src/HOL/Integ/cooper_dec.ML
changeset 13876 68f4ed8311ac
child 14758 af3b71a46a1c
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Integ/cooper_dec.ML	Tue Mar 25 09:47:05 2003 +0100
@@ -0,0 +1,773 @@
+(*  Title:      HOL/Integ/cooper_dec.ML
+    ID:         $Id$
+    Author:     Amine Chaieb and Tobias Nipkow, TU Muenchen
+    License:    GPL (GNU GENERAL PUBLIC LICENSE)
+
+File containing the implementation of Cooper Algorithm
+decision procedure (intensively inspired from J.Harrison)
+*)
+ 
+signature COOPER_DEC = 
+sig
+  exception COOPER
+  val is_arith_rel : term -> bool
+  val mk_numeral : int -> term
+  val dest_numeral : term -> int
+  val zero : term
+  val one : term
+  val linear_cmul : int -> term -> term
+  val linear_add : string list -> term -> term -> term 
+  val linear_sub : string list -> term -> term -> term 
+  val linear_neg : term -> term
+  val lint : string list -> term -> term
+  val linform : string list -> term -> term
+  val formlcm : term -> term -> int
+  val adjustcoeff : term -> int -> term -> term
+  val unitycoeff : term -> term -> term
+  val divlcm : term -> term -> int
+  val bset : term -> term -> term list
+  val aset : term -> term -> term list
+  val linrep : string list -> term -> term -> term -> term
+  val list_disj : term list -> term
+  val simpl : term -> term
+  val fv : term -> string list
+  val negate : term -> term
+  val operations : (string * (int * int -> bool)) list
+end;
+
+structure  CooperDec : COOPER_DEC =
+struct
+
+(* ========================================================================= *) 
+(* Cooper's algorithm for Presburger arithmetic.                             *) 
+(* ========================================================================= *) 
+exception COOPER;
+
+(* ------------------------------------------------------------------------- *) 
+(* Lift operations up to numerals.                                           *) 
+(* ------------------------------------------------------------------------- *) 
+ 
+(*Assumption : The construction of atomar formulas in linearl arithmetic is based on 
+relation operations of Type : [int,int]---> bool *) 
+ 
+(* ------------------------------------------------------------------------- *) 
+ 
+ 
+(*Function is_arith_rel returns true if and only if the term is an atomar presburger 
+formula *) 
+fun is_arith_rel tm = case tm of 
+	 Const(p,Type ("fun",[Type ("Numeral.bin", []),Type ("fun",[Type ("Numeral.bin", 
+	 []),Type ("bool",[])] )])) $ _ $_ => true 
+	|Const(p,Type ("fun",[Type ("IntDef.int", []),Type ("fun",[Type ("IntDef.int", 
+	 []),Type ("bool",[])] )])) $ _ $_ => true 
+	|_ => false; 
+ 
+(*Function is_arith_rel returns true if and only if the term is an operation of the 
+form [int,int]---> int*) 
+ 
+(*Transform a natural number to a term*) 
+ 
+fun mk_numeral 0 = Const("0",HOLogic.intT)
+   |mk_numeral 1 = Const("1",HOLogic.intT)
+   |mk_numeral n = (HOLogic.number_of_const HOLogic.intT) $ (HOLogic.mk_bin n); 
+ 
+(*Transform an Term to an natural number*)	  
+	  
+fun dest_numeral (Const("0",Type ("IntDef.int", []))) = 0
+   |dest_numeral (Const("1",Type ("IntDef.int", []))) = 1
+   |dest_numeral (Const ("Numeral.number_of",_) $ n)= HOLogic.dest_binum n; 
+(*Some terms often used for pattern matching*) 
+ 
+val zero = mk_numeral 0; 
+val one = mk_numeral 1; 
+ 
+(*Tests if a Term is representing a number*) 
+ 
+fun is_numeral t = (t = zero) orelse (t = one) orelse (can dest_numeral t); 
+ 
+(*maps a unary natural function on a term containing an natural number*) 
+ 
+fun numeral1 f n = mk_numeral (f(dest_numeral n)); 
+ 
+(*maps a binary natural function on 2 term containing  natural numbers*) 
+ 
+fun numeral2 f m n = mk_numeral(f(dest_numeral m) (dest_numeral n)); 
+ 
+(* ------------------------------------------------------------------------- *) 
+(* Operations on canonical linear terms c1 * x1 + ... + cn * xn + k          *) 
+(*                                                                           *) 
+(* Note that we're quite strict: the ci must be present even if 1            *) 
+(* (but if 0 we expect the monomial to be omitted) and k must be there       *) 
+(* even if it's zero. Thus, it's a constant iff not an addition term.        *) 
+(* ------------------------------------------------------------------------- *) 
+ 
+ 
+fun linear_cmul n tm =  if n = 0 then zero else let fun times n k = n*k in  
+  ( case tm of  
+     (Const("op +",T)  $  (Const ("op *",T1 ) $c1 $  x1) $ rest) => 
+       Const("op +",T) $ ((Const("op *",T1) $ (numeral1 (times n) c1) $ x1)) $ (linear_cmul n rest) 
+    |_ =>  numeral1 (times n) tm) 
+    end ; 
+ 
+ 
+ 
+ 
+(* Whether the first of two items comes earlier in the list  *) 
+fun earlier [] x y = false 
+	|earlier (h::t) x y =if h = y then false 
+              else if h = x then true 
+              	else earlier t x y ; 
+ 
+fun earlierv vars (Bound i) (Bound j) = i < j 
+   |earlierv vars (Bound _) _ = true 
+   |earlierv vars _ (Bound _)  = false 
+   |earlierv vars (Free (x,_)) (Free (y,_)) = earlier vars x y; 
+ 
+ 
+fun linear_add vars tm1 tm2 = 
+  let fun addwith x y = x + y in
+ (case (tm1,tm2) of 
+	((Const ("op +",T1) $ ( Const("op *",T2) $ c1 $  x1) $ rest1),(Const 
+	("op +",T3)$( Const("op *",T4) $ c2 $  x2) $ rest2)) => 
+         if x1 = x2 then 
+              let val c = (numeral2 (addwith) c1 c2) 
+	      in 
+              if c = zero then (linear_add vars rest1  rest2)  
+	      else (Const("op +",T1) $ (Const("op *",T2) $ c $ x1) $ (linear_add vars  rest1 rest2)) 
+              end 
+	   else 
+		if earlierv vars x1 x2 then (Const("op +",T1) $  
+		(Const("op *",T2)$ c1 $ x1) $ (linear_add vars rest1 tm2)) 
+    	       else (Const("op +",T1) $ (Const("op *",T2) $ c2 $ x2) $ (linear_add vars tm1 rest2)) 
+   	|((Const("op +",T1) $ (Const("op *",T2) $ c1 $ x1) $ rest1) ,_) => 
+    	  (Const("op +",T1)$ (Const("op *",T2) $ c1 $ x1) $ (linear_add vars 
+	  rest1 tm2)) 
+   	|(_, (Const("op +",T1) $(Const("op *",T2) $ c2 $ x2) $ rest2)) => 
+      	  (Const("op +",T1) $ (Const("op *",T2) $ c2 $ x2) $ (linear_add vars tm1 
+	  rest2)) 
+   	| (_,_) => numeral2 (addwith) tm1 tm2) 
+	 
+	end; 
+ 
+(*To obtain the unary - applyed on a formula*) 
+ 
+fun linear_neg tm = linear_cmul (0 - 1) tm; 
+ 
+(*Substraction of two terms *) 
+ 
+fun linear_sub vars tm1 tm2 = linear_add vars tm1 (linear_neg tm2); 
+ 
+ 
+(* ------------------------------------------------------------------------- *) 
+(* Linearize a term.                                                         *) 
+(* ------------------------------------------------------------------------- *) 
+ 
+(* linearises a term from the point of view of Variable Free (x,T). 
+After this fuction the all expressions containig ths variable will have the form  
+ c*Free(x,T) + t where c is a constant ant t is a Term which is not containing 
+ Free(x,T)*) 
+  
+fun lint vars tm = if is_numeral tm then tm else case tm of 
+   (Free (x,T)) =>  (HOLogic.mk_binop "op +" ((HOLogic.mk_binop "op *" ((mk_numeral 1),Free (x,T))), zero)) 
+  |(Bound i) =>  (Const("op +",HOLogic.intT -->HOLogic.intT -->HOLogic.intT) $ 
+  (Const("op *",HOLogic.intT -->HOLogic.intT -->HOLogic.intT) $ (mk_numeral 1) $ (Bound i)) $ zero) 
+  |(Const("uminus",_) $ t ) => (linear_neg (lint vars t)) 
+  |(Const("op +",_) $ s $ t) => (linear_add vars (lint vars s) (lint vars t)) 
+  |(Const("op -",_) $ s $ t) => (linear_sub vars (lint vars s) (lint vars t)) 
+  |(Const ("op *",_) $ s $ t) => 
+        let val s' = lint vars s  
+            val t' = lint vars t  
+        in 
+        if is_numeral s' then (linear_cmul (dest_numeral s') t') 
+        else if is_numeral t' then (linear_cmul (dest_numeral t') s') 
+ 
+         else (warning "lint: apparent nonlinearity"; raise COOPER)
+         end 
+  |_ =>   error "lint: unknown term"; 
+   
+ 
+ 
+(* ------------------------------------------------------------------------- *) 
+(* Linearize the atoms in a formula, and eliminate non-strict inequalities.  *) 
+(* ------------------------------------------------------------------------- *) 
+ 
+fun mkatom vars p t = Const(p,HOLogic.intT --> HOLogic.intT --> HOLogic.boolT) $ zero $ (lint vars t); 
+ 
+fun linform vars (Const ("Divides.op dvd",_) $ c $ t) =  
+      let val c' = (mk_numeral(abs(dest_numeral c)))  
+      in (HOLogic.mk_binrel "Divides.op dvd" (c,lint vars t)) 
+      end 
+  |linform vars  (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ s $ t ) = (mkatom vars "op =" (Const ("op -",HOLogic.intT --> HOLogic.intT --> HOLogic.intT) $ t $ s) ) 
+  |linform vars  (Const("op <",_)$ s $t ) = (mkatom vars "op <" (Const ("op -",HOLogic.intT --> HOLogic.intT --> HOLogic.intT) $ t $ s))
+  |linform vars  (Const("op >",_) $ s $ t ) = (mkatom vars "op <" (Const ("op -",HOLogic.intT --> HOLogic.intT --> HOLogic.intT) $ s $ t)) 
+  |linform vars  (Const("op <=",_)$ s $ t ) = 
+        (mkatom vars "op <" (Const ("op -",HOLogic.intT --> HOLogic.intT --> HOLogic.intT) $ (Const("op +",HOLogic.intT --> HOLogic.intT --> HOLogic.intT) $t $(mk_numeral 1)) $ s)) 
+  |linform vars  (Const("op >=",_)$ s $ t ) = 
+        (mkatom vars "op <" (Const ("op -",HOLogic.intT --> HOLogic.intT --> 
+	HOLogic.intT) $ (Const("op +",HOLogic.intT --> HOLogic.intT --> 
+	HOLogic.intT) $s $(mk_numeral 1)) $ t)) 
+ 
+   |linform vars  fm =  fm; 
+ 
+(* ------------------------------------------------------------------------- *) 
+(* Post-NNF transformation eliminating negated inequalities.                 *) 
+(* ------------------------------------------------------------------------- *) 
+ 
+fun posineq fm = case fm of  
+ (Const ("Not",_)$(Const("op <",_)$ c $ t)) =>
+   (HOLogic.mk_binrel "op <"  (zero , (linear_sub [] (mk_numeral 1) (linear_add [] c t ) ))) 
+  | ( Const ("op &",_) $ p $ q)  => HOLogic.mk_conj (posineq p,posineq q)
+  | ( Const ("op |",_) $ p $ q ) => HOLogic.mk_disj (posineq p,posineq q)
+  | _ => fm; 
+  
+
+(* ------------------------------------------------------------------------- *) 
+(* Find the LCM of the coefficients of x.                                    *) 
+(* ------------------------------------------------------------------------- *) 
+(*gcd calculates gcd (a,b) and helps lcm_num calculating lcm (a,b)*) 
+ 
+fun gcd a b = if a=0 then b else gcd (b mod a) a ; 
+fun lcm_num a b = (abs a*b) div (gcd (abs a) (abs b)); 
+ 
+fun formlcm x fm = case fm of 
+    (Const (p,_)$ _ $(Const ("op +", _)$(Const ("op *",_)$ c $ y ) $z ) ) =>  if 
+    (is_arith_rel fm) andalso (x = y) then abs(dest_numeral c) else 1 
+  | ( Const ("Not", _) $p) => formlcm x p 
+  | ( Const ("op &",_) $ p $ q) => lcm_num (formlcm x p) (formlcm x q) 
+  | ( Const ("op |",_) $ p $ q )=> lcm_num (formlcm x p) (formlcm x q) 
+  |  _ => 1; 
+ 
+(* ------------------------------------------------------------------------- *) 
+(* Adjust all coefficients of x in formula; fold in reduction to +/- 1.      *) 
+(* ------------------------------------------------------------------------- *) 
+ 
+fun adjustcoeff x l fm = 
+     case fm of  
+      (Const(p,_) $d $( Const ("op +", _)$(Const ("op *",_) $ 
+      c $ y ) $z )) => if (is_arith_rel fm) andalso (x = y) then  
+        let val m = l div (dest_numeral c) 
+            val n = (if p = "op <" then abs(m) else m) 
+            val xtm = HOLogic.mk_binop "op *" ((mk_numeral (m div n)), x) 
+	in
+        (HOLogic.mk_binrel p ((linear_cmul n d),(HOLogic.mk_binop "op +" ( xtm ,( linear_cmul n z) )))) 
+	end 
+	else fm 
+  |( Const ("Not", _) $ p) => HOLogic.Not $ (adjustcoeff x l p) 
+  |( Const ("op &",_) $ p $ q) => HOLogic.conj$(adjustcoeff x l p) $(adjustcoeff x l q) 
+  |( Const ("op |",_) $ p $ q) => HOLogic.disj $(adjustcoeff x l p)$ (adjustcoeff x l q) 
+  |_ => fm; 
+ 
+(* ------------------------------------------------------------------------- *) 
+(* Hence make coefficient of x one in existential formula.                   *) 
+(* ------------------------------------------------------------------------- *) 
+ 
+fun unitycoeff x fm = 
+  let val l = formlcm x fm 
+      val fm' = adjustcoeff x l fm in
+     if l = 1 then fm' else 
+     let val xp = (HOLogic.mk_binop "op +"  
+     		((HOLogic.mk_binop "op *" ((mk_numeral 1), x )), zero)) in 
+      HOLogic.conj $(HOLogic.mk_binrel "Divides.op dvd" ((mk_numeral l) , xp )) $ (adjustcoeff x l fm) 
+      end 
+  end; 
+ 
+(* adjustcoeffeq l fm adjusts the coeffitients c_i of x  overall in fm to l*)
+(* Here l must be a multiple of all c_i otherwise the obtained formula is not equivalent*)
+(*
+fun adjustcoeffeq x l fm = 
+    case fm of  
+      (Const(p,_) $d $( Const ("op +", _)$(Const ("op *",_) $ 
+      c $ y ) $z )) => if (is_arith_rel fm) andalso (x = y) then  
+        let val m = l div (dest_numeral c) 
+            val n = (if p = "op <" then abs(m) else m)  
+            val xtm = (HOLogic.mk_binop "op *" ((mk_numeral ((m div n)*l) ), x))
+            in (HOLogic.mk_binrel p ((linear_cmul n d),(HOLogic.mk_binop "op +" ( xtm ,( linear_cmul n z) )))) 
+	    end 
+	else fm 
+  |( Const ("Not", _) $ p) => HOLogic.Not $ (adjustcoeffeq x l p) 
+  |( Const ("op &",_) $ p $ q) => HOLogic.conj$(adjustcoeffeq x l p) $(adjustcoeffeq x l q) 
+  |( Const ("op |",_) $ p $ q) => HOLogic.disj $(adjustcoeffeq x l p)$ (adjustcoeffeq x l q) 
+  |_ => fm;
+ 
+
+*)
+
+(* ------------------------------------------------------------------------- *) 
+(* The "minus infinity" version.                                             *) 
+(* ------------------------------------------------------------------------- *) 
+ 
+fun minusinf x fm = case fm of  
+    (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ (c1 ) $(Const ("op +", _) $(Const ("op *",_) $ c2 $ y) $z)) => 
+  	 if (is_arith_rel fm) andalso (x=y) andalso (c2 = one) andalso (c1 =zero) then HOLogic.false_const  
+	 				 else fm 
+ 
+  |(Const("op <",_) $ c $(Const ("op +", _) $(Const ("op *",_) $ pm1 $ y ) $ z 
+  )) => 
+        if (x =y) andalso (pm1 = one) andalso (c = zero) then HOLogic.false_const else HOLogic.true_const 
+	 
+  |(Const ("Not", _) $ p) => HOLogic.Not $ (minusinf x p) 
+  |(Const ("op &",_) $ p $ q) => HOLogic.conj $ (minusinf x p) $ (minusinf x q) 
+  |(Const ("op |",_) $ p $ q) => HOLogic.disj $ (minusinf x p) $ (minusinf x q) 
+  |_ => fm; 
+
+(* ------------------------------------------------------------------------- *)
+(* The "Plus infinity" version.                                             *)
+(* ------------------------------------------------------------------------- *)
+
+fun plusinf x fm = case fm of
+    (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ (c1 ) $(Const ("op +", _) $(Const ("op *",_) $ c2 $ y) $z)) =>
+  	 if (is_arith_rel fm) andalso (x=y) andalso (c2 = one) andalso (c1 =zero) then HOLogic.false_const
+	 				 else fm
+
+  |(Const("op <",_) $ c $(Const ("op +", _) $(Const ("op *",_) $ pm1 $ y ) $ z
+  )) =>
+        if (x =y) andalso (pm1 = one) andalso (c = zero) then HOLogic.true_const else HOLogic.false_const
+
+  |(Const ("Not", _) $ p) => HOLogic.Not $ (plusinf x p)
+  |(Const ("op &",_) $ p $ q) => HOLogic.conj $ (plusinf x p) $ (plusinf x q)
+  |(Const ("op |",_) $ p $ q) => HOLogic.disj $ (plusinf x p) $ (plusinf x q)
+  |_ => fm;
+ 
+(* ------------------------------------------------------------------------- *) 
+(* The LCM of all the divisors that involve x.                               *) 
+(* ------------------------------------------------------------------------- *) 
+ 
+fun divlcm x (Const("Divides.op dvd",_)$ d $ (Const ("op +",_) $ (Const ("op *",_) $ c $ y ) $ z ) ) =  
+        if x = y then abs(dest_numeral d) else 1 
+  |divlcm x ( Const ("Not", _) $ p) = divlcm x p 
+  |divlcm x ( Const ("op &",_) $ p $ q) = lcm_num (divlcm x p) (divlcm x q) 
+  |divlcm x ( Const ("op |",_) $ p $ q ) = lcm_num (divlcm x p) (divlcm x q) 
+  |divlcm x  _ = 1; 
+ 
+(* ------------------------------------------------------------------------- *) 
+(* Construct the B-set.                                                      *) 
+(* ------------------------------------------------------------------------- *) 
+ 
+fun bset x fm = case fm of 
+   (Const ("Not", _) $ p) => if (is_arith_rel p) then  
+          (case p of  
+	      (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const ("op +", _) $(Const ("op *",_) $c2 $y) $a ) )  
+	             => if (is_arith_rel p) andalso (x=	y) andalso (c2 = one) andalso (c1 = zero)  
+	                then [linear_neg a] 
+			else  bset x p 
+   	  |_ =>[]) 
+			 
+			else bset x p 
+  |(Const ("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const ("op +",_) $ (Const ("op *",_) $c2 $ x) $ a)) =>  if (c1 =zero) andalso (c2 = one) then [linear_neg(linear_add [] a (mk_numeral 1))]  else [] 
+  |(Const ("op <",_) $ c1$ (Const ("op +",_) $(Const ("op *",_)$ c2 $ x) $ a)) => if (c1 =zero) andalso (c2 = one) then [linear_neg a] else [] 
+  |(Const ("op &",_) $ p $ q) => (bset x p) union (bset x q) 
+  |(Const ("op |",_) $ p $ q) => (bset x p) union (bset x q) 
+  |_ => []; 
+ 
+(* ------------------------------------------------------------------------- *)
+(* Construct the A-set.                                                      *)
+(* ------------------------------------------------------------------------- *)
+
+fun aset x fm = case fm of
+   (Const ("Not", _) $ p) => if (is_arith_rel p) then
+          (case p of
+	      (Const("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const ("op +", _) $(Const ("op *",_) $c2 $y) $a ) )
+	             => if (x=	y) andalso (c2 = one) andalso (c1 = zero)
+	                then [linear_neg a]
+			else  []
+   	  |_ =>[])
+
+			else aset x p
+  |(Const ("op =",Type ("fun",[Type ("IntDef.int", []),_])) $ c1 $ (Const ("op +",_) $ (Const ("op *",_) $c2 $ x) $ a)) =>  if (c1 =zero) andalso (c2 = one) then [linear_sub [] (mk_numeral 1) a]  else []
+  |(Const ("op <",_) $ c1$ (Const ("op +",_) $(Const ("op *",_)$ c2 $ x) $ a)) => if (c1 =zero) andalso (c2 = (mk_numeral (~1))) then [a] else []
+  |(Const ("op &",_) $ p $ q) => (aset x p) union (aset x q)
+  |(Const ("op |",_) $ p $ q) => (aset x p) union (aset x q)
+  |_ => [];
+
+
+(* ------------------------------------------------------------------------- *) 
+(* Replace top variable with another linear form, retaining canonicality.    *) 
+(* ------------------------------------------------------------------------- *) 
+ 
+fun linrep vars x t fm = case fm of  
+   ((Const(p,_)$ d $ (Const("op +",_)$(Const("op *",_)$ c $ y) $ z))) => 
+      if (x = y) andalso (is_arith_rel fm)  
+      then  
+        let val ct = linear_cmul (dest_numeral c) t  
+	in (HOLogic.mk_binrel p (d, linear_add vars ct z)) 
+	end 
+	else fm 
+  |(Const ("Not", _) $ p) => HOLogic.Not $ (linrep vars x t p) 
+  |(Const ("op &",_) $ p $ q) => HOLogic.conj $ (linrep vars x t p) $ (linrep vars x t q) 
+  |(Const ("op |",_) $ p $ q) => HOLogic.disj $ (linrep vars x t p) $ (linrep vars x t q) 
+  |_ => fm; 
+ 
+(* ------------------------------------------------------------------------- *) 
+(* Evaluation of constant expressions.                                       *) 
+(* ------------------------------------------------------------------------- *) 
+ 
+val operations = 
+  [("op =",op=), ("op <",op<), ("op >",op>), ("op <=",op<=) , ("op >=",op>=), 
+   ("Divides.op dvd",fn (x,y) =>((y mod x) = 0))]; 
+ 
+fun applyoperation (Some f) (a,b) = f (a, b) 
+    |applyoperation _ (_, _) = false; 
+ 
+(*Evaluation of constant atomic formulas*) 
+ 
+fun evalc_atom at = case at of  
+      (Const (p,_) $ s $ t) =>(  
+         case assoc (operations,p) of 
+             Some f => ((if (f ((dest_numeral s),(dest_numeral t))) then HOLogic.true_const else HOLogic.false_const)  
+              handle _ => at) 
+             | _ =>  at) 
+     |Const("Not",_)$(Const (p,_) $ s $ t) =>(  
+         case assoc (operations,p) of 
+             Some f => ((if (f ((dest_numeral s),(dest_numeral t))) then 
+	     HOLogic.false_const else HOLogic.true_const)  
+              handle _ => at) 
+             | _ =>  at) 
+     | _ =>  at; 
+ 
+(*Function onatoms apllys function f on the atomic formulas involved in a.*) 
+ 
+fun onatoms f a = if (is_arith_rel a) then f a else case a of 
+ 
+  	(Const ("Not",_) $ p) => if is_arith_rel p then HOLogic.Not $ (f p) 
+				 
+				else HOLogic.Not $ (onatoms f p) 
+  	|(Const ("op &",_) $ p $ q) => HOLogic.conj $ (onatoms f p) $ (onatoms f q) 
+  	|(Const ("op |",_) $ p $ q) => HOLogic.disj $ (onatoms f p) $ (onatoms f q) 
+  	|(Const ("op -->",_) $ p $ q) => HOLogic.imp $ (onatoms f p) $ (onatoms f q) 
+  	|((Const ("op =", Type ("fun",[Type ("bool", []),_]))) $ p $ q) => (Const ("op =", [HOLogic.boolT, HOLogic.boolT] ---> HOLogic.boolT)) $ (onatoms f p) $ (onatoms f q) 
+  	|(Const("All",_) $ Abs(x,T,p)) => Const("All", [HOLogic.intT --> 
+	HOLogic.boolT] ---> HOLogic.boolT)$ Abs (x ,T, (onatoms f p)) 
+  	|(Const("Ex",_) $ Abs(x,T,p)) => Const("Ex", [HOLogic.intT --> HOLogic.boolT]---> HOLogic.boolT) $ Abs( x ,T, (onatoms f p)) 
+  	|_ => a; 
+ 
+val evalc = onatoms evalc_atom; 
+ 
+(* ------------------------------------------------------------------------- *) 
+(* Hence overall quantifier elimination.                                     *) 
+(* ------------------------------------------------------------------------- *) 
+ 
+(*Applyes a function iteratively on the list*) 
+ 
+fun end_itlist f []     = error "end_itlist" 
+   |end_itlist f [x]    = x 
+   |end_itlist f (h::t) = f h (end_itlist f t); 
+ 
+ 
+(*list_disj[conj] makes a disj[conj] of a given list. used with conjucts or disjuncts 
+it liearises iterated conj[disj]unctions. *) 
+ 
+fun disj_help p q = HOLogic.disj $ p $ q ; 
+ 
+fun list_disj l = 
+  if l = [] then HOLogic.false_const else end_itlist disj_help l; 
+   
+fun conj_help p q = HOLogic.conj $ p $ q ; 
+ 
+fun list_conj l = 
+  if l = [] then HOLogic.true_const else end_itlist conj_help l; 
+   
+(*Simplification of Formulas *) 
+ 
+(*Function q_bnd_chk checks if a quantified Formula makes sens : Means if in 
+the body of the existential quantifier there are bound variables to the 
+existential quantifier.*) 
+ 
+fun has_bound fm =let fun has_boundh fm i = case fm of 
+		 Bound n => (i = n) 
+		 |Abs (_,_,p) => has_boundh p (i+1) 
+		 |t1 $ t2 => (has_boundh t1 i) orelse (has_boundh t2 i) 
+		 |_ =>false
+
+in  case fm of 
+	Bound _ => true 
+       |Abs (_,_,p) => has_boundh p 0 
+       |t1 $ t2 => (has_bound t1 ) orelse (has_bound t2 ) 
+       |_ =>false
+end;
+ 
+(*has_sub_abs checks if in a given Formula there are subformulas which are quantifed 
+too. Is no used no more.*) 
+ 
+fun has_sub_abs fm = case fm of  
+		 Abs (_,_,_) => true 
+		 |t1 $ t2 => (has_bound t1 ) orelse (has_bound t2 ) 
+		 |_ =>false ; 
+		  
+(*update_bounds called with i=0 udates the numeration of bounded variables because the 
+formula will not be quantified any more.*) 
+ 
+fun update_bounds fm i = case fm of 
+		 Bound n => if n >= i then Bound (n-1) else fm 
+		 |Abs (x,T,p) => Abs(x,T,(update_bounds p (i+1))) 
+		 |t1 $ t2 => (update_bounds t1 i) $ (update_bounds t2 i) 
+		 |_ => fm ; 
+ 
+(*psimpl : Simplification of propositions (general purpose)*) 
+fun psimpl1 fm = case fm of 
+    Const("Not",_) $ Const ("False",_) => HOLogic.true_const 
+  | Const("Not",_) $ Const ("True",_) => HOLogic.false_const 
+  | Const("op &",_) $ Const ("False",_) $ q => HOLogic.false_const 
+  | Const("op &",_) $ p $ Const ("False",_)  => HOLogic.false_const 
+  | Const("op &",_) $ Const ("True",_) $ q => q 
+  | Const("op &",_) $ p $ Const ("True",_) => p 
+  | Const("op |",_) $ Const ("False",_) $ q => q 
+  | Const("op |",_) $ p $ Const ("False",_)  => p 
+  | Const("op |",_) $ Const ("True",_) $ q => HOLogic.true_const 
+  | Const("op |",_) $ p $ Const ("True",_)  => HOLogic.true_const 
+  | Const("op -->",_) $ Const ("False",_) $ q => HOLogic.true_const 
+  | Const("op -->",_) $ Const ("True",_) $  q => q 
+  | Const("op -->",_) $ p $ Const ("True",_)  => HOLogic.true_const 
+  | Const("op -->",_) $ p $ Const ("False",_)  => HOLogic.Not $  p 
+  | Const("op =", Type ("fun",[Type ("bool", []),_])) $ Const ("True",_) $ q => q 
+  | Const("op =", Type ("fun",[Type ("bool", []),_])) $ p $ Const ("True",_) => p 
+  | Const("op =", Type ("fun",[Type ("bool", []),_])) $ Const ("False",_) $ q => HOLogic.Not $  q 
+  | Const("op =", Type ("fun",[Type ("bool", []),_])) $ p $ Const ("False",_)  => HOLogic.Not $  p 
+  | _ => fm; 
+ 
+fun psimpl fm = case fm of 
+   Const ("Not",_) $ p => psimpl1 (HOLogic.Not $ (psimpl p)) 
+  | Const("op &",_) $ p $ q => psimpl1 (HOLogic.mk_conj (psimpl p,psimpl q)) 
+  | Const("op |",_) $ p $ q => psimpl1 (HOLogic.mk_disj (psimpl p,psimpl q)) 
+  | Const("op -->",_) $ p $ q => psimpl1 (HOLogic.mk_imp(psimpl p,psimpl q)) 
+  | Const("op =", Type ("fun",[Type ("bool", []),_])) $ p $ q => psimpl1 (HOLogic.mk_eq(psimpl p,psimpl q)) 
+  | _ => fm; 
+ 
+ 
+(*simpl : Simplification of Terms involving quantifiers too. 
+ This function is able to drop out some quantified expressions where there are no 
+ bound varaibles.*) 
+  
+fun simpl1 fm  = 
+  case fm of 
+    Const("All",_) $Abs(x,_,p) => if (has_bound fm ) then fm  
+    				else (update_bounds p 0) 
+  | Const("Ex",_) $ Abs (x,_,p) => if has_bound fm then fm  
+    				else (update_bounds p 0) 
+  | _ => psimpl1 fm; 
+ 
+fun simpl fm = case fm of 
+    Const ("Not",_) $ p => simpl1 (HOLogic.Not $(simpl p))  
+  | Const ("op &",_) $ p $ q => simpl1 (HOLogic.mk_conj (simpl p ,simpl q))  
+  | Const ("op |",_) $ p $ q => simpl1 (HOLogic.mk_disj (simpl p ,simpl q ))  
+  | Const ("op -->",_) $ p $ q => simpl1 (HOLogic.mk_imp(simpl p ,simpl q ))  
+  | Const("op =", Type ("fun",[Type ("bool", []),_]))$ p $ q => simpl1 
+  (HOLogic.mk_eq(simpl p ,simpl q ))  
+  | Const ("All",Ta) $ Abs(Vn,VT,p) => simpl1(Const("All",Ta) $ 
+  Abs(Vn,VT,simpl p ))  
+  | Const ("Ex",Ta)  $ Abs(Vn,VT,p) => simpl1(Const("Ex",Ta)  $ 
+  Abs(Vn,VT,simpl p ))  
+  | _ => fm; 
+ 
+(* ------------------------------------------------------------------------- *) 
+ 
+(* Puts fm into NNF*) 
+ 
+fun  nnf fm = if (is_arith_rel fm) then fm  
+else (case fm of 
+  ( Const ("op &",_) $ p $ q)  => HOLogic.conj $ (nnf p) $(nnf q) 
+  | (Const("op |",_) $ p $q) => HOLogic.disj $ (nnf p)$(nnf q) 
+  | (Const ("op -->",_)  $ p $ q) => HOLogic.disj $ (nnf (HOLogic.Not $ p)) $ (nnf q) 
+  | ((Const ("op =", Type ("fun",[Type ("bool", []),_]))) $ p $ q) =>(HOLogic.disj $ (HOLogic.conj $ (nnf p) $ (nnf q)) $ (HOLogic.conj $ (nnf (HOLogic.Not $ p) ) $ (nnf(HOLogic.Not $ q)))) 
+  | (Const ("Not",_)) $ ((Const ("Not",_)) $ p) => (nnf p) 
+  | (Const ("Not",_)) $ (( Const ("op &",_)) $ p $ q) =>HOLogic.disj $ (nnf(HOLogic.Not $ p)) $ (nnf(HOLogic.Not $q)) 
+  | (Const ("Not",_)) $ (( Const ("op |",_)) $ p $ q) =>HOLogic.conj $ (nnf(HOLogic.Not $ p)) $ (nnf(HOLogic.Not $ q)) 
+  | (Const ("Not",_)) $ (( Const ("op -->",_)) $ p $ q ) =>HOLogic.conj $ (nnf p) $(nnf(HOLogic.Not $ q)) 
+  | (Const ("Not",_)) $ ((Const ("op =", Type ("fun",[Type ("bool", []),_]))) $ p $ q ) =>(HOLogic.disj $ (HOLogic.conj $(nnf p) $ (nnf(HOLogic.Not $ q))) $ (HOLogic.conj $(nnf(HOLogic.Not $ p)) $ (nnf q))) 
+  | _ => fm); 
+ 
+ 
+(* Function remred to remove redundancy in a list while keeping the order of appearance of the 
+elements. but VERY INEFFICIENT!! *) 
+ 
+fun remred1 el [] = [] 
+    |remred1 el (h::t) = if el=h then (remred1 el t) else h::(remred1 el t); 
+     
+fun remred [] = [] 
+    |remred (x::l) =  x::(remred1 x (remred l)); 
+ 
+(*Makes sure that all free Variables are of the type integer but this function is only 
+used temporarily, this job must be done by the parser later on.*) 
+ 
+fun mk_uni_vars T  (node $ rest) = (case node of 
+    Free (name,_) => Free (name,T) $ (mk_uni_vars T rest) 
+    |_=> (mk_uni_vars T node) $ (mk_uni_vars T rest )  ) 
+    |mk_uni_vars T (Free (v,_)) = Free (v,T) 
+    |mk_uni_vars T tm = tm; 
+ 
+fun mk_uni_int T (Const ("0",T2)) = if T = T2 then (mk_numeral 0) else (Const ("0",T2)) 
+    |mk_uni_int T (Const ("1",T2)) = if T = T2 then (mk_numeral 1) else (Const ("1",T2)) 
+    |mk_uni_int T (node $ rest) = (mk_uni_int T node) $ (mk_uni_int T rest )  
+    |mk_uni_int T (Abs(AV,AT,p)) = Abs(AV,AT,mk_uni_int T p) 
+    |mk_uni_int T tm = tm; 
+ 
+
+(* Minusinfinity Version*) 
+fun coopermi vars1 fm = 
+  case fm of 
+   Const ("Ex",_) $ Abs(x0,T,p0) => let 
+    val (xn,p1) = variant_abs (x0,T,p0) 
+    val x = Free (xn,T)  
+    val vars = (xn::vars1) 
+    val p = unitycoeff x  (posineq (simpl p1))
+    val p_inf = simpl (minusinf x p) 
+    val bset = bset x p 
+    val js = 1 upto divlcm x p  
+    fun p_element j b = linrep vars x (linear_add vars b (mk_numeral j)) p  
+    fun stage j = list_disj (linrep vars x (mk_numeral j) p_inf :: map (p_element j) bset)  
+   in (list_disj (map stage js))
+    end 
+  | _ => error "cooper: not an existential formula"; 
+ 
+
+
+(* The plusinfinity version of cooper*)
+fun cooperpi vars1 fm =
+  case fm of
+   Const ("Ex",_) $ Abs(x0,T,p0) => let 
+    val (xn,p1) = variant_abs (x0,T,p0)
+    val x = Free (xn,T)
+    val vars = (xn::vars1)
+    val p = unitycoeff x  (posineq (simpl p1))
+    val p_inf = simpl (plusinf x p)
+    val aset = aset x p
+    val js = 1 upto divlcm x p
+    fun p_element j a = linrep vars x (linear_sub vars a (mk_numeral j)) p
+    fun stage j = list_disj (linrep vars x (mk_numeral j) p_inf :: map (p_element j) aset)
+   in (list_disj (map stage js))
+   end
+  | _ => error "cooper: not an existential formula";
+  
+
+
+(*Cooper main procedure*) 
+  
+fun cooper vars1 fm =
+  case fm of
+   Const ("Ex",_) $ Abs(x0,T,p0) => let 
+    val (xn,p1) = variant_abs (x0,T,p0)
+    val x = Free (xn,T)
+    val vars = (xn::vars1)
+    val p = unitycoeff x  (posineq (simpl p1))
+    val ast = aset x p
+    val bst = bset x p
+    val js = 1 upto divlcm x p
+    val (p_inf,f,S ) = 
+    if (length bst) < (length ast) 
+     then (minusinf x p,linear_add,bst)
+     else (plusinf x p, linear_sub,ast)
+    fun p_element j a = linrep vars x (f vars a (mk_numeral j)) p
+    fun stage j = list_disj (linrep vars x (mk_numeral j) p_inf :: map (p_element j) S)
+   in (list_disj (map stage js))
+   end
+  | _ => error "cooper: not an existential formula";
+
+
+
+ 
+(*Function itlist applys a double parametred function f : 'a->'b->b iteratively to a List l : 'a 
+list With End condition b. ict calculates f(e1,f(f(e2,f(e3,...(...f(en,b))..))))) 
+ assuming l = [e1,e2,...,en]*) 
+ 
+fun itlist f l b = case l of 
+    [] => b 
+  | (h::t) => f h (itlist f t b); 
+ 
+(* ------------------------------------------------------------------------- *) 
+(* Free variables in terms and formulas.	                             *) 
+(* ------------------------------------------------------------------------- *) 
+ 
+fun fvt tml = case tml of 
+    [] => [] 
+  | Free(x,_)::r => x::(fvt r) 
+ 
+fun fv fm = fvt (term_frees fm); 
+ 
+ 
+(* ========================================================================= *) 
+(* Quantifier elimination.                                                   *) 
+(* ========================================================================= *) 
+(*conj[/disj]uncts lists iterated conj[disj]unctions*) 
+ 
+fun disjuncts fm = case fm of 
+    Const ("op |",_) $ p $ q => (disjuncts p) @ (disjuncts q) 
+  | _ => [fm]; 
+ 
+fun conjuncts fm = case fm of 
+    Const ("op &",_) $p $ q => (conjuncts p) @ (conjuncts q) 
+  | _ => [fm]; 
+ 
+ 
+ 
+(* ------------------------------------------------------------------------- *) 
+(* Lift procedure given literal modifier, formula normalizer & basic quelim. *) 
+(* ------------------------------------------------------------------------- *) 
+   
+fun lift_qelim afn nfn qfn isat = 
+ let   fun qelim x vars p = 
+  let val cjs = conjuncts p 
+      val (ycjs,ncjs) = partition (has_bound) cjs in 
+      (if ycjs = [] then p else 
+                          let val q = (qfn vars ((HOLogic.exists_const HOLogic.intT 
+			  ) $ Abs(x,HOLogic.intT,(list_conj ycjs)))) in 
+                          (itlist conj_help ncjs q)  
+			  end) 
+       end 
+    
+  fun qelift vars fm = if (isat fm) then afn vars fm 
+    else  
+    case fm of 
+      Const ("Not",_) $ p => HOLogic.Not $ (qelift vars p) 
+    | Const ("op &",_) $ p $q => HOLogic.conj $ (qelift vars p) $ (qelift vars q) 
+    | Const ("op |",_) $ p $ q => HOLogic.disj $ (qelift vars p) $ (qelift vars q) 
+    | Const ("op -->",_) $ p $ q => HOLogic.imp $ (qelift vars p) $ (qelift vars q) 
+    | Const ("op =",Type ("fun",[Type ("bool", []),_])) $ p $ q => HOLogic.mk_eq ((qelift vars p),(qelift vars q)) 
+    | Const ("All",QT) $ Abs(x,T,p) => HOLogic.Not $(qelift vars (Const ("Ex",QT) $ Abs(x,T,(HOLogic.Not $ p)))) 
+    | Const ("Ex",_) $ Abs (x,T,p)  => let  val djs = disjuncts(nfn(qelift (x::vars) p)) in 
+    			list_disj(map (qelim x vars) djs) end 
+    | _ => fm 
+ 
+  in (fn fm => simpl(qelift (fv fm) fm)) 
+  end; 
+ 
+ 
+(* ------------------------------------------------------------------------- *) 
+(* Cleverer (proposisional) NNF with conditional and literal modification.   *) 
+(* ------------------------------------------------------------------------- *) 
+ 
+(*Function Negate used by cnnf, negates a formula p*) 
+ 
+fun negate (Const ("Not",_) $ p) = p 
+    |negate p = (HOLogic.Not $ p); 
+ 
+fun cnnf lfn = 
+  let fun cnnfh fm = case  fm of 
+      (Const ("op &",_) $ p $ q) => HOLogic.mk_conj(cnnfh p,cnnfh q) 
+    | (Const ("op |",_) $ p $ q) => HOLogic.mk_disj(cnnfh p,cnnfh q) 
+    | (Const ("op -->",_) $ p $q) => HOLogic.mk_disj(cnnfh(HOLogic.Not $ p),cnnfh q) 
+    | (Const ("op =",Type ("fun",[Type ("bool", []),_])) $ p $ q) => HOLogic.mk_disj( 
+    		HOLogic.mk_conj(cnnfh p,cnnfh q), 
+		HOLogic.mk_conj(cnnfh(HOLogic.Not $ p),cnnfh(HOLogic.Not $q))) 
+
+    | (Const ("Not",_) $ (Const("Not",_) $ p)) => cnnfh p 
+    | (Const ("Not",_) $ (Const ("op &",_) $ p $ q)) => HOLogic.mk_disj(cnnfh(HOLogic.Not $ p),cnnfh(HOLogic.Not $ q)) 
+    | (Const ("Not",_) $(Const ("op |",_) $ (Const ("op &",_) $ p $ q) $  
+    			(Const ("op &",_) $ p1 $ r))) => if p1 = negate p then 
+		         HOLogic.mk_disj(  
+			   cnnfh (HOLogic.mk_conj(p,cnnfh(HOLogic.Not $ q))), 
+			   cnnfh (HOLogic.mk_conj(p1,cnnfh(HOLogic.Not $ r)))) 
+			 else  HOLogic.mk_conj(
+			  cnnfh (HOLogic.mk_disj(cnnfh (HOLogic.Not $ p),cnnfh(HOLogic.Not $ q))), 
+			   cnnfh (HOLogic.mk_disj(cnnfh (HOLogic.Not $ p1),cnnfh(HOLogic.Not $ r)))
+			 ) 
+    | (Const ("Not",_) $ (Const ("op |",_) $ p $ q)) => HOLogic.mk_conj(cnnfh(HOLogic.Not $ p),cnnfh(HOLogic.Not $ q)) 
+    | (Const ("Not",_) $ (Const ("op -->",_) $ p $q)) => HOLogic.mk_conj(cnnfh p,cnnfh(HOLogic.Not $ q)) 
+    | (Const ("Not",_) $ (Const ("op =",Type ("fun",[Type ("bool", []),_]))  $ p $ q)) => HOLogic.mk_disj(HOLogic.mk_conj(cnnfh p,cnnfh(HOLogic.Not $ q)),HOLogic.mk_conj(cnnfh(HOLogic.Not $ p),cnnfh q)) 
+    | _ => lfn fm  
+  in cnnfh o simpl
+  end; 
+ 
+(*End- function the quantifierelimination an decion procedure of presburger formulas.*)   
+val integer_qelim = simpl o evalc o (lift_qelim linform (simpl o (cnnf posineq o evalc)) cooper is_arith_rel) ; 
+
+end;
+ 
\ No newline at end of file