--- a/src/HOL/GroupTheory/Homomorphism.ML Mon Dec 10 20:58:15 2001 +0100
+++ b/src/HOL/GroupTheory/Homomorphism.ML Mon Dec 10 20:59:43 2001 +0100
@@ -127,7 +127,7 @@
Goal "RingAuto `` {R} ~= {}";
by (stac RingAuto_apply 1);
by Auto_tac;
-by (res_inst_tac [("x","lam y: (R.<cr>). y")] exI 1);
+by (res_inst_tac [("x","%y: (R.<cr>). y")] exI 1);
by (auto_tac (claset(), simpset() addsimps [inj_on_def]));
by (asm_full_simp_tac (simpset() addsimps [RingHom_def, restrictI,
R_binop_def, symmetric (rmult_def), rplus_closed, rmult_closed]) 1);
@@ -234,7 +234,7 @@
"[| ?R2 \\<in> Ring; group_of ?R2 \\<in> Group |]
==> (| carrier = RingAuto `` {?R2},
bin_op =
- lam x:RingAuto `` {?R2}.
+ %x:RingAuto `` {?R2}.
restrict ((BijGroup (?R2 .<cr>) .<f>) x) (RingAuto `` {?R2}),
inverse = restrict (BijGroup (?R2 .<cr>) .<inv>) (RingAuto `` {?R2}),
unit = BijGroup (?R2 .<cr>) .<e> |) \\<in> Group" *)
@@ -249,9 +249,9 @@
qed "R_Group";
Goal "R \\<in> Ring ==> (| carrier = RingAuto `` {R},\
-\ bin_op = lam x:RingAuto `` {R}. lam y: RingAuto `` {R}.\
+\ bin_op = %x:RingAuto `` {R}. %y: RingAuto `` {R}.\
\ (BijGroup (R.<cr>) .<f>) x y ,\
-\ inverse = lam x: RingAuto `` {R}. (BijGroup (R.<cr>) .<inv>) x,\
+\ inverse = %x: RingAuto `` {R}. (BijGroup (R.<cr>) .<inv>) x,\
\ unit = BijGroup (R.<cr>) .<e> |) \\<in> Group";
by (rtac (R_Group RSN (2, RingAuto_are_Group)) 1);
by (assume_tac 1);
@@ -261,7 +261,7 @@
(* "?R \\<in> Ring
==> (| carrier = RingAuto `` {?R},
bin_op =
- lam x:RingAuto `` {?R}.
+ %x:RingAuto `` {?R}.
restrict ((BijGroup (?R .<cr>) .<f>) x) (RingAuto `` {?R}),
inverse = restrict (BijGroup (?R .<cr>) .<inv>) (RingAuto `` {?R}),
unit = BijGroup (?R .<cr>) .<e> |) \\<in> Group" *)