--- a/src/HOL/Algebra/Order.thy Wed Oct 09 22:01:33 2024 +0200
+++ b/src/HOL/Algebra/Order.thy Wed Oct 09 23:38:29 2024 +0200
@@ -411,7 +411,8 @@
subsubsection \<open>Intervals\<close>
definition
- at_least_at_most :: "('a, 'c) gorder_scheme \<Rightarrow> 'a => 'a => 'a set" (\<open>(1\<lbrace>_.._\<rbrace>\<index>)\<close>)
+ at_least_at_most :: "('a, 'c) gorder_scheme \<Rightarrow> 'a => 'a => 'a set"
+ (\<open>(\<open>indent=1 notation=\<open>mixfix interval\<close>\<close>\<lbrace>_.._\<rbrace>\<index>)\<close>)
where "\<lbrace>l..u\<rbrace>\<^bsub>A\<^esub> = {x \<in> carrier A. l \<sqsubseteq>\<^bsub>A\<^esub> x \<and> x \<sqsubseteq>\<^bsub>A\<^esub> u}"
context weak_partial_order
@@ -452,8 +453,9 @@
shows "isotone L1 L2 f"
using assms by (auto simp add:isotone_def)
-abbreviation Monotone :: "('a, 'b) gorder_scheme \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> bool" (\<open>Mono\<index>\<close>)
- where "Monotone L f \<equiv> isotone L L f"
+abbreviation Monotone :: "('a, 'b) gorder_scheme \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> bool"
+ (\<open>(\<open>open_block notation=\<open>prefix Mono\<close>\<close>Mono\<index>)\<close>)
+ where "Mono\<^bsub>L\<^esub> f \<equiv> isotone L L f"
lemma use_iso1:
"\<lbrakk>isotone A A f; x \<in> carrier A; y \<in> carrier A; x \<sqsubseteq>\<^bsub>A\<^esub> y\<rbrakk> \<Longrightarrow>
@@ -478,8 +480,9 @@
subsubsection \<open>Idempotent functions\<close>
definition idempotent ::
- "('a, 'b) gorder_scheme \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> bool" (\<open>Idem\<index>\<close>) where
- "idempotent L f \<equiv> \<forall>x\<in>carrier L. f (f x) .=\<^bsub>L\<^esub> f x"
+ "('a, 'b) gorder_scheme \<Rightarrow> ('a \<Rightarrow> 'a) \<Rightarrow> bool"
+ (\<open>(\<open>open_block notation=\<open>prefix Idem\<close>\<close>Idem\<index>)\<close>)
+ where "Idem\<^bsub>L\<^esub> f \<equiv> \<forall>x\<in>carrier L. f (f x) .=\<^bsub>L\<^esub> f x"
lemma (in weak_partial_order) idempotent:
"\<lbrakk>Idem f; x \<in> carrier L\<rbrakk> \<Longrightarrow> f (f x) .= f x"