--- a/src/ZF/Zorn.thy Wed Dec 30 17:38:57 2015 +0100
+++ b/src/ZF/Zorn.thy Wed Dec 30 17:45:18 2015 +0100
@@ -197,14 +197,14 @@
done
lemma choice_super:
- "[| ch \<in> (\<Pi> X \<in> Pow(chain(S)) - {0}. X); X \<in> chain(S); X \<notin> maxchain(S) |]
+ "[| ch \<in> (\<Prod>X \<in> Pow(chain(S)) - {0}. X); X \<in> chain(S); X \<notin> maxchain(S) |]
==> ch ` super(S,X) \<in> super(S,X)"
apply (erule apply_type)
apply (unfold super_def maxchain_def, blast)
done
lemma choice_not_equals:
- "[| ch \<in> (\<Pi> X \<in> Pow(chain(S)) - {0}. X); X \<in> chain(S); X \<notin> maxchain(S) |]
+ "[| ch \<in> (\<Prod>X \<in> Pow(chain(S)) - {0}. X); X \<in> chain(S); X \<notin> maxchain(S) |]
==> ch ` super(S,X) \<noteq> X"
apply (rule notI)
apply (drule choice_super, assumption, assumption)
@@ -213,7 +213,7 @@
text\<open>This justifies Definition 4.4\<close>
lemma Hausdorff_next_exists:
- "ch \<in> (\<Pi> X \<in> Pow(chain(S))-{0}. X) ==>
+ "ch \<in> (\<Prod>X \<in> Pow(chain(S))-{0}. X) ==>
\<exists>next \<in> increasing(S). \<forall>X \<in> Pow(S).
next`X = if(X \<in> chain(S)-maxchain(S), ch`super(S,X), X)"
apply (rule_tac x="\<lambda>X\<in>Pow(S).
@@ -237,7 +237,7 @@
text\<open>Lemma 4\<close>
lemma TFin_chain_lemma4:
"[| c \<in> TFin(S,next);
- ch \<in> (\<Pi> X \<in> Pow(chain(S))-{0}. X);
+ ch \<in> (\<Prod>X \<in> Pow(chain(S))-{0}. X);
next \<in> increasing(S);
\<forall>X \<in> Pow(S). next`X =
if(X \<in> chain(S)-maxchain(S), ch`super(S,X), X) |]
@@ -364,14 +364,14 @@
text\<open>* Defining the "next" operation for Zermelo's Theorem *\<close>
lemma choice_Diff:
- "[| ch \<in> (\<Pi> X \<in> Pow(S) - {0}. X); X \<subseteq> S; X\<noteq>S |] ==> ch ` (S-X) \<in> S-X"
+ "[| ch \<in> (\<Prod>X \<in> Pow(S) - {0}. X); X \<subseteq> S; X\<noteq>S |] ==> ch ` (S-X) \<in> S-X"
apply (erule apply_type)
apply (blast elim!: equalityE)
done
text\<open>This justifies Definition 6.1\<close>
lemma Zermelo_next_exists:
- "ch \<in> (\<Pi> X \<in> Pow(S)-{0}. X) ==>
+ "ch \<in> (\<Prod>X \<in> Pow(S)-{0}. X) ==>
\<exists>next \<in> increasing(S). \<forall>X \<in> Pow(S).
next`X = (if X=S then S else cons(ch`(S-X), X))"
apply (rule_tac x="\<lambda>X\<in>Pow(S). if X=S then S else cons(ch`(S-X), X)"
@@ -391,7 +391,7 @@
text\<open>The construction of the injection\<close>
lemma choice_imp_injection:
- "[| ch \<in> (\<Pi> X \<in> Pow(S)-{0}. X);
+ "[| ch \<in> (\<Prod>X \<in> Pow(S)-{0}. X);
next \<in> increasing(S);
\<forall>X \<in> Pow(S). next`X = if(X=S, S, cons(ch`(S-X), X)) |]
==> (\<lambda> x \<in> S. \<Union>({y \<in> TFin(S,next). x \<notin> y}))