src/HOL/Lattice/CompleteLattice.thy
changeset 10157 6d3987f3aad9
child 10175 76646fc8b1bf
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Lattice/CompleteLattice.thy	Fri Oct 06 01:04:56 2000 +0200
@@ -0,0 +1,409 @@
+(*  Title:      HOL/Lattice/CompleteLattice.thy
+    ID:         $Id$
+    Author:     Markus Wenzel, TU Muenchen
+*)
+
+header {* Complete lattices *}
+
+theory CompleteLattice = Lattice:
+
+subsection {* Complete lattice operations *}
+
+text {*
+  A \emph{complete lattice} is a partial order with general
+  (infinitary) infimum of any set of elements.  General supremum
+  exists as well, as a consequence of the connection of infinitary
+  bounds (see \S\ref{sec:connect-bounds}).
+*}
+
+axclass complete_lattice < partial_order
+  ex_Inf: "\<exists>inf. is_Inf A inf"
+
+theorem ex_Sup: "\<exists>sup::'a::complete_lattice. is_Sup A sup"
+proof -
+  from ex_Inf obtain sup where "is_Inf {b. \<forall>a\<in>A. a \<sqsubseteq> b} sup" by blast
+  hence "is_Sup A sup" by (rule Inf_Sup)
+  thus ?thesis ..
+qed
+
+text {*
+  The general @{text \<Sqinter>} (meet) and @{text \<Squnion>} (join) operations select
+  such infimum and supremum elements.
+*}
+
+consts
+  Meet :: "'a::complete_lattice set \<Rightarrow> 'a"
+  Join :: "'a::complete_lattice set \<Rightarrow> 'a"
+syntax (symbols)
+  Meet :: "'a::complete_lattice set \<Rightarrow> 'a"    ("\<Sqinter>_" [90] 90)
+  Join :: "'a::complete_lattice set \<Rightarrow> 'a"    ("\<Squnion>_" [90] 90)
+defs
+  Meet_def: "\<Sqinter>A \<equiv> SOME inf. is_Inf A inf"
+  Join_def: "\<Squnion>A \<equiv> SOME sup. is_Sup A sup"
+
+text {*
+  Due to unique existence of bounds, the complete lattice operations
+  may be exhibited as follows.
+*}
+
+lemma Meet_equality [elim?]: "is_Inf A inf \<Longrightarrow> \<Sqinter>A = inf"
+proof (unfold Meet_def)
+  assume "is_Inf A inf"
+  thus "(SOME inf. is_Inf A inf) = inf"
+    by (rule some_equality) (rule is_Inf_uniq)
+qed
+
+lemma MeetI [intro?]:
+  "(\<And>a. a \<in> A \<Longrightarrow> inf \<sqsubseteq> a) \<Longrightarrow>
+    (\<And>b. \<forall>a \<in> A. b \<sqsubseteq> a \<Longrightarrow> b \<sqsubseteq> inf) \<Longrightarrow>
+    \<Sqinter>A = inf"
+  by (rule Meet_equality, rule is_InfI) blast+
+
+lemma Join_equality [elim?]: "is_Sup A sup \<Longrightarrow> \<Squnion>A = sup"
+proof (unfold Join_def)
+  assume "is_Sup A sup"
+  thus "(SOME sup. is_Sup A sup) = sup"
+    by (rule some_equality) (rule is_Sup_uniq)
+qed
+
+lemma JoinI [intro?]:
+  "(\<And>a. a \<in> A \<Longrightarrow> a \<sqsubseteq> sup) \<Longrightarrow>
+    (\<And>b. \<forall>a \<in> A. a \<sqsubseteq> b \<Longrightarrow> sup \<sqsubseteq> b) \<Longrightarrow>
+    \<Squnion>A = sup"
+  by (rule Join_equality, rule is_SupI) blast+
+
+
+text {*
+  \medskip The @{text \<Sqinter>} and @{text \<Squnion>} operations indeed determine
+  bounds on a complete lattice structure.
+*}
+
+lemma is_Inf_Meet [intro?]: "is_Inf A (\<Sqinter>A)"
+proof (unfold Meet_def)
+  from ex_Inf show "is_Inf A (SOME inf. is_Inf A inf)"
+    by (rule ex_someI)
+qed
+
+lemma Meet_greatest [intro?]: "(\<And>a. a \<in> A \<Longrightarrow> x \<sqsubseteq> a) \<Longrightarrow> x \<sqsubseteq> \<Sqinter>A"
+  by (rule is_Inf_greatest, rule is_Inf_Meet) blast
+
+lemma Meet_lower [intro?]: "a \<in> A \<Longrightarrow> \<Sqinter>A \<sqsubseteq> a"
+  by (rule is_Inf_lower) (rule is_Inf_Meet)
+
+
+lemma is_Sup_Join [intro?]: "is_Sup A (\<Squnion>A)"
+proof (unfold Join_def)
+  from ex_Sup show "is_Sup A (SOME sup. is_Sup A sup)"
+    by (rule ex_someI)
+qed
+
+lemma Join_least [intro?]: "(\<And>a. a \<in> A \<Longrightarrow> a \<sqsubseteq> x) \<Longrightarrow> \<Squnion>A \<sqsubseteq> x"
+  by (rule is_Sup_least, rule is_Sup_Join) blast
+lemma Join_lower [intro?]: "a \<in> A \<Longrightarrow> a \<sqsubseteq> \<Squnion>A"
+  by (rule is_Sup_upper) (rule is_Sup_Join)
+
+
+subsection {* The Knaster-Tarski Theorem *}
+
+text {*
+  The Knaster-Tarski Theorem (in its simplest formulation) states that
+  any monotone function on a complete lattice has a least fixed-point
+  (see \cite[pages 93--94]{Davey-Priestley:1990} for example).  This
+  is a consequence of the basic boundary properties of the complete
+  lattice operations.
+*}
+
+theorem Knaster_Tarski:
+  "(\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y) \<Longrightarrow> \<exists>a::'a::complete_lattice. f a = a"
+proof
+  assume mono: "\<And>x y. x \<sqsubseteq> y \<Longrightarrow> f x \<sqsubseteq> f y"
+  let ?H = "{u. f u \<sqsubseteq> u}" let ?a = "\<Sqinter>?H"
+  have ge: "f ?a \<sqsubseteq> ?a"
+  proof
+    fix x assume x: "x \<in> ?H"
+    hence "?a \<sqsubseteq> x" ..
+    hence "f ?a \<sqsubseteq> f x" by (rule mono)
+    also from x have "... \<sqsubseteq> x" ..
+    finally show "f ?a \<sqsubseteq> x" .
+  qed
+  also have "?a \<sqsubseteq> f ?a"
+  proof
+    from ge have "f (f ?a) \<sqsubseteq> f ?a" by (rule mono)
+    thus "f ?a : ?H" ..
+  qed
+  finally show "f ?a = ?a" .
+qed
+
+
+subsection {* Bottom and top elements *}
+
+text {*
+  With general bounds available, complete lattices also have least and
+  greatest elements.
+*}
+
+constdefs
+  bottom :: "'a::complete_lattice"    ("\<bottom>")
+  "\<bottom> \<equiv> \<Sqinter>UNIV"
+  top :: "'a::complete_lattice"    ("\<top>")
+  "\<top> \<equiv> \<Squnion>UNIV"
+
+lemma bottom_least [intro?]: "\<bottom> \<sqsubseteq> x"
+proof (unfold bottom_def)
+  have "x \<in> UNIV" ..
+  thus "\<Sqinter>UNIV \<sqsubseteq> x" ..
+qed
+
+lemma bottomI [intro?]: "(\<And>a. x \<sqsubseteq> a) \<Longrightarrow> \<bottom> = x"
+proof (unfold bottom_def)
+  assume "\<And>a. x \<sqsubseteq> a"
+  show "\<Sqinter>UNIV = x"
+  proof
+    fix a show "x \<sqsubseteq> a" .
+  next
+    fix b :: "'a::complete_lattice"
+    assume b: "\<forall>a \<in> UNIV. b \<sqsubseteq> a"
+    have "x \<in> UNIV" ..
+    with b show "b \<sqsubseteq> x" ..
+  qed
+qed
+
+lemma top_greatest [intro?]: "x \<sqsubseteq> \<top>"
+proof (unfold top_def)
+  have "x \<in> UNIV" ..
+  thus "x \<sqsubseteq> \<Squnion>UNIV" ..
+qed
+
+lemma topI [intro?]: "(\<And>a. a \<sqsubseteq> x) \<Longrightarrow> \<top> = x"
+proof (unfold top_def)
+  assume "\<And>a. a \<sqsubseteq> x"
+  show "\<Squnion>UNIV = x"
+  proof
+    fix a show "a \<sqsubseteq> x" .
+  next
+    fix b :: "'a::complete_lattice"
+    assume b: "\<forall>a \<in> UNIV. a \<sqsubseteq> b"
+    have "x \<in> UNIV" ..
+    with b show "x \<sqsubseteq> b" ..
+  qed
+qed
+
+
+subsection {* Duality *}
+
+text {*
+  The class of complete lattices is closed under formation of dual
+  structures.
+*}
+
+instance dual :: (complete_lattice) complete_lattice
+proof intro_classes
+  fix A' :: "'a::complete_lattice dual set"
+  show "\<exists>inf'. is_Inf A' inf'"
+  proof -
+    have "\<exists>sup. is_Sup (undual `` A') sup" by (rule ex_Sup)
+    hence "\<exists>sup. is_Inf (dual `` undual `` A') (dual sup)" by (simp only: dual_Inf)
+    thus ?thesis by (simp add: dual_ex [symmetric] image_compose [symmetric])
+  qed
+qed
+
+text {*
+  Apparently, the @{text \<Sqinter>} and @{text \<Squnion>} operations are dual to each
+  other.
+*}
+
+theorem dual_Meet [intro?]: "dual (\<Sqinter>A) = \<Squnion>(dual `` A)"
+proof -
+  from is_Inf_Meet have "is_Sup (dual `` A) (dual (\<Sqinter>A))" ..
+  hence "\<Squnion>(dual `` A) = dual (\<Sqinter>A)" ..
+  thus ?thesis ..
+qed
+
+theorem dual_Join [intro?]: "dual (\<Squnion>A) = \<Sqinter>(dual `` A)"
+proof -
+  from is_Sup_Join have "is_Inf (dual `` A) (dual (\<Squnion>A))" ..
+  hence "\<Sqinter>(dual `` A) = dual (\<Squnion>A)" ..
+  thus ?thesis ..
+qed
+
+text {*
+  Likewise are @{text \<bottom>} and @{text \<top>} duals of each other.
+*}
+
+theorem dual_bottom [intro?]: "dual \<bottom> = \<top>"
+proof -
+  have "\<top> = dual \<bottom>"
+  proof
+    fix a' have "\<bottom> \<sqsubseteq> undual a'" ..
+    hence "dual (undual a') \<sqsubseteq> dual \<bottom>" ..
+    thus "a' \<sqsubseteq> dual \<bottom>" by simp
+  qed
+  thus ?thesis ..
+qed
+
+theorem dual_top [intro?]: "dual \<top> = \<bottom>"
+proof -
+  have "\<bottom> = dual \<top>"
+  proof
+    fix a' have "undual a' \<sqsubseteq> \<top>" ..
+    hence "dual \<top> \<sqsubseteq> dual (undual a')" ..
+    thus "dual \<top> \<sqsubseteq> a'" by simp
+  qed
+  thus ?thesis ..
+qed
+
+
+subsection {* Complete lattices are lattices *}
+
+text {*
+  Complete lattices (with general bounds) available are indeed plain
+  lattices as well.  This holds due to the connection of general
+  versus binary bounds that has been formally established in
+  \S\ref{sec:gen-bin-bounds}.
+*}
+
+lemma is_inf_binary: "is_inf x y (\<Sqinter>{x, y})"
+proof -
+  have "is_Inf {x, y} (\<Sqinter>{x, y})" ..
+  thus ?thesis by (simp only: is_Inf_binary)
+qed
+
+lemma is_sup_binary: "is_sup x y (\<Squnion>{x, y})"
+proof -
+  have "is_Sup {x, y} (\<Squnion>{x, y})" ..
+  thus ?thesis by (simp only: is_Sup_binary)
+qed
+
+instance complete_lattice < lattice
+proof intro_classes
+  fix x y :: "'a::complete_lattice"
+  from is_inf_binary show "\<exists>inf. is_inf x y inf" ..
+  from is_sup_binary show "\<exists>sup. is_sup x y sup" ..
+qed
+
+theorem meet_binary: "x \<sqinter> y = \<Sqinter>{x, y}"
+  by (rule meet_equality) (rule is_inf_binary)
+
+theorem join_binary: "x \<squnion> y = \<Squnion>{x, y}"
+  by (rule join_equality) (rule is_sup_binary)
+
+
+subsection {* Complete lattices and set-theory operations *}
+
+text {*
+  The complete lattice operations are (anti) monotone wrt.\ set
+  inclusion.
+*}
+
+theorem Meet_subset_antimono: "A \<subseteq> B \<Longrightarrow> \<Sqinter>B \<sqsubseteq> \<Sqinter>A"
+proof (rule Meet_greatest)
+  fix a assume "a \<in> A"
+  also assume "A \<subseteq> B"
+  finally have "a \<in> B" .
+  thus "\<Sqinter>B \<sqsubseteq> a" ..
+qed
+
+theorem Join_subset_mono: "A \<subseteq> B \<Longrightarrow> \<Squnion>A \<sqsubseteq> \<Squnion>B"
+proof -
+  assume "A \<subseteq> B"
+  hence "dual `` A \<subseteq> dual `` B" by blast
+  hence "\<Sqinter>(dual `` B) \<sqsubseteq> \<Sqinter>(dual `` A)" by (rule Meet_subset_antimono)
+  hence "dual (\<Squnion>B) \<sqsubseteq> dual (\<Squnion>A)" by (simp only: dual_Join)
+  thus ?thesis by (simp only: dual_leq)
+qed
+
+text {*
+  Bounds over unions of sets may be obtained separately.
+*}
+
+theorem Meet_Un: "\<Sqinter>(A \<union> B) = \<Sqinter>A \<sqinter> \<Sqinter>B"
+proof
+  fix a assume "a \<in> A \<union> B"
+  thus "\<Sqinter>A \<sqinter> \<Sqinter>B \<sqsubseteq> a"
+  proof
+    assume a: "a \<in> A"
+    have "\<Sqinter>A \<sqinter> \<Sqinter>B \<sqsubseteq> \<Sqinter>A" ..
+    also from a have "\<dots> \<sqsubseteq> a" ..
+    finally show ?thesis .
+  next
+    assume a: "a \<in> B"
+    have "\<Sqinter>A \<sqinter> \<Sqinter>B \<sqsubseteq> \<Sqinter>B" ..
+    also from a have "\<dots> \<sqsubseteq> a" ..
+    finally show ?thesis .
+  qed
+next
+  fix b assume b: "\<forall>a \<in> A \<union> B. b \<sqsubseteq> a"
+  show "b \<sqsubseteq> \<Sqinter>A \<sqinter> \<Sqinter>B"
+  proof
+    show "b \<sqsubseteq> \<Sqinter>A"
+    proof
+      fix a assume "a \<in> A"
+      hence "a \<in>  A \<union> B" ..
+      with b show "b \<sqsubseteq> a" ..
+    qed
+    show "b \<sqsubseteq> \<Sqinter>B"
+    proof
+      fix a assume "a \<in> B"
+      hence "a \<in>  A \<union> B" ..
+      with b show "b \<sqsubseteq> a" ..
+    qed
+  qed
+qed
+
+theorem Join_Un: "\<Squnion>(A \<union> B) = \<Squnion>A \<squnion> \<Squnion>B"
+proof -
+  have "dual (\<Squnion>(A \<union> B)) = \<Sqinter>(dual `` A \<union> dual `` B)"
+    by (simp only: dual_Join image_Un)
+  also have "\<dots> = \<Sqinter>(dual `` A) \<sqinter> \<Sqinter>(dual `` B)"
+    by (rule Meet_Un)
+  also have "\<dots> = dual (\<Squnion>A \<squnion> \<Squnion>B)"
+    by (simp only: dual_join dual_Join)
+  finally show ?thesis ..
+qed
+
+text {*
+  Bounds over singleton sets are trivial.
+*}
+
+theorem Meet_singleton: "\<Sqinter>{x} = x"
+proof
+  fix a assume "a \<in> {x}"
+  hence "a = x" by simp
+  thus "x \<sqsubseteq> a" by (simp only: leq_refl)
+next
+  fix b assume "\<forall>a \<in> {x}. b \<sqsubseteq> a"
+  thus "b \<sqsubseteq> x" by simp
+qed
+
+theorem Join_singleton: "\<Squnion>{x} = x"
+proof -
+  have "dual (\<Squnion>{x}) = \<Sqinter>{dual x}" by (simp add: dual_Join)
+  also have "\<dots> = dual x" by (rule Meet_singleton)
+  finally show ?thesis ..
+qed
+
+text {*
+  Bounds over the empty and universal set correspond to each other.
+*}
+
+theorem Meet_empty: "\<Sqinter>{} = \<Squnion>UNIV"
+proof
+  fix a :: "'a::complete_lattice"
+  assume "a \<in> {}"
+  hence False by simp
+  thus "\<Squnion>UNIV \<sqsubseteq> a" ..
+next
+  fix b :: "'a::complete_lattice"
+  have "b \<in> UNIV" ..
+  thus "b \<sqsubseteq> \<Squnion>UNIV" ..
+qed
+
+theorem Join_empty: "\<Squnion>{} = \<Sqinter>UNIV"
+proof -
+  have "dual (\<Squnion>{}) = \<Sqinter>{}" by (simp add: dual_Join)
+  also have "\<dots> = \<Squnion>UNIV" by (rule Meet_empty)
+  also have "\<dots> = dual (\<Sqinter>UNIV)" by (simp add: dual_Meet)
+  finally show ?thesis ..
+qed
+
+end