--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Integ/IntDef.thy Fri Sep 18 16:04:00 1998 +0200
@@ -0,0 +1,53 @@
+(* Title: IntDef.thy
+ ID: $Id$
+ Author: Lawrence C Paulson, Cambridge University Computer Laboratory
+ Copyright 1996 University of Cambridge
+
+The integers as equivalence classes over nat*nat.
+*)
+
+IntDef = Equiv + Arith +
+constdefs
+ intrel :: "((nat * nat) * (nat * nat)) set"
+ "intrel == {p. ? x1 y1 x2 y2. p=((x1::nat,y1),(x2,y2)) & x1+y2 = x2+y1}"
+
+typedef (Integ)
+ int = "{x::(nat*nat).True}/intrel" (Equiv.quotient_def)
+
+instance
+ int :: {ord, plus, times, minus}
+
+defs
+ zminus_def
+ "- Z == Abs_Integ(UN p:Rep_Integ(Z). split (%x y. intrel^^{(y,x)}) p)"
+
+constdefs
+
+ znat :: nat => int ("$# _" [80] 80)
+ "$# m == Abs_Integ(intrel ^^ {(m,0)})"
+
+ znegative :: int => bool
+ "znegative(Z) == EX x y. x<y & (x,y::nat):Rep_Integ(Z)"
+
+ (*For simplifying equalities*)
+ iszero :: int => bool
+ "iszero z == z = $# 0"
+
+defs
+ zadd_def
+ "Z1 + Z2 ==
+ Abs_Integ(UN p1:Rep_Integ(Z1). UN p2:Rep_Integ(Z2).
+ split (%x1 y1. split (%x2 y2. intrel^^{(x1+x2, y1+y2)}) p2) p1)"
+
+ zdiff_def "Z1 - Z2 == Z1 + -(Z2::int)"
+
+ zless_def "Z1<Z2 == znegative(Z1 - Z2)"
+
+ zle_def "Z1 <= (Z2::int) == ~(Z2 < Z1)"
+
+ zmult_def
+ "Z1 * Z2 ==
+ Abs_Integ(UN p1:Rep_Integ(Z1). UN p2:Rep_Integ(Z2). split (%x1 y1.
+ split (%x2 y2. intrel^^{(x1*x2 + y1*y2, x1*y2 + y1*x2)}) p2) p1)"
+
+end