of_class = Skip_Proof.prove_global thy [] [] of_class_prop (K tac);
+
+  in (base_morph, eq_morph, export_morph, axiom, assm_intro, of_class) end;
+
+
+(* reading and processing class specifications *)
+
+fun prep_class_elems prep_decl thy sups raw_elems =
+  let
+
+    (* user space type system: only permits 'a type variable, improves towards 'a *)
+    val algebra = Sign.classes_of thy;
+    val inter_sort = curry (Sorts.inter_sort algebra);
+    val proto_base_sort = if null sups then Sign.defaultS thy
+      else fold inter_sort (map (Class.base_sort thy) sups) [];
+    val base_constraints = (map o apsnd)
+      (map_type_tfree (K (TVar ((Name.aT, 0), proto_base_sort))) o fst o snd)
+        (Class.these_operations thy sups);
+    val reject_bcd_etc = (map o map_atyps) (fn T as TFree (v, sort) =>
+          if v = Name.aT then T
+          else error ("No type variable other than " ^ Name.aT ^ " allowed in class specification")
+      | T => T);
+    fun singleton_fixate Ts =
+      let
+        fun extract f = (fold o fold_atyps) f Ts [];
+        val tfrees = extract
+          (fn TFree (v, sort) => insert (op =) (v, sort) | _ => I);
+        val inferred_sort = extract
+          (fn TVar (_, sort) => inter_sort sort | _ => I);
+        val fixate_sort = if null tfrees then inferred_sort
+          else case tfrees
+           of [(_, a_sort)] => if Sorts.sort_le algebra (a_sort, inferred_sort)
+                then inter_sort a_sort inferred_sort
+                else error ("Type inference imposes additional sort constraint "
+                  ^ Syntax.string_of_sort_global thy inferred_sort
+                  ^ " of type parameter " ^ Name.aT ^ " of sort "
+                  ^ Syntax.string_of_sort_global thy a_sort ^ ".")
+            | _ => error "Multiple type variables in class specification.";
+      in (map o map_atyps) (K (TFree (Name.aT, fixate_sort))) Ts end;
+    fun add_typ_check level name f = Context.proof_map
+      (Syntax.add_typ_check level name (fn xs => fn ctxt =>
+        let val xs' = f xs in if eq_list (op =) (xs, xs') then NONE else SOME (xs', ctxt) end));
+
+    (* preprocessing elements, retrieving base sort from type-checked elements *)
+    val init_class_body = fold (ProofContext.add_const_constraint o apsnd SOME) base_constraints
+      #> Class.redeclare_operations thy sups
+      #> add_typ_check 10 "reject_bcd_etc" reject_bcd_etc
+      #> add_typ_check ~10 "singleton_fixate" singleton_fixate;
+    val raw_supexpr = (map (fn sup => (sup, (("", false),
+      Expression.Positional []))) sups, []);
+    val ((raw_supparams, _, inferred_elems), _) = ProofContext.init_global thy
+      |> prep_decl raw_supexpr init_class_body raw_elems;
+    fun fold_element_types f (Element.Fixes fxs) = fold (fn (_, SOME T, _) => f T) fxs
+      | fold_element_types f (Element.Constrains cnstrs) = fold (f o snd) cnstrs
+      | fold_element_types f (Element.Assumes assms) = fold (fold (fn (t, ts) =>
+          fold_types f t #> (fold o fold_types) f ts) o snd) assms
+      | fold_element_types f (Element.Defines _) =
+          error ("\"defines\" element not allowed in class specification.")
+      | fold_element_types f (Element.Notes _) =
+          error ("\"notes\" element not allowed in class specification.");
+    val base_sort = if null inferred_elems then proto_base_sort else
+      case (fold o fold_element_types) Term.add_tfreesT inferred_elems []
+       of [] => error "No type variable in class specification"
+        | [(_, sort)] => sort
+        | _ => error "Multiple type variables in class specification";
+    val supparams = map (fn ((c, T), _) =>
+      (c, map_atyps (K (TFree (Name.aT, base_sort))) T)) raw_supparams;
+    val supparam_names = map fst supparams;
+    fun mk_param ((c, _), _) = Free (c, (the o AList.lookup (op =) supparams) c);
+    val supexpr = (map (fn sup => (sup, (("", false),
+      Expression.Positional (map (SOME o mk_param) (Locale.params_of thy sup))))) sups,
+        map (fn (c, T) => (Binding.name c, SOME T, NoSyn)) supparams);
+
+  in (base_sort, supparam_names, supexpr, inferred_elems) end;
+
+val cert_class_elems = prep_class_elems Expression.cert_declaration;
+val read_class_elems = prep_class_elems Expression.cert_read_declaration;
+
+fun prep_class_spec prep_class prep_class_elems thy raw_supclasses raw_elems =
+  let
+
+    (* prepare import *)
+    val inter_sort = curry (Sorts.inter_sort (Sign.classes_of thy));
+    val sups = map (prep_class thy) raw_supclasses
+      |> Sign.minimize_sort thy;
+    val _ = case filter_out (Class.is_class thy) sups
+     of [] => ()
+      | no_classes => error ("No (proper) classes: " ^ commas (map quote no_classes));
+    val raw_supparams = (map o apsnd) (snd o snd) (Class.these_params thy sups);
+    val raw_supparam_names = map fst raw_supparams;
+    val _ = if has_duplicates (op =) raw_supparam_names
+      then error ("Duplicate parameter(s) in superclasses: "
+        ^ (commas o map quote o duplicates (op =)) raw_supparam_names)
+      else ();
+
+    (* infer types and base sort *)
+    val (base_sort, supparam_names, supexpr, inferred_elems) =
+      prep_class_elems thy sups raw_elems;
+    val sup_sort = inter_sort base_sort sups;
+
+    (* process elements as class specification *)
+    val class_ctxt = Class.begin sups base_sort (ProofContext.init_global thy);
+    val ((_, _, syntax_elems), _) = class_ctxt
+      |> Expression.cert_declaration supexpr I inferred_elems;
+    fun check_vars e vs = if null vs
+      then error ("No type variable in part of specification element "
+        ^ (Pretty.string_of o Pretty.chunks) (Element.pretty_ctxt class_ctxt e))
+      else ();
+    fun check_element (e as Element.Fixes fxs) =
+          map (fn (_, SOME T, _) => check_vars e (Term.add_tfreesT T [])) fxs
+      | check_element (e as Element.Assumes assms) =
+          maps (fn (_, ts_pss) => map
+            (fn (t, _) => check_vars e (Term.add_tfrees t [])) ts_pss) assms
+      | check_element e = [()];
+    val _ = map check_element syntax_elems;
+    fun fork_syn (Element.Fixes xs) =
+          fold_map (fn (c, ty, syn) => cons (c, syn) #> pair (c, ty, NoSyn)) xs
+          #>> Element.Fixes
+      | fork_syn x = pair x;
+    val (elems, global_syntax) = fold_map fork_syn syntax_elems [];
+
+  in (((sups, supparam_names), (sup_sort, base_sort, supexpr)), (elems, global_syntax)) end;
+
+val cert_class_spec = prep_class_spec (K I) cert_class_elems;
+val read_class_spec = prep_class_spec Sign.intern_class read_class_elems;
+
+
+(* class establishment *)
+
+fun add_consts class base_sort sups supparam_names global_syntax thy =
+  let
+    (*FIXME simplify*)
+    val supconsts = supparam_names
+      |> AList.make (snd o the o AList.lookup (op =) (Class.these_params thy sups))
+      |> (map o apsnd o apsnd o map_atyps o K o TFree) (Name.aT, [class]);
+    val all_params = Locale.params_of thy class;
+    val raw_params = (snd o chop (length supparam_names)) all_params;
+    fun add_const ((raw_c, raw_ty), _) thy =
+      let
+        val b = Binding.name raw_c;
+        val c = Sign.full_name thy b;
+        val ty = map_atyps (K (TFree (Name.aT, base_sort))) raw_ty;
+        val ty0 = Type.strip_sorts ty;
+        val ty' = map_atyps (K (TFree (Name.aT, [class]))) ty0;
+        val syn = (the_default NoSyn o AList.lookup Binding.eq_name global_syntax) b;
+      in
+        thy
+        |> Sign.declare_const ((b, ty0), syn)
+        |> snd
+        |> pair ((Name.of_binding b, ty), (c, ty'))
+      end;
+  in
+    thy
+    |> Sign.add_path (Class.class_prefix class)
+    |> fold_map add_const raw_params
+    ||> Sign.restore_naming thy
+    |-> (fn params => pair (supconsts @ (map o apfst) fst params, params))
+  end;
+
+fun adjungate_axclass bname class base_sort sups supsort supparam_names global_syntax thy =
+  let
+    (*FIXME simplify*)
+    fun globalize param_map = map_aterms
+      (fn Free (v, ty) => Const ((fst o the o AList.lookup (op =) param_map) v, ty)
+        | t => t);
+    val raw_pred = Locale.intros_of thy class
+      |> fst
+      |> Option.map (Logic.unvarify_global o Logic.strip_imp_concl o Thm.prop_of);
+    fun get_axiom thy = case (#axioms o AxClass.get_info thy) class
+     of [] => NONE
+      | [thm] => SOME thm;
+  in
+    thy
+    |> add_consts class base_sort sups supparam_names global_syntax
+    |-> (fn (param_map, params) => AxClass.define_class (bname, supsort)
+          (map (fst o snd) params)
+          [(Thm.empty_binding, Option.map (globalize param_map) raw_pred |> the_list)]
+    #> snd
+    #> `get_axiom
+    #-> (fn assm_axiom => fold (Sign.add_const_constraint o apsnd SOME o snd) params
+    #> pair (param_map, params, assm_axiom)))
+  end;
+
+fun gen_class prep_class_spec b raw_supclasses raw_elems thy =
+  let
+    val class = Sign.full_name thy b;
+    val (((sups, supparam_names), (supsort, base_sort, supexpr)), (elems, global_syntax)) =
+      prep_class_spec thy raw_supclasses raw_elems;
+  in
+    thy
+    |> Expression.add_locale b (Binding.qualify true "class" b) supexpr elems
+    |> snd |> Local_Theory.exit_global
+    |> adjungate_axclass b class base_sort sups supsort supparam_names global_syntax
+    ||> Theory.checkpoint
+    |-> (fn (param_map, params, assm_axiom) =>
+       `(fn thy => calculate thy class sups base_sort param_map assm_axiom)
+    #-> (fn (base_morph, eq_morph, export_morph, axiom, assm_intro, of_class) =>
+       Context.theory_map (Locale.add_registration (class, base_morph)
+         (Option.map (rpair true) eq_morph) export_morph)
+    #> Class.register class sups params base_sort base_morph export_morph axiom assm_intro of_class))
+    |> Named_Target.init (SOME class)
+    |> pair class
+  end;
+
+in
+
+val class = gen_class cert_class_spec;
+val class_cmd = gen_class read_class_spec;
+
+end; (*local*)
+
+
+(** subclass relations **)
+
+local
+
+fun gen_subclass prep_class do_proof raw_sup lthy =
+  let
+    val thy = ProofContext.theory_of lthy;
+    val proto_sup = prep_class thy raw_sup;
+    val proto_sub = case Named_Target.peek lthy
+     of {is_class = false, ...} => error "Not in a class context"
+      | {target, ...} => target;
+    val (sub, sup) = AxClass.cert_classrel thy (proto_sub, proto_sup);
+
+    val expr = ([(sup, (("", false), Expression.Positional []))], []);
+    val (([props], deps, export), goal_ctxt) =
+      Expression.cert_goal_expression expr lthy;
+    val some_prop = try the_single props;
+    val some_dep_morph = try the_single (map snd deps);
+    fun after_qed some_wit =
+      ProofContext.theory (Class.register_subclass (sub, sup)
+        some_dep_morph some_wit export)
+      #> ProofContext.theory_of #> Named_Target.init (SOME sub);
+  in do_proof after_qed some_prop goal_ctxt end;
+
+fun user_proof after_qed some_prop =
+  Element.witness_proof (after_qed o try the_single o the_single)
+    [the_list some_prop];
+
+fun tactic_proof tac after_qed some_prop ctxt =
+  after_qed (Option.map
+    (fn prop => Element.prove_witness ctxt prop tac) some_prop) ctxt;
+
+in
+
+val subclass = gen_subclass (K I) user_proof;
+fun prove_subclass tac = gen_subclass (K I) (tactic_proof tac);
+val subclass_cmd = gen_subclass (ProofContext.read_class o ProofContext.init_global) user_proof;
+
+end; (*local*)
+
+end;