--- a/src/HOL/Tools/Sledgehammer/MaSh/src/server.py Thu Nov 14 15:40:06 2013 +0100
+++ b/src/HOL/Tools/Sledgehammer/MaSh/src/server.py Thu Nov 14 15:57:48 2013 +0100
@@ -14,6 +14,7 @@
from sparseNaiveBayes import sparseNBClassifier
from KNN import KNN,euclidean
from KNNs import KNNAdaptPointFeatures,KNNUrban
+#from bayesPlusMetric import sparseNBPlusClassifier
from predefined import Predefined
from ExpandFeatures import ExpandFeatures
from stats import Statistics
@@ -58,15 +59,28 @@
else:
argv = argv.split(';')
self.server.args = init_parser(argv)
+
+ # Set up logging
+ logging.basicConfig(level=logging.DEBUG,
+ format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',
+ datefmt='%d-%m %H:%M:%S',
+ filename=self.server.args.log+'server',
+ filemode='w')
+ self.server.logger = logging.getLogger('server')
+
# Load all data
self.server.dicts = Dictionaries()
if os.path.isfile(self.server.args.dictsFile):
- self.server.dicts.load(self.server.args.dictsFile)
+ self.server.dicts.load(self.server.args.dictsFile)
+ #elif not self.server.args.dictsFile == '../tmp/dict.pickle':
+ # raise IOError('Cannot find dictsFile at %s '% self.server.args.dictsFile)
elif self.server.args.init:
self.server.dicts.init_all(self.server.args)
# Pick model
if self.server.args.algorithm == 'nb':
- self.server.model = sparseNBClassifier(self.server.args.NBDefaultPriorWeight,self.server.args.NBPosWeight,self.server.args.NBDefVal)
+ ###TODO: !!
+ self.server.model = sparseNBClassifier(self.server.args.NBDefaultPriorWeight,self.server.args.NBPosWeight,self.server.args.NBDefVal)
+ #self.server.model = sparseNBPlusClassifier(self.server.args.NBDefaultPriorWeight,self.server.args.NBPosWeight,self.server.args.NBDefVal)
elif self.server.args.algorithm == 'KNN':
#self.server.model = KNN(self.server.dicts)
self.server.model = KNNAdaptPointFeatures(self.server.dicts)
@@ -80,6 +94,8 @@
# Create Model
if os.path.isfile(self.server.args.modelFile):
self.server.model.load(self.server.args.modelFile)
+ #elif not self.server.args.modelFile == '../tmp/model.pickle':
+ # raise IOError('Cannot find modelFile at %s '% self.server.args.modelFile)
elif self.server.args.init:
trainData = self.server.dicts.featureDict.keys()
self.server.model.initializeModel(trainData,self.server.dicts)
@@ -89,13 +105,6 @@
self.server.statementCounter = 1
self.server.computeStats = False
- # Set up logging
- logging.basicConfig(level=logging.DEBUG,
- format='%(asctime)s %(name)-12s %(levelname)-8s %(message)s',
- datefmt='%d-%m %H:%M:%S',
- filename=self.server.args.log+'server',
- filemode='w')
- self.server.logger = logging.getLogger('server')
self.server.logger.debug('Initialized in '+str(round(time()-self.startTime,2))+' seconds.')
self.request.sendall('Server initialized in '+str(round(time()-self.startTime,2))+' seconds.')
self.server.callCounter = 1
@@ -117,8 +126,11 @@
if self.server.args.expandFeatures:
self.server.expandFeatures.update(self.server.dicts.featureDict[problemId],self.server.dicts.dependenciesDict[problemId])
# Update Dependencies, p proves p
- self.server.dicts.dependenciesDict[problemId] = [problemId]+self.server.dicts.dependenciesDict[problemId]
+ if not problemId == 0:
+ self.server.dicts.dependenciesDict[problemId] = [problemId]+self.server.dicts.dependenciesDict[problemId]
+ ###TODO:
self.server.model.update(problemId,self.server.dicts.featureDict[problemId],self.server.dicts.dependenciesDict[problemId])
+ #self.server.model.update(problemId,self.server.dicts.featureDict[problemId],self.server.dicts.dependenciesDict[problemId],self.server.dicts)
def overwrite(self):
# Overwrite old proof.