src/HOL/Numeral.thy
changeset 23164 69e55066dbca
child 23307 2fe3345035c7
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Numeral.thy	Thu May 31 18:16:52 2007 +0200
@@ -0,0 +1,685 @@
+(*  Title:      HOL/Numeral.thy
+    ID:         $Id$
+    Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
+    Copyright   1994  University of Cambridge
+*)
+
+header {* Arithmetic on Binary Integers *}
+
+theory Numeral
+imports IntDef
+uses ("Tools/numeral_syntax.ML")
+begin
+
+subsection {* Binary representation *}
+
+text {*
+  This formalization defines binary arithmetic in terms of the integers
+  rather than using a datatype. This avoids multiple representations (leading
+  zeroes, etc.)  See @{text "ZF/Tools/twos-compl.ML"}, function @{text
+  int_of_binary}, for the numerical interpretation.
+
+  The representation expects that @{text "(m mod 2)"} is 0 or 1,
+  even if m is negative;
+  For instance, @{text "-5 div 2 = -3"} and @{text "-5 mod 2 = 1"}; thus
+  @{text "-5 = (-3)*2 + 1"}.
+*}
+
+datatype bit = B0 | B1
+
+text{*
+  Type @{typ bit} avoids the use of type @{typ bool}, which would make
+  all of the rewrite rules higher-order.
+*}
+
+definition
+  Pls :: int where
+  [code func del]:"Pls = 0"
+
+definition
+  Min :: int where
+  [code func del]:"Min = - 1"
+
+definition
+  Bit :: "int \<Rightarrow> bit \<Rightarrow> int" (infixl "BIT" 90) where
+  [code func del]: "k BIT b = (case b of B0 \<Rightarrow> 0 | B1 \<Rightarrow> 1) + k + k"
+
+class number = type + -- {* for numeric types: nat, int, real, \dots *}
+  fixes number_of :: "int \<Rightarrow> 'a"
+
+syntax
+  "_Numeral" :: "num_const \<Rightarrow> 'a"    ("_")
+
+use "Tools/numeral_syntax.ML"
+setup NumeralSyntax.setup
+
+abbreviation
+  "Numeral0 \<equiv> number_of Pls"
+
+abbreviation
+  "Numeral1 \<equiv> number_of (Pls BIT B1)"
+
+lemma Let_number_of [simp]: "Let (number_of v) f = f (number_of v)"
+  -- {* Unfold all @{text let}s involving constants *}
+  unfolding Let_def ..
+
+lemma Let_0 [simp]: "Let 0 f = f 0"
+  unfolding Let_def ..
+
+lemma Let_1 [simp]: "Let 1 f = f 1"
+  unfolding Let_def ..
+
+definition
+  succ :: "int \<Rightarrow> int" where
+  [code func del]: "succ k = k + 1"
+
+definition
+  pred :: "int \<Rightarrow> int" where
+  [code func del]: "pred k = k - 1"
+
+lemmas
+  max_number_of [simp] = max_def
+    [of "number_of u" "number_of v", standard, simp]
+and
+  min_number_of [simp] = min_def 
+    [of "number_of u" "number_of v", standard, simp]
+  -- {* unfolding @{text minx} and @{text max} on numerals *}
+
+lemmas numeral_simps = 
+  succ_def pred_def Pls_def Min_def Bit_def
+
+text {* Removal of leading zeroes *}
+
+lemma Pls_0_eq [simp, normal post]:
+  "Pls BIT B0 = Pls"
+  unfolding numeral_simps by simp
+
+lemma Min_1_eq [simp, normal post]:
+  "Min BIT B1 = Min"
+  unfolding numeral_simps by simp
+
+
+subsection {* The Functions @{term succ}, @{term pred} and @{term uminus} *}
+
+lemma succ_Pls [simp]:
+  "succ Pls = Pls BIT B1"
+  unfolding numeral_simps by simp
+
+lemma succ_Min [simp]:
+  "succ Min = Pls"
+  unfolding numeral_simps by simp
+
+lemma succ_1 [simp]:
+  "succ (k BIT B1) = succ k BIT B0"
+  unfolding numeral_simps by simp
+
+lemma succ_0 [simp]:
+  "succ (k BIT B0) = k BIT B1"
+  unfolding numeral_simps by simp
+
+lemma pred_Pls [simp]:
+  "pred Pls = Min"
+  unfolding numeral_simps by simp
+
+lemma pred_Min [simp]:
+  "pred Min = Min BIT B0"
+  unfolding numeral_simps by simp
+
+lemma pred_1 [simp]:
+  "pred (k BIT B1) = k BIT B0"
+  unfolding numeral_simps by simp
+
+lemma pred_0 [simp]:
+  "pred (k BIT B0) = pred k BIT B1"
+  unfolding numeral_simps by simp 
+
+lemma minus_Pls [simp]:
+  "- Pls = Pls"
+  unfolding numeral_simps by simp 
+
+lemma minus_Min [simp]:
+  "- Min = Pls BIT B1"
+  unfolding numeral_simps by simp 
+
+lemma minus_1 [simp]:
+  "- (k BIT B1) = pred (- k) BIT B1"
+  unfolding numeral_simps by simp 
+
+lemma minus_0 [simp]:
+  "- (k BIT B0) = (- k) BIT B0"
+  unfolding numeral_simps by simp 
+
+
+subsection {*
+  Binary Addition and Multiplication: @{term "op + \<Colon> int \<Rightarrow> int \<Rightarrow> int"}
+    and @{term "op * \<Colon> int \<Rightarrow> int \<Rightarrow> int"}
+*}
+
+lemma add_Pls [simp]:
+  "Pls + k = k"
+  unfolding numeral_simps by simp 
+
+lemma add_Min [simp]:
+  "Min + k = pred k"
+  unfolding numeral_simps by simp
+
+lemma add_BIT_11 [simp]:
+  "(k BIT B1) + (l BIT B1) = (k + succ l) BIT B0"
+  unfolding numeral_simps by simp
+
+lemma add_BIT_10 [simp]:
+  "(k BIT B1) + (l BIT B0) = (k + l) BIT B1"
+  unfolding numeral_simps by simp
+
+lemma add_BIT_0 [simp]:
+  "(k BIT B0) + (l BIT b) = (k + l) BIT b"
+  unfolding numeral_simps by simp 
+
+lemma add_Pls_right [simp]:
+  "k + Pls = k"
+  unfolding numeral_simps by simp 
+
+lemma add_Min_right [simp]:
+  "k + Min = pred k"
+  unfolding numeral_simps by simp 
+
+lemma mult_Pls [simp]:
+  "Pls * w = Pls"
+  unfolding numeral_simps by simp 
+
+lemma mult_Min [simp]:
+  "Min * k = - k"
+  unfolding numeral_simps by simp 
+
+lemma mult_num1 [simp]:
+  "(k BIT B1) * l = ((k * l) BIT B0) + l"
+  unfolding numeral_simps int_distrib by simp 
+
+lemma mult_num0 [simp]:
+  "(k BIT B0) * l = (k * l) BIT B0"
+  unfolding numeral_simps int_distrib by simp 
+
+
+
+subsection {* Converting Numerals to Rings: @{term number_of} *}
+
+axclass number_ring \<subseteq> number, comm_ring_1
+  number_of_eq: "number_of k = of_int k"
+
+text {* self-embedding of the intergers *}
+
+instance int :: number_ring
+  int_number_of_def: "number_of w \<equiv> of_int w"
+  by intro_classes (simp only: int_number_of_def)
+
+lemmas [code func del] = int_number_of_def
+
+lemma number_of_is_id:
+  "number_of (k::int) = k"
+  unfolding int_number_of_def by simp
+
+lemma number_of_succ:
+  "number_of (succ k) = (1 + number_of k ::'a::number_ring)"
+  unfolding number_of_eq numeral_simps by simp
+
+lemma number_of_pred:
+  "number_of (pred w) = (- 1 + number_of w ::'a::number_ring)"
+  unfolding number_of_eq numeral_simps by simp
+
+lemma number_of_minus:
+  "number_of (uminus w) = (- (number_of w)::'a::number_ring)"
+  unfolding number_of_eq numeral_simps by simp
+
+lemma number_of_add:
+  "number_of (v + w) = (number_of v + number_of w::'a::number_ring)"
+  unfolding number_of_eq numeral_simps by simp
+
+lemma number_of_mult:
+  "number_of (v * w) = (number_of v * number_of w::'a::number_ring)"
+  unfolding number_of_eq numeral_simps by simp
+
+text {*
+  The correctness of shifting.
+  But it doesn't seem to give a measurable speed-up.
+*}
+
+lemma double_number_of_BIT:
+  "(1 + 1) * number_of w = (number_of (w BIT B0) ::'a::number_ring)"
+  unfolding number_of_eq numeral_simps left_distrib by simp
+
+text {*
+  Converting numerals 0 and 1 to their abstract versions.
+*}
+
+lemma numeral_0_eq_0 [simp]:
+  "Numeral0 = (0::'a::number_ring)"
+  unfolding number_of_eq numeral_simps by simp
+
+lemma numeral_1_eq_1 [simp]:
+  "Numeral1 = (1::'a::number_ring)"
+  unfolding number_of_eq numeral_simps by simp
+
+text {*
+  Special-case simplification for small constants.
+*}
+
+text{*
+  Unary minus for the abstract constant 1. Cannot be inserted
+  as a simprule until later: it is @{text number_of_Min} re-oriented!
+*}
+
+lemma numeral_m1_eq_minus_1:
+  "(-1::'a::number_ring) = - 1"
+  unfolding number_of_eq numeral_simps by simp
+
+lemma mult_minus1 [simp]:
+  "-1 * z = -(z::'a::number_ring)"
+  unfolding number_of_eq numeral_simps by simp
+
+lemma mult_minus1_right [simp]:
+  "z * -1 = -(z::'a::number_ring)"
+  unfolding number_of_eq numeral_simps by simp
+
+(*Negation of a coefficient*)
+lemma minus_number_of_mult [simp]:
+   "- (number_of w) * z = number_of (uminus w) * (z::'a::number_ring)"
+   unfolding number_of_eq by simp
+
+text {* Subtraction *}
+
+lemma diff_number_of_eq:
+  "number_of v - number_of w =
+    (number_of (v + uminus w)::'a::number_ring)"
+  unfolding number_of_eq by simp
+
+lemma number_of_Pls:
+  "number_of Pls = (0::'a::number_ring)"
+  unfolding number_of_eq numeral_simps by simp
+
+lemma number_of_Min:
+  "number_of Min = (- 1::'a::number_ring)"
+  unfolding number_of_eq numeral_simps by simp
+
+lemma number_of_BIT:
+  "number_of(w BIT x) = (case x of B0 => 0 | B1 => (1::'a::number_ring))
+    + (number_of w) + (number_of w)"
+  unfolding number_of_eq numeral_simps by (simp split: bit.split)
+
+
+subsection {* Equality of Binary Numbers *}
+
+text {* First version by Norbert Voelker *}
+
+lemma eq_number_of_eq:
+  "((number_of x::'a::number_ring) = number_of y) =
+   iszero (number_of (x + uminus y) :: 'a)"
+  unfolding iszero_def number_of_add number_of_minus
+  by (simp add: compare_rls)
+
+lemma iszero_number_of_Pls:
+  "iszero ((number_of Pls)::'a::number_ring)"
+  unfolding iszero_def numeral_0_eq_0 ..
+
+lemma nonzero_number_of_Min:
+  "~ iszero ((number_of Min)::'a::number_ring)"
+  unfolding iszero_def numeral_m1_eq_minus_1 by simp
+
+
+subsection {* Comparisons, for Ordered Rings *}
+
+lemma double_eq_0_iff:
+  "(a + a = 0) = (a = (0::'a::ordered_idom))"
+proof -
+  have "a + a = (1 + 1) * a" unfolding left_distrib by simp
+  with zero_less_two [where 'a = 'a]
+  show ?thesis by force
+qed
+
+lemma le_imp_0_less: 
+  assumes le: "0 \<le> z"
+  shows "(0::int) < 1 + z"
+proof -
+  have "0 \<le> z" .
+  also have "... < z + 1" by (rule less_add_one) 
+  also have "... = 1 + z" by (simp add: add_ac)
+  finally show "0 < 1 + z" .
+qed
+
+lemma odd_nonzero:
+  "1 + z + z \<noteq> (0::int)";
+proof (cases z rule: int_cases)
+  case (nonneg n)
+  have le: "0 \<le> z+z" by (simp add: nonneg add_increasing) 
+  thus ?thesis using  le_imp_0_less [OF le]
+    by (auto simp add: add_assoc) 
+next
+  case (neg n)
+  show ?thesis
+  proof
+    assume eq: "1 + z + z = 0"
+    have "0 < 1 + (int n + int n)"
+      by (simp add: le_imp_0_less add_increasing) 
+    also have "... = - (1 + z + z)" 
+      by (simp add: neg add_assoc [symmetric]) 
+    also have "... = 0" by (simp add: eq) 
+    finally have "0<0" ..
+    thus False by blast
+  qed
+qed
+
+text {* The premise involving @{term Ints} prevents @{term "a = 1/2"}. *}
+
+lemma Ints_double_eq_0_iff:
+  assumes in_Ints: "a \<in> Ints"
+  shows "(a + a = 0) = (a = (0::'a::ring_char_0))"
+proof -
+  from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
+  then obtain z where a: "a = of_int z" ..
+  show ?thesis
+  proof
+    assume "a = 0"
+    thus "a + a = 0" by simp
+  next
+    assume eq: "a + a = 0"
+    hence "of_int (z + z) = (of_int 0 :: 'a)" by (simp add: a)
+    hence "z + z = 0" by (simp only: of_int_eq_iff)
+    hence "z = 0" by (simp only: double_eq_0_iff)
+    thus "a = 0" by (simp add: a)
+  qed
+qed
+
+lemma Ints_odd_nonzero:
+  assumes in_Ints: "a \<in> Ints"
+  shows "1 + a + a \<noteq> (0::'a::ring_char_0)"
+proof -
+  from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
+  then obtain z where a: "a = of_int z" ..
+  show ?thesis
+  proof
+    assume eq: "1 + a + a = 0"
+    hence "of_int (1 + z + z) = (of_int 0 :: 'a)" by (simp add: a)
+    hence "1 + z + z = 0" by (simp only: of_int_eq_iff)
+    with odd_nonzero show False by blast
+  qed
+qed 
+
+lemma Ints_number_of:
+  "(number_of w :: 'a::number_ring) \<in> Ints"
+  unfolding number_of_eq Ints_def by simp
+
+lemma iszero_number_of_BIT:
+  "iszero (number_of (w BIT x)::'a) = 
+   (x = B0 \<and> iszero (number_of w::'a::{ring_char_0,number_ring}))"
+  by (simp add: iszero_def number_of_eq numeral_simps Ints_double_eq_0_iff 
+    Ints_odd_nonzero Ints_def split: bit.split)
+
+lemma iszero_number_of_0:
+  "iszero (number_of (w BIT B0) :: 'a::{ring_char_0,number_ring}) = 
+  iszero (number_of w :: 'a)"
+  by (simp only: iszero_number_of_BIT simp_thms)
+
+lemma iszero_number_of_1:
+  "~ iszero (number_of (w BIT B1)::'a::{ring_char_0,number_ring})"
+  by (simp add: iszero_number_of_BIT) 
+
+
+subsection {* The Less-Than Relation *}
+
+lemma less_number_of_eq_neg:
+  "((number_of x::'a::{ordered_idom,number_ring}) < number_of y)
+  = neg (number_of (x + uminus y) :: 'a)"
+apply (subst less_iff_diff_less_0) 
+apply (simp add: neg_def diff_minus number_of_add number_of_minus)
+done
+
+text {*
+  If @{term Numeral0} is rewritten to 0 then this rule can't be applied:
+  @{term Numeral0} IS @{term "number_of Pls"}
+*}
+
+lemma not_neg_number_of_Pls:
+  "~ neg (number_of Pls ::'a::{ordered_idom,number_ring})"
+  by (simp add: neg_def numeral_0_eq_0)
+
+lemma neg_number_of_Min:
+  "neg (number_of Min ::'a::{ordered_idom,number_ring})"
+  by (simp add: neg_def zero_less_one numeral_m1_eq_minus_1)
+
+lemma double_less_0_iff:
+  "(a + a < 0) = (a < (0::'a::ordered_idom))"
+proof -
+  have "(a + a < 0) = ((1+1)*a < 0)" by (simp add: left_distrib)
+  also have "... = (a < 0)"
+    by (simp add: mult_less_0_iff zero_less_two 
+                  order_less_not_sym [OF zero_less_two]) 
+  finally show ?thesis .
+qed
+
+lemma odd_less_0:
+  "(1 + z + z < 0) = (z < (0::int))";
+proof (cases z rule: int_cases)
+  case (nonneg n)
+  thus ?thesis by (simp add: linorder_not_less add_assoc add_increasing
+                             le_imp_0_less [THEN order_less_imp_le])  
+next
+  case (neg n)
+  thus ?thesis by (simp del: int_Suc
+    add: int_Suc0_eq_1 [symmetric] zadd_int compare_rls)
+qed
+
+text {* The premise involving @{term Ints} prevents @{term "a = 1/2"}. *}
+
+lemma Ints_odd_less_0: 
+  assumes in_Ints: "a \<in> Ints"
+  shows "(1 + a + a < 0) = (a < (0::'a::ordered_idom))";
+proof -
+  from in_Ints have "a \<in> range of_int" unfolding Ints_def [symmetric] .
+  then obtain z where a: "a = of_int z" ..
+  hence "((1::'a) + a + a < 0) = (of_int (1 + z + z) < (of_int 0 :: 'a))"
+    by (simp add: a)
+  also have "... = (z < 0)" by (simp only: of_int_less_iff odd_less_0)
+  also have "... = (a < 0)" by (simp add: a)
+  finally show ?thesis .
+qed
+
+lemma neg_number_of_BIT:
+  "neg (number_of (w BIT x)::'a) = 
+  neg (number_of w :: 'a::{ordered_idom,number_ring})"
+  by (simp add: neg_def number_of_eq numeral_simps double_less_0_iff
+    Ints_odd_less_0 Ints_def split: bit.split)
+
+
+text {* Less-Than or Equals *}
+
+text {* Reduces @{term "a\<le>b"} to @{term "~ (b<a)"} for ALL numerals. *}
+
+lemmas le_number_of_eq_not_less =
+  linorder_not_less [of "number_of w" "number_of v", symmetric, 
+  standard]
+
+lemma le_number_of_eq:
+    "((number_of x::'a::{ordered_idom,number_ring}) \<le> number_of y)
+     = (~ (neg (number_of (y + uminus x) :: 'a)))"
+by (simp add: le_number_of_eq_not_less less_number_of_eq_neg)
+
+
+text {* Absolute value (@{term abs}) *}
+
+lemma abs_number_of:
+  "abs(number_of x::'a::{ordered_idom,number_ring}) =
+   (if number_of x < (0::'a) then -number_of x else number_of x)"
+  by (simp add: abs_if)
+
+
+text {* Re-orientation of the equation nnn=x *}
+
+lemma number_of_reorient:
+  "(number_of w = x) = (x = number_of w)"
+  by auto
+
+
+subsection {* Simplification of arithmetic operations on integer constants. *}
+
+lemmas arith_extra_simps [standard, simp] =
+  number_of_add [symmetric]
+  number_of_minus [symmetric] numeral_m1_eq_minus_1 [symmetric]
+  number_of_mult [symmetric]
+  diff_number_of_eq abs_number_of 
+
+text {*
+  For making a minimal simpset, one must include these default simprules.
+  Also include @{text simp_thms}.
+*}
+
+lemmas arith_simps = 
+  bit.distinct
+  Pls_0_eq Min_1_eq
+  pred_Pls pred_Min pred_1 pred_0
+  succ_Pls succ_Min succ_1 succ_0
+  add_Pls add_Min add_BIT_0 add_BIT_10 add_BIT_11
+  minus_Pls minus_Min minus_1 minus_0
+  mult_Pls mult_Min mult_num1 mult_num0 
+  add_Pls_right add_Min_right
+  abs_zero abs_one arith_extra_simps
+
+text {* Simplification of relational operations *}
+
+lemmas rel_simps [simp] = 
+  eq_number_of_eq iszero_number_of_Pls nonzero_number_of_Min
+  iszero_number_of_0 iszero_number_of_1
+  less_number_of_eq_neg
+  not_neg_number_of_Pls not_neg_0 not_neg_1 not_iszero_1
+  neg_number_of_Min neg_number_of_BIT
+  le_number_of_eq
+
+
+subsection {* Simplification of arithmetic when nested to the right. *}
+
+lemma add_number_of_left [simp]:
+  "number_of v + (number_of w + z) =
+   (number_of(v + w) + z::'a::number_ring)"
+  by (simp add: add_assoc [symmetric])
+
+lemma mult_number_of_left [simp]:
+  "number_of v * (number_of w * z) =
+   (number_of(v * w) * z::'a::number_ring)"
+  by (simp add: mult_assoc [symmetric])
+
+lemma add_number_of_diff1:
+  "number_of v + (number_of w - c) = 
+  number_of(v + w) - (c::'a::number_ring)"
+  by (simp add: diff_minus add_number_of_left)
+
+lemma add_number_of_diff2 [simp]:
+  "number_of v + (c - number_of w) =
+   number_of (v + uminus w) + (c::'a::number_ring)"
+apply (subst diff_number_of_eq [symmetric])
+apply (simp only: compare_rls)
+done
+
+
+subsection {* Configuration of the code generator *}
+
+instance int :: eq ..
+
+code_datatype Pls Min Bit "number_of \<Colon> int \<Rightarrow> int"
+
+definition
+  int_aux :: "int \<Rightarrow> nat \<Rightarrow> int" where
+  "int_aux i n = (i + int n)"
+
+lemma [code]:
+  "int_aux i 0 = i"
+  "int_aux i (Suc n) = int_aux (i + 1) n" -- {* tail recursive *}
+  by (simp add: int_aux_def)+
+
+lemma [code]:
+  "int n = int_aux 0 n"
+  by (simp add: int_aux_def)
+
+definition
+  nat_aux :: "nat \<Rightarrow> int \<Rightarrow> nat" where
+  "nat_aux n i = (n + nat i)"
+
+lemma [code]: "nat_aux n i = (if i <= 0 then n else nat_aux (Suc n) (i - 1))"
+  -- {* tail recursive *}
+  by (auto simp add: nat_aux_def nat_eq_iff linorder_not_le order_less_imp_le
+    dest: zless_imp_add1_zle)
+
+lemma [code]: "nat i = nat_aux 0 i"
+  by (simp add: nat_aux_def)
+
+lemma zero_is_num_zero [code func, code inline, symmetric, normal post]:
+  "(0\<Colon>int) = number_of Numeral.Pls" 
+  by simp
+
+lemma one_is_num_one [code func, code inline, symmetric, normal post]:
+  "(1\<Colon>int) = number_of (Numeral.Pls BIT bit.B1)" 
+  by simp 
+
+code_modulename SML
+  IntDef Integer
+
+code_modulename OCaml
+  IntDef Integer
+
+code_modulename Haskell
+  IntDef Integer
+
+code_modulename SML
+  Numeral Integer
+
+code_modulename OCaml
+  Numeral Integer
+
+code_modulename Haskell
+  Numeral Integer
+
+(*FIXME: the IntInf.fromInt below hides a dependence on fixed-precision ints!*)
+
+types_code
+  "int" ("int")
+attach (term_of) {*
+val term_of_int = HOLogic.mk_number HOLogic.intT o IntInf.fromInt;
+*}
+attach (test) {*
+fun gen_int i = one_of [~1, 1] * random_range 0 i;
+*}
+
+setup {*
+let
+
+fun number_of_codegen thy defs gr dep module b (Const (@{const_name Numeral.number_of}, Type ("fun", [_, T])) $ t) =
+      if T = HOLogic.intT then
+        (SOME (fst (Codegen.invoke_tycodegen thy defs dep module false (gr, T)),
+          (Pretty.str o IntInf.toString o HOLogic.dest_numeral) t) handle TERM _ => NONE)
+      else if T = HOLogic.natT then
+        SOME (Codegen.invoke_codegen thy defs dep module b (gr,
+          Const ("IntDef.nat", HOLogic.intT --> HOLogic.natT) $
+            (Const (@{const_name Numeral.number_of}, HOLogic.intT --> HOLogic.intT) $ t)))
+      else NONE
+  | number_of_codegen _ _ _ _ _ _ _ = NONE;
+
+in
+
+Codegen.add_codegen "number_of_codegen" number_of_codegen
+
+end
+*}
+
+consts_code
+  "0 :: int"                   ("0")
+  "1 :: int"                   ("1")
+  "uminus :: int => int"       ("~")
+  "op + :: int => int => int"  ("(_ +/ _)")
+  "op * :: int => int => int"  ("(_ */ _)")
+  "op \<le> :: int => int => bool" ("(_ <=/ _)")
+  "op < :: int => int => bool" ("(_ </ _)")
+
+quickcheck_params [default_type = int]
+
+(*setup continues in theory Presburger*)
+
+hide (open) const Pls Min B0 B1 succ pred
+
+end