src/ZF/OrderType.thy
changeset 13140 6d97dbb189a9
parent 13125 be50e0b050b2
child 13163 e320a52ff711
--- a/src/ZF/OrderType.thy	Sat May 11 20:40:31 2002 +0200
+++ b/src/ZF/OrderType.thy	Mon May 13 09:02:13 2002 +0200
@@ -3,48 +3,1022 @@
     Author:     Lawrence C Paulson, Cambridge University Computer Laboratory
     Copyright   1994  University of Cambridge
 
-Order types and ordinal arithmetic.
+Order types and ordinal arithmetic in Zermelo-Fraenkel Set Theory 
 
 The order type of a well-ordering is the least ordinal isomorphic to it.
+
+Ordinal arithmetic is traditionally defined in terms of order types, as here.
+But a definition by transfinite recursion would be much simpler!
 *)
 
-OrderType = OrderArith + OrdQuant + 
+theory OrderType = OrderArith + OrdQuant:
 constdefs
   
-  ordermap  :: [i,i]=>i
+  ordermap  :: "[i,i]=>i"
    "ordermap(A,r) == lam x:A. wfrec[A](r, x, %x f. f `` pred(A,x,r))"
 
-  ordertype :: [i,i]=>i
+  ordertype :: "[i,i]=>i"
    "ordertype(A,r) == ordermap(A,r)``A"
 
   (*alternative definition of ordinal numbers*)
-  Ord_alt   :: i => o   
+  Ord_alt   :: "i => o"
    "Ord_alt(X) == well_ord(X, Memrel(X)) & (ALL u:X. u=pred(X, u, Memrel(X)))"
 
   (*coercion to ordinal: if not, just 0*)
-  ordify    :: i=>i
+  ordify    :: "i=>i"
     "ordify(x) == if Ord(x) then x else 0"
 
   (*ordinal multiplication*)
-  omult      :: [i,i]=>i           (infixl "**" 70)
+  omult      :: "[i,i]=>i"           (infixl "**" 70)
    "i ** j == ordertype(j*i, rmult(j,Memrel(j),i,Memrel(i)))"
 
   (*ordinal addition*)
-  raw_oadd   :: [i,i]=>i
+  raw_oadd   :: "[i,i]=>i"
     "raw_oadd(i,j) == ordertype(i+j, radd(i,Memrel(i),j,Memrel(j)))"
 
-  oadd      :: [i,i]=>i           (infixl "++" 65)
+  oadd      :: "[i,i]=>i"           (infixl "++" 65)
     "i ++ j == raw_oadd(ordify(i),ordify(j))"
 
   (*ordinal subtraction*)
-  odiff      :: [i,i]=>i           (infixl "--" 65)
+  odiff      :: "[i,i]=>i"           (infixl "--" 65)
     "i -- j == ordertype(i-j, Memrel(i))"
 
   
 syntax (xsymbols)
-  "op **"     :: [i,i] => i          (infixl "\\<times>\\<times>" 70)
+  "op **"     :: "[i,i] => i"          (infixl "\<times>\<times>" 70)
 
 syntax (HTML output)
-  "op **"     :: [i,i] => i          (infixl "\\<times>\\<times>" 70)
+  "op **"     :: "[i,i] => i"          (infixl "\<times>\<times>" 70)
+
+
+(*??for Ordinal.ML*)
+(*suitable for rewriting PROVIDED i has been fixed*)
+lemma Ord_in_Ord': "[| j:i; Ord(i) |] ==> Ord(j)"
+by (blast intro: Ord_in_Ord)
+
+
+(**** Proofs needing the combination of Ordinal.thy and Order.thy ****)
+
+lemma le_well_ord_Memrel: "j le i ==> well_ord(j, Memrel(i))"
+apply (rule well_ordI)
+apply (rule wf_Memrel [THEN wf_imp_wf_on])
+apply (simp add: ltD lt_Ord linear_def
+                 ltI [THEN lt_trans2 [of _ j i]])
+apply (intro ballI Ord_linear)
+apply (blast intro: Ord_in_Ord lt_Ord)+
+done
+
+(*"Ord(i) ==> well_ord(i, Memrel(i))"*)
+lemmas well_ord_Memrel = le_refl [THEN le_well_ord_Memrel]
+
+(*Kunen's Theorem 7.3 (i), page 16;  see also Ordinal/Ord_in_Ord
+  The smaller ordinal is an initial segment of the larger *)
+lemma lt_pred_Memrel: 
+    "j<i ==> pred(i, j, Memrel(i)) = j"
+apply (unfold pred_def lt_def)
+apply (simp (no_asm_simp))
+apply (blast intro: Ord_trans)
+done
+
+lemma pred_Memrel: 
+      "x:A ==> pred(A, x, Memrel(A)) = A Int x"
+by (unfold pred_def Memrel_def, blast)
+
+lemma Ord_iso_implies_eq_lemma:
+     "[| j<i;  f: ord_iso(i,Memrel(i),j,Memrel(j)) |] ==> R"
+apply (frule lt_pred_Memrel)
+apply (erule ltE)
+apply (rule well_ord_Memrel [THEN well_ord_iso_predE, of i f j], auto) 
+apply (unfold ord_iso_def)
+(*Combining the two simplifications causes looping*)
+apply (simp (no_asm_simp))
+apply (blast intro: bij_is_fun [THEN apply_type] Ord_trans)
+done
+
+(*Kunen's Theorem 7.3 (ii), page 16.  Isomorphic ordinals are equal*)
+lemma Ord_iso_implies_eq:
+     "[| Ord(i);  Ord(j);  f:  ord_iso(i,Memrel(i),j,Memrel(j)) |]     
+      ==> i=j"
+apply (rule_tac i = i and j = j in Ord_linear_lt)
+apply (blast intro: ord_iso_sym Ord_iso_implies_eq_lemma)+
+done
+
+
+(**** Ordermap and ordertype ****)
+
+lemma ordermap_type: 
+    "ordermap(A,r) : A -> ordertype(A,r)"
+apply (unfold ordermap_def ordertype_def)
+apply (rule lam_type)
+apply (rule lamI [THEN imageI], assumption+)
+done
+
+(*** Unfolding of ordermap ***)
+
+(*Useful for cardinality reasoning; see CardinalArith.ML*)
+lemma ordermap_eq_image: 
+    "[| wf[A](r);  x:A |]
+     ==> ordermap(A,r) ` x = ordermap(A,r) `` pred(A,x,r)"
+apply (unfold ordermap_def pred_def)
+apply (simp (no_asm_simp))
+apply (erule wfrec_on [THEN trans], assumption)
+apply (simp (no_asm_simp) add: subset_iff image_lam vimage_singleton_iff)
+done
+
+(*Useful for rewriting PROVIDED pred is not unfolded until later!*)
+lemma ordermap_pred_unfold:
+     "[| wf[A](r);  x:A |]
+      ==> ordermap(A,r) ` x = {ordermap(A,r)`y . y : pred(A,x,r)}"
+by (simp add: ordermap_eq_image pred_subset ordermap_type [THEN image_fun])
+
+(*pred-unfolded version.  NOT suitable for rewriting -- loops!*)
+lemmas ordermap_unfold = ordermap_pred_unfold [simplified pred_def] 
+
+(*The theorem above is 
+
+[| wf[A](r); x : A |]
+==> ordermap(A,r) ` x = {ordermap(A,r) ` y . y: {y: A . <y,x> : r}}
+
+NOTE: the definition of ordermap used here delivers ordinals only if r is
+transitive.  If r is the predecessor relation on the naturals then
+ordermap(nat,predr) ` n equals {n-1} and not n.  A more complicated definition,
+like
+
+  ordermap(A,r) ` x = Union{succ(ordermap(A,r) ` y) . y: {y: A . <y,x> : r}},
+
+might eliminate the need for r to be transitive.
+*)
+
+
+(*** Showing that ordermap, ordertype yield ordinals ***)
+
+lemma Ord_ordermap: 
+    "[| well_ord(A,r);  x:A |] ==> Ord(ordermap(A,r) ` x)"
+apply (unfold well_ord_def tot_ord_def part_ord_def, safe)
+apply (rule_tac a=x in wf_on_induct, assumption+)
+apply (simp (no_asm_simp) add: ordermap_pred_unfold)
+apply (rule OrdI [OF _ Ord_is_Transset])
+apply (unfold pred_def Transset_def)
+apply (blast intro: trans_onD
+	     dest!: ordermap_unfold [THEN equalityD1])+ 
+done
+
+lemma Ord_ordertype: 
+    "well_ord(A,r) ==> Ord(ordertype(A,r))"
+apply (unfold ordertype_def)
+apply (subst image_fun [OF ordermap_type subset_refl])
+apply (rule OrdI [OF _ Ord_is_Transset])
+prefer 2 apply (blast intro: Ord_ordermap)
+apply (unfold Transset_def well_ord_def)
+apply (blast intro: trans_onD
+	     dest!: ordermap_unfold [THEN equalityD1])
+done
+
+
+(*** ordermap preserves the orderings in both directions ***)
+
+lemma ordermap_mono:
+     "[| <w,x>: r;  wf[A](r);  w: A; x: A |]
+      ==> ordermap(A,r)`w : ordermap(A,r)`x"
+apply (erule_tac x1 = x in ordermap_unfold [THEN ssubst], assumption)
+apply blast
+done
+
+(*linearity of r is crucial here*)
+lemma converse_ordermap_mono: 
+    "[| ordermap(A,r)`w : ordermap(A,r)`x;  well_ord(A,r); w: A; x: A |]
+     ==> <w,x>: r"
+apply (unfold well_ord_def tot_ord_def, safe)
+apply (erule_tac x=w and y=x in linearE, assumption+) 
+apply (blast elim!: mem_not_refl [THEN notE])
+apply (blast dest: ordermap_mono intro: mem_asym) 
+done
+
+lemmas ordermap_surj = 
+    ordermap_type [THEN surj_image, unfolded ordertype_def [symmetric]]
+
+lemma ordermap_bij: 
+    "well_ord(A,r) ==> ordermap(A,r) : bij(A, ordertype(A,r))"
+apply (unfold well_ord_def tot_ord_def bij_def inj_def)
+apply (force intro!: ordermap_type ordermap_surj 
+             elim: linearE dest: ordermap_mono 
+             simp add: mem_not_refl)
+done
+
+(*** Isomorphisms involving ordertype ***)
+
+lemma ordertype_ord_iso: 
+ "well_ord(A,r)
+  ==> ordermap(A,r) : ord_iso(A,r, ordertype(A,r), Memrel(ordertype(A,r)))"
+apply (unfold ord_iso_def)
+apply (safe elim!: well_ord_is_wf 
+            intro!: ordermap_type [THEN apply_type] ordermap_mono ordermap_bij)
+apply (blast dest!: converse_ordermap_mono)
+done
+
+lemma ordertype_eq:
+     "[| f: ord_iso(A,r,B,s);  well_ord(B,s) |]
+      ==> ordertype(A,r) = ordertype(B,s)"
+apply (frule well_ord_ord_iso, assumption)
+apply (rule Ord_iso_implies_eq, (erule Ord_ordertype)+)
+apply (blast intro: ord_iso_trans ord_iso_sym ordertype_ord_iso)
+done
+
+lemma ordertype_eq_imp_ord_iso:
+     "[| ordertype(A,r) = ordertype(B,s); well_ord(A,r);  well_ord(B,s) |] 
+      ==> EX f. f: ord_iso(A,r,B,s)"
+apply (rule exI)
+apply (rule ordertype_ord_iso [THEN ord_iso_trans], assumption)
+apply (erule ssubst)
+apply (erule ordertype_ord_iso [THEN ord_iso_sym])
+done
+
+(*** Basic equalities for ordertype ***)
+
+(*Ordertype of Memrel*)
+lemma le_ordertype_Memrel: "j le i ==> ordertype(j,Memrel(i)) = j"
+apply (rule Ord_iso_implies_eq [symmetric])
+apply (erule ltE, assumption)
+apply (blast intro: le_well_ord_Memrel Ord_ordertype)
+apply (rule ord_iso_trans)
+apply (erule_tac [2] le_well_ord_Memrel [THEN ordertype_ord_iso])
+apply (rule id_bij [THEN ord_isoI])
+apply (simp (no_asm_simp))
+apply (fast elim: ltE Ord_in_Ord Ord_trans)
+done
+
+(*"Ord(i) ==> ordertype(i, Memrel(i)) = i"*)
+lemmas ordertype_Memrel = le_refl [THEN le_ordertype_Memrel]
+
+lemma ordertype_0 [simp]: "ordertype(0,r) = 0"
+apply (rule id_bij [THEN ord_isoI, THEN ordertype_eq, THEN trans])
+apply (erule emptyE)
+apply (rule well_ord_0)
+apply (rule Ord_0 [THEN ordertype_Memrel])
+done
+
+(*Ordertype of rvimage:  [| f: bij(A,B);  well_ord(B,s) |] ==>
+                         ordertype(A, rvimage(A,f,s)) = ordertype(B,s) *)
+lemmas bij_ordertype_vimage = ord_iso_rvimage [THEN ordertype_eq]
+
+(*** A fundamental unfolding law for ordertype. ***)
+
+(*Ordermap returns the same result if applied to an initial segment*)
+lemma ordermap_pred_eq_ordermap:
+     "[| well_ord(A,r);  y:A;  z: pred(A,y,r) |]
+      ==> ordermap(pred(A,y,r), r) ` z = ordermap(A, r) ` z"
+apply (frule wf_on_subset_A [OF well_ord_is_wf pred_subset])
+apply (rule_tac a=z in wf_on_induct, assumption+)
+apply (safe elim!: predE)
+apply (simp (no_asm_simp) add: ordermap_pred_unfold well_ord_is_wf pred_iff)
+(*combining these two simplifications LOOPS! *)
+apply (simp (no_asm_simp) add: pred_pred_eq)
+apply (simp add: pred_def)
+apply (rule RepFun_cong [OF _ refl])
+apply (drule well_ord_is_trans_on)
+apply (fast elim!: trans_onD)
+done
+
+lemma ordertype_unfold: 
+    "ordertype(A,r) = {ordermap(A,r)`y . y : A}"
+apply (unfold ordertype_def)
+apply (rule image_fun [OF ordermap_type subset_refl])
+done
+
+(** Theorems by Krzysztof Grabczewski; proofs simplified by lcp **)
+
+lemma ordertype_pred_subset: "[| well_ord(A,r);  x:A |] ==>              
+          ordertype(pred(A,x,r),r) <= ordertype(A,r)"
+apply (simp add: ordertype_unfold well_ord_subset [OF _ pred_subset])
+apply (fast intro: ordermap_pred_eq_ordermap elim: predE)
+done
+
+lemma ordertype_pred_lt:
+     "[| well_ord(A,r);  x:A |]
+      ==> ordertype(pred(A,x,r),r) < ordertype(A,r)"
+apply (rule ordertype_pred_subset [THEN subset_imp_le, THEN leE])
+apply (simp_all add: Ord_ordertype well_ord_subset [OF _ pred_subset])
+apply (erule sym [THEN ordertype_eq_imp_ord_iso, THEN exE])
+apply (erule_tac [3] well_ord_iso_predE)
+apply (simp_all add: well_ord_subset [OF _ pred_subset])
+done
+
+(*May rewrite with this -- provided no rules are supplied for proving that
+        well_ord(pred(A,x,r), r) *)
+lemma ordertype_pred_unfold:
+     "well_ord(A,r)
+      ==> ordertype(A,r) = {ordertype(pred(A,x,r),r). x:A}"
+apply (rule equalityI)
+apply (safe intro!: ordertype_pred_lt [THEN ltD])
+apply (auto simp add: ordertype_def well_ord_is_wf [THEN ordermap_eq_image]
+                      ordermap_type [THEN image_fun]
+                      ordermap_pred_eq_ordermap pred_subset)
+done
+
+
+(**** Alternative definition of ordinal ****)
+
+(*proof by Krzysztof Grabczewski*)
+lemma Ord_is_Ord_alt: "Ord(i) ==> Ord_alt(i)"
+apply (unfold Ord_alt_def)
+apply (rule conjI)
+apply (erule well_ord_Memrel)
+apply (unfold Ord_def Transset_def pred_def Memrel_def, blast) 
+done
+
+(*proof by lcp*)
+lemma Ord_alt_is_Ord: 
+    "Ord_alt(i) ==> Ord(i)"
+apply (unfold Ord_alt_def Ord_def Transset_def well_ord_def 
+                     tot_ord_def part_ord_def trans_on_def)
+apply (simp add: pred_Memrel)
+apply (blast elim!: equalityE)
+done
+
+
+(**** Ordinal Addition ****)
+
+(*** Order Type calculations for radd ***)
+
+(** Addition with 0 **)
+
+lemma bij_sum_0: "(lam z:A+0. case(%x. x, %y. y, z)) : bij(A+0, A)"
+apply (rule_tac d = Inl in lam_bijective, safe)
+apply (simp_all (no_asm_simp))
+done
+
+lemma ordertype_sum_0_eq:
+     "well_ord(A,r) ==> ordertype(A+0, radd(A,r,0,s)) = ordertype(A,r)"
+apply (rule bij_sum_0 [THEN ord_isoI, THEN ordertype_eq])
+prefer 2 apply assumption
+apply force
+done
+
+lemma bij_0_sum: "(lam z:0+A. case(%x. x, %y. y, z)) : bij(0+A, A)"
+apply (rule_tac d = Inr in lam_bijective, safe)
+apply (simp_all (no_asm_simp))
+done
+
+lemma ordertype_0_sum_eq:
+     "well_ord(A,r) ==> ordertype(0+A, radd(0,s,A,r)) = ordertype(A,r)"
+apply (rule bij_0_sum [THEN ord_isoI, THEN ordertype_eq])
+prefer 2 apply assumption
+apply force
+done
+
+(** Initial segments of radd.  Statements by Grabczewski **)
+
+(*In fact, pred(A+B, Inl(a), radd(A,r,B,s)) = pred(A,a,r)+0 *)
+lemma pred_Inl_bij: 
+ "a:A ==> (lam x:pred(A,a,r). Inl(x))     
+          : bij(pred(A,a,r), pred(A+B, Inl(a), radd(A,r,B,s)))"
+apply (unfold pred_def)
+apply (rule_tac d = "case (%x. x, %y. y) " in lam_bijective)
+apply auto
+done
+
+lemma ordertype_pred_Inl_eq:
+     "[| a:A;  well_ord(A,r) |]
+      ==> ordertype(pred(A+B, Inl(a), radd(A,r,B,s)), radd(A,r,B,s)) =  
+          ordertype(pred(A,a,r), r)"
+apply (rule pred_Inl_bij [THEN ord_isoI, THEN ord_iso_sym, THEN ordertype_eq])
+apply (simp_all add: well_ord_subset [OF _ pred_subset])
+apply (simp add: pred_def)
+done
+
+lemma pred_Inr_bij: 
+ "b:B ==>   
+         id(A+pred(B,b,s))       
+         : bij(A+pred(B,b,s), pred(A+B, Inr(b), radd(A,r,B,s)))"
+apply (unfold pred_def id_def)
+apply (rule_tac d = "%z. z" in lam_bijective, auto) 
+done
+
+lemma ordertype_pred_Inr_eq:
+     "[| b:B;  well_ord(A,r);  well_ord(B,s) |]
+      ==> ordertype(pred(A+B, Inr(b), radd(A,r,B,s)), radd(A,r,B,s)) =  
+          ordertype(A+pred(B,b,s), radd(A,r,pred(B,b,s),s))"
+apply (rule pred_Inr_bij [THEN ord_isoI, THEN ord_iso_sym, THEN ordertype_eq])
+prefer 2 apply (force simp add: pred_def id_def, assumption)
+apply (blast intro: well_ord_radd well_ord_subset [OF _ pred_subset])
+done
+
+
+(*** ordify: trivial coercion to an ordinal ***)
+
+lemma Ord_ordify [iff, TC]: "Ord(ordify(x))"
+by (simp add: ordify_def)
+
+(*Collapsing*)
+lemma ordify_idem [simp]: "ordify(ordify(x)) = ordify(x)"
+by (simp add: ordify_def)
+
+
+(*** Basic laws for ordinal addition ***)
+
+lemma Ord_raw_oadd: "[|Ord(i); Ord(j)|] ==> Ord(raw_oadd(i,j))"
+by (simp add: raw_oadd_def ordify_def Ord_ordertype well_ord_radd
+              well_ord_Memrel)
+
+lemma Ord_oadd [iff,TC]: "Ord(i++j)"
+by (simp add: oadd_def Ord_raw_oadd)
+
+
+(** Ordinal addition with zero **)
+
+lemma raw_oadd_0: "Ord(i) ==> raw_oadd(i,0) = i"
+by (simp add: raw_oadd_def ordify_def ordertype_sum_0_eq
+              ordertype_Memrel well_ord_Memrel)
+
+lemma oadd_0 [simp]: "Ord(i) ==> i++0 = i"
+apply (simp (no_asm_simp) add: oadd_def raw_oadd_0 ordify_def)
+done
+
+lemma raw_oadd_0_left: "Ord(i) ==> raw_oadd(0,i) = i"
+by (simp add: raw_oadd_def ordify_def ordertype_0_sum_eq ordertype_Memrel
+              well_ord_Memrel)
+
+lemma oadd_0_left [simp]: "Ord(i) ==> 0++i = i"
+by (simp add: oadd_def raw_oadd_0_left ordify_def)
+
+
+lemma oadd_eq_if_raw_oadd:
+     "i++j = (if Ord(i) then (if Ord(j) then raw_oadd(i,j) else i)  
+              else (if Ord(j) then j else 0))"
+by (simp add: oadd_def ordify_def raw_oadd_0_left raw_oadd_0)
+
+lemma raw_oadd_eq_oadd: "[|Ord(i); Ord(j)|] ==> raw_oadd(i,j) = i++j"
+by (simp add: oadd_def ordify_def)
+
+(*** Further properties of ordinal addition.  Statements by Grabczewski,
+    proofs by lcp. ***)
+
+(*Surely also provable by transfinite induction on j?*)
+lemma lt_oadd1: "k<i ==> k < i++j"
+apply (simp add: oadd_def ordify_def lt_Ord2 raw_oadd_0, clarify)
+apply (simp add: raw_oadd_def)
+apply (rule ltE, assumption)
+apply (rule ltI)
+apply (force simp add: ordertype_pred_unfold well_ord_radd well_ord_Memrel
+          ordertype_pred_Inl_eq lt_pred_Memrel leI [THEN le_ordertype_Memrel])
+apply (blast intro: Ord_ordertype well_ord_radd well_ord_Memrel)
+done
+
+(*Thus also we obtain the rule  i++j = k ==> i le k *)
+lemma oadd_le_self: "Ord(i) ==> i le i++j"
+apply (rule all_lt_imp_le)
+apply (auto simp add: Ord_oadd lt_oadd1) 
+done
+
+(** A couple of strange but necessary results! **)
+
+lemma id_ord_iso_Memrel: "A<=B ==> id(A) : ord_iso(A, Memrel(A), A, Memrel(B))"
+apply (rule id_bij [THEN ord_isoI])
+apply (simp (no_asm_simp))
+apply blast
+done
+
+lemma ordertype_sum_Memrel:
+     "[| well_ord(A,r);  k<j |]
+      ==> ordertype(A+k, radd(A, r, k, Memrel(j))) =  
+          ordertype(A+k, radd(A, r, k, Memrel(k)))"
+apply (erule ltE)
+apply (rule ord_iso_refl [THEN sum_ord_iso_cong, THEN ordertype_eq])
+apply (erule OrdmemD [THEN id_ord_iso_Memrel, THEN ord_iso_sym])
+apply (simp_all add: well_ord_radd well_ord_Memrel)
+done
+
+lemma oadd_lt_mono2: "k<j ==> i++k < i++j"
+apply (simp add: oadd_def ordify_def raw_oadd_0_left lt_Ord lt_Ord2, clarify)
+apply (simp add: raw_oadd_def)
+apply (rule ltE, assumption)
+apply (rule ordertype_pred_unfold [THEN equalityD2, THEN subsetD, THEN ltI])
+apply (simp_all add: Ord_ordertype well_ord_radd well_ord_Memrel)
+apply (rule bexI)
+apply (erule_tac [2] InrI)
+apply (simp add: ordertype_pred_Inr_eq well_ord_Memrel lt_pred_Memrel
+                 leI [THEN le_ordertype_Memrel] ordertype_sum_Memrel)
+done
+
+lemma oadd_lt_cancel2: "[| i++j < i++k;  Ord(j) |] ==> j<k"
+apply (simp add: oadd_eq_if_raw_oadd split add: split_if_asm)
+ prefer 2
+ apply (frule_tac i = i and j = j in oadd_le_self)
+ apply (simp add: oadd_def ordify_def lt_Ord not_lt_iff_le [THEN iff_sym])
+apply (rule Ord_linear_lt, auto) 
+apply (simp_all add: raw_oadd_eq_oadd)
+apply (blast dest: oadd_lt_mono2 elim: lt_irrefl lt_asym)+
+done
+
+lemma oadd_lt_iff2: "Ord(j) ==> i++j < i++k <-> j<k"
+by (blast intro!: oadd_lt_mono2 dest!: oadd_lt_cancel2)
+
+lemma oadd_inject: "[| i++j = i++k;  Ord(j); Ord(k) |] ==> j=k"
+apply (simp add: oadd_eq_if_raw_oadd split add: split_if_asm)
+apply (simp add: raw_oadd_eq_oadd)
+apply (rule Ord_linear_lt, auto) 
+apply (force dest: oadd_lt_mono2 [of concl: i] simp add: lt_not_refl)+
+done
+
+lemma lt_oadd_disj: "k < i++j ==> k<i | (EX l:j. k = i++l )"
+apply (simp add: Ord_in_Ord' [of _ j] oadd_eq_if_raw_oadd
+            split add: split_if_asm)
+ prefer 2
+ apply (simp add: Ord_in_Ord' [of _ j] lt_def)
+apply (simp add: ordertype_pred_unfold well_ord_radd well_ord_Memrel raw_oadd_def)
+apply (erule ltD [THEN RepFunE])
+apply (force simp add: ordertype_pred_Inl_eq well_ord_Memrel ltI 
+                       lt_pred_Memrel le_ordertype_Memrel leI
+                       ordertype_pred_Inr_eq ordertype_sum_Memrel)
+done
+
+
+(*** Ordinal addition with successor -- via associativity! ***)
+
+lemma oadd_assoc: "(i++j)++k = i++(j++k)"
+apply (simp add: oadd_eq_if_raw_oadd Ord_raw_oadd raw_oadd_0 raw_oadd_0_left, clarify)
+apply (simp add: raw_oadd_def)
+apply (rule ordertype_eq [THEN trans])
+apply (rule sum_ord_iso_cong [OF ordertype_ord_iso [THEN ord_iso_sym] 
+                                 ord_iso_refl])
+apply (simp_all add: Ord_ordertype well_ord_radd well_ord_Memrel)
+apply (rule sum_assoc_ord_iso [THEN ordertype_eq, THEN trans])
+apply (rule_tac [2] ordertype_eq)
+apply (rule_tac [2] sum_ord_iso_cong [OF ord_iso_refl ordertype_ord_iso])
+apply (blast intro: Ord_ordertype well_ord_radd well_ord_Memrel)+
+done
+
+lemma oadd_unfold: "[| Ord(i);  Ord(j) |] ==> i++j = i Un (UN k:j. {i++k})"
+apply (rule subsetI [THEN equalityI])
+apply (erule ltI [THEN lt_oadd_disj, THEN disjE])
+apply (blast intro: Ord_oadd) 
+apply (blast elim!: ltE, blast) 
+apply (force intro: lt_oadd1 oadd_lt_mono2 simp add: Ord_mem_iff_lt)
+done
+
+lemma oadd_1: "Ord(i) ==> i++1 = succ(i)"
+apply (simp (no_asm_simp) add: oadd_unfold Ord_1 oadd_0)
+apply blast
+done
+
+lemma oadd_succ [simp]: "Ord(j) ==> i++succ(j) = succ(i++j)"
+apply (simp add: oadd_eq_if_raw_oadd, clarify)
+apply (simp add: raw_oadd_eq_oadd)
+apply (simp add: oadd_1 [of j, symmetric] oadd_1 [of "i++j", symmetric]
+                 oadd_assoc)
+done
+
+
+(** Ordinal addition with limit ordinals **)
+
+lemma oadd_UN:
+     "[| !!x. x:A ==> Ord(j(x));  a:A |]
+      ==> i ++ (UN x:A. j(x)) = (UN x:A. i++j(x))"
+by (blast intro: ltI Ord_UN Ord_oadd lt_oadd1 [THEN ltD] 
+                 oadd_lt_mono2 [THEN ltD] 
+          elim!: ltE dest!: ltI [THEN lt_oadd_disj])
+
+lemma oadd_Limit: "Limit(j) ==> i++j = (UN k:j. i++k)"
+apply (frule Limit_has_0 [THEN ltD])
+apply (simp (no_asm_simp) add: Limit_is_Ord [THEN Ord_in_Ord] oadd_UN [symmetric] Union_eq_UN [symmetric] Limit_Union_eq)
+done
+
+(** Order/monotonicity properties of ordinal addition **)
+
+lemma oadd_le_self2: "Ord(i) ==> i le j++i"
+apply (erule_tac i = i in trans_induct3)
+apply (simp (no_asm_simp) add: Ord_0_le)
+apply (simp (no_asm_simp) add: oadd_succ succ_leI)
+apply (simp (no_asm_simp) add: oadd_Limit)
+apply (rule le_trans)
+apply (rule_tac [2] le_implies_UN_le_UN)
+apply (erule_tac [2] bspec)
+prefer 2 apply assumption
+apply (simp (no_asm_simp) add: Union_eq_UN [symmetric] Limit_Union_eq le_refl Limit_is_Ord)
+done
+
+lemma oadd_le_mono1: "k le j ==> k++i le j++i"
+apply (frule lt_Ord)
+apply (frule le_Ord2)
+apply (simp add: oadd_eq_if_raw_oadd, clarify)
+apply (simp add: raw_oadd_eq_oadd)
+apply (erule_tac i = i in trans_induct3)
+apply (simp (no_asm_simp))
+apply (simp (no_asm_simp) add: oadd_succ succ_le_iff)
+apply (simp (no_asm_simp) add: oadd_Limit)
+apply (rule le_implies_UN_le_UN, blast)
+done
+
+lemma oadd_lt_mono: "[| i' le i;  j'<j |] ==> i'++j' < i++j"
+by (blast intro: lt_trans1 oadd_le_mono1 oadd_lt_mono2 Ord_succD elim: ltE)
+
+lemma oadd_le_mono: "[| i' le i;  j' le j |] ==> i'++j' le i++j"
+by (simp del: oadd_succ add: oadd_succ [symmetric] le_Ord2 oadd_lt_mono)
+
+lemma oadd_le_iff2: "[| Ord(j); Ord(k) |] ==> i++j le i++k <-> j le k"
+by (simp del: oadd_succ add: oadd_lt_iff2 oadd_succ [symmetric] Ord_succ)
+
+
+(** Ordinal subtraction; the difference is ordertype(j-i, Memrel(j)). 
+    Probably simpler to define the difference recursively!
+**)
+
+lemma bij_sum_Diff:
+     "A<=B ==> (lam y:B. if(y:A, Inl(y), Inr(y))) : bij(B, A+(B-A))"
+apply (rule_tac d = "case (%x. x, %y. y) " in lam_bijective)
+apply (blast intro!: if_type)
+apply (fast intro!: case_type)
+apply (erule_tac [2] sumE)
+apply (simp_all (no_asm_simp))
+done
+
+lemma ordertype_sum_Diff:
+     "i le j ==>   
+            ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j))) =        
+            ordertype(j, Memrel(j))"
+apply (safe dest!: le_subset_iff [THEN iffD1])
+apply (rule bij_sum_Diff [THEN ord_isoI, THEN ord_iso_sym, THEN ordertype_eq])
+apply (erule_tac [3] well_ord_Memrel, assumption)
+apply (simp (no_asm_simp))
+apply (frule_tac j = y in Ord_in_Ord, assumption)
+apply (frule_tac j = x in Ord_in_Ord, assumption)
+apply (simp (no_asm_simp) add: Ord_mem_iff_lt lt_Ord not_lt_iff_le)
+apply (blast intro: lt_trans2 lt_trans)
+done
+
+lemma Ord_odiff [simp,TC]: 
+    "[| Ord(i);  Ord(j) |] ==> Ord(i--j)"
+apply (unfold odiff_def)
+apply (blast intro: Ord_ordertype Diff_subset well_ord_subset well_ord_Memrel)
+done
+
+
+lemma raw_oadd_ordertype_Diff: 
+   "i le j   
+    ==> raw_oadd(i,j--i) = ordertype(i+(j-i), radd(i,Memrel(j),j-i,Memrel(j)))"
+apply (simp add: raw_oadd_def odiff_def)
+apply (safe dest!: le_subset_iff [THEN iffD1])
+apply (rule sum_ord_iso_cong [THEN ordertype_eq])
+apply (erule id_ord_iso_Memrel)
+apply (rule ordertype_ord_iso [THEN ord_iso_sym])
+apply (blast intro: well_ord_radd Diff_subset well_ord_subset well_ord_Memrel)+
+done
+
+lemma oadd_odiff_inverse: "i le j ==> i ++ (j--i) = j"
+by (simp add: lt_Ord le_Ord2 oadd_def ordify_def raw_oadd_ordertype_Diff
+              ordertype_sum_Diff ordertype_Memrel lt_Ord2 [THEN Ord_succD])
+
+(*By oadd_inject, the difference between i and j is unique.  Note that we get
+  i++j = k  ==>  j = k--i.  *)
+lemma odiff_oadd_inverse: "[| Ord(i); Ord(j) |] ==> (i++j) -- i = j"
+apply (rule oadd_inject)
+apply (blast intro: oadd_odiff_inverse oadd_le_self)
+apply (blast intro: Ord_ordertype Ord_oadd Ord_odiff)+
+done
+
+lemma odiff_lt_mono2: "[| i<j;  k le i |] ==> i--k < j--k"
+apply (rule_tac i = k in oadd_lt_cancel2)
+apply (simp add: oadd_odiff_inverse)
+apply (subst oadd_odiff_inverse)
+apply (blast intro: le_trans leI, assumption)
+apply (simp (no_asm_simp) add: lt_Ord le_Ord2)
+done
+
+
+(**** Ordinal Multiplication ****)
+
+lemma Ord_omult [simp,TC]: 
+    "[| Ord(i);  Ord(j) |] ==> Ord(i**j)"
+apply (unfold omult_def)
+apply (blast intro: Ord_ordertype well_ord_rmult well_ord_Memrel)
+done
+
+(*** A useful unfolding law ***)
+
+lemma pred_Pair_eq: 
+ "[| a:A;  b:B |] ==> pred(A*B, <a,b>, rmult(A,r,B,s)) =      
+                      pred(A,a,r)*B Un ({a} * pred(B,b,s))"
+apply (unfold pred_def, blast)
+done
+
+lemma ordertype_pred_Pair_eq:
+     "[| a:A;  b:B;  well_ord(A,r);  well_ord(B,s) |] ==>            
+         ordertype(pred(A*B, <a,b>, rmult(A,r,B,s)), rmult(A,r,B,s)) =  
+         ordertype(pred(A,a,r)*B + pred(B,b,s),                         
+                  radd(A*B, rmult(A,r,B,s), B, s))"
+apply (simp (no_asm_simp) add: pred_Pair_eq)
+apply (rule ordertype_eq [symmetric])
+apply (rule prod_sum_singleton_ord_iso)
+apply (simp_all add: pred_subset well_ord_rmult [THEN well_ord_subset])
+apply (blast intro: pred_subset well_ord_rmult [THEN well_ord_subset] 
+             elim!: predE)
+done
+
+lemma ordertype_pred_Pair_lemma: 
+    "[| i'<i;  j'<j |]
+     ==> ordertype(pred(i*j, <i',j'>, rmult(i,Memrel(i),j,Memrel(j))),  
+                   rmult(i,Memrel(i),j,Memrel(j))) =                    
+         raw_oadd (j**i', j')"
+apply (unfold raw_oadd_def omult_def)
+apply (simp (no_asm_simp) add: ordertype_pred_Pair_eq lt_pred_Memrel ltD lt_Ord2 well_ord_Memrel)
+apply (rule trans)
+apply (rule_tac [2] ordertype_ord_iso [THEN sum_ord_iso_cong, THEN ordertype_eq])
+apply (rule_tac [3] ord_iso_refl)
+apply (rule id_bij [THEN ord_isoI, THEN ordertype_eq])
+apply (elim SigmaE sumE ltE ssubst)
+apply (simp_all add: well_ord_rmult well_ord_radd well_ord_Memrel
+                     Ord_ordertype lt_Ord lt_Ord2) 
+apply (blast intro: Ord_trans)+
+done
+
+lemma lt_omult: 
+ "[| Ord(i);  Ord(j);  k<j**i |]
+  ==> EX j' i'. k = j**i' ++ j' & j'<j & i'<i"
+apply (unfold omult_def)
+apply (simp add: ordertype_pred_unfold well_ord_rmult well_ord_Memrel)
+apply (safe elim!: ltE)
+apply (simp add: ordertype_pred_Pair_lemma ltI raw_oadd_eq_oadd 
+            omult_def [symmetric] Ord_in_Ord' [of _ i] Ord_in_Ord' [of _ j])
+apply (blast intro: ltI)
+done
+
+lemma omult_oadd_lt: 
+     "[| j'<j;  i'<i |] ==> j**i' ++ j'  <  j**i"
+apply (unfold omult_def)
+apply (rule ltI)
+ prefer 2
+ apply (simp add: Ord_ordertype well_ord_rmult well_ord_Memrel lt_Ord2)
+apply (simp (no_asm_simp) add: ordertype_pred_unfold well_ord_rmult well_ord_Memrel lt_Ord2)
+apply (rule bexI)
+prefer 2 apply (blast elim!: ltE)
+apply (simp add: ordertype_pred_Pair_lemma ltI omult_def [symmetric])
+apply (simp add: lt_Ord lt_Ord2 raw_oadd_eq_oadd)
+done
+
+lemma omult_unfold:
+     "[| Ord(i);  Ord(j) |] ==> j**i = (UN j':j. UN i':i. {j**i' ++ j'})"
+apply (rule subsetI [THEN equalityI])
+apply (rule lt_omult [THEN exE])
+apply (erule_tac [3] ltI)
+apply (simp_all add: Ord_omult) 
+apply (blast elim!: ltE)
+apply (blast intro: omult_oadd_lt [THEN ltD] ltI)
+done
+
+(*** Basic laws for ordinal multiplication ***)
+
+(** Ordinal multiplication by zero **)
+
+lemma omult_0 [simp]: "i**0 = 0"
+apply (unfold omult_def)
+apply (simp (no_asm_simp))
+done
+
+lemma omult_0_left [simp]: "0**i = 0"
+apply (unfold omult_def)
+apply (simp (no_asm_simp))
+done
+
+(** Ordinal multiplication by 1 **)
+
+lemma omult_1 [simp]: "Ord(i) ==> i**1 = i"
+apply (unfold omult_def)
+apply (rule_tac s1="Memrel(i)" 
+       in ord_isoI [THEN ordertype_eq, THEN trans])
+apply (rule_tac c = snd and d = "%z.<0,z>"  in lam_bijective)
+apply (auto elim!: snd_type well_ord_Memrel ordertype_Memrel)
+done
+
+lemma omult_1_left [simp]: "Ord(i) ==> 1**i = i"
+apply (unfold omult_def)
+apply (rule_tac s1="Memrel(i)" 
+       in ord_isoI [THEN ordertype_eq, THEN trans])
+apply (rule_tac c = fst and d = "%z.<z,0>" in lam_bijective)
+apply (auto elim!: fst_type well_ord_Memrel ordertype_Memrel)
+done
+
+(** Distributive law for ordinal multiplication and addition **)
+
+lemma oadd_omult_distrib:
+     "[| Ord(i);  Ord(j);  Ord(k) |] ==> i**(j++k) = (i**j)++(i**k)"
+apply (simp add: oadd_eq_if_raw_oadd)
+apply (simp add: omult_def raw_oadd_def)
+apply (rule ordertype_eq [THEN trans])
+apply (rule prod_ord_iso_cong [OF ordertype_ord_iso [THEN ord_iso_sym] 
+                                  ord_iso_refl])
+apply (simp_all add: well_ord_rmult well_ord_radd well_ord_Memrel 
+                     Ord_ordertype)
+apply (rule sum_prod_distrib_ord_iso [THEN ordertype_eq, THEN trans])
+apply (rule_tac [2] ordertype_eq)
+apply (rule_tac [2] sum_ord_iso_cong [OF ordertype_ord_iso ordertype_ord_iso])
+apply (simp_all add: well_ord_rmult well_ord_radd well_ord_Memrel 
+                     Ord_ordertype)
+done
+
+lemma omult_succ: "[| Ord(i);  Ord(j) |] ==> i**succ(j) = (i**j)++i"
+by (simp del: oadd_succ add: oadd_1 [of j, symmetric] oadd_omult_distrib)
+
+(** Associative law **)
+
+lemma omult_assoc: 
+    "[| Ord(i);  Ord(j);  Ord(k) |] ==> (i**j)**k = i**(j**k)"
+apply (unfold omult_def)
+apply (rule ordertype_eq [THEN trans])
+apply (rule prod_ord_iso_cong [OF ord_iso_refl 
+                                  ordertype_ord_iso [THEN ord_iso_sym]])
+apply (blast intro: well_ord_rmult well_ord_Memrel)+
+apply (rule prod_assoc_ord_iso [THEN ord_iso_sym, THEN ordertype_eq, THEN trans])
+apply (rule_tac [2] ordertype_eq)
+apply (rule_tac [2] prod_ord_iso_cong [OF ordertype_ord_iso ord_iso_refl])
+apply (blast intro: well_ord_rmult well_ord_Memrel Ord_ordertype)+
+done
+
+
+(** Ordinal multiplication with limit ordinals **)
+
+lemma omult_UN: 
+     "[| Ord(i);  !!x. x:A ==> Ord(j(x)) |]
+      ==> i ** (UN x:A. j(x)) = (UN x:A. i**j(x))"
+by (simp (no_asm_simp) add: Ord_UN omult_unfold, blast)
+
+lemma omult_Limit: "[| Ord(i);  Limit(j) |] ==> i**j = (UN k:j. i**k)"
+by (simp add: Limit_is_Ord [THEN Ord_in_Ord] omult_UN [symmetric] 
+              Union_eq_UN [symmetric] Limit_Union_eq)
+
+
+(*** Ordering/monotonicity properties of ordinal multiplication ***)
+
+(*As a special case we have "[| 0<i;  0<j |] ==> 0 < i**j" *)
+lemma lt_omult1: "[| k<i;  0<j |] ==> k < i**j"
+apply (safe elim!: ltE intro!: ltI Ord_omult)
+apply (force simp add: omult_unfold)
+done
+
+lemma omult_le_self: "[| Ord(i);  0<j |] ==> i le i**j"
+by (blast intro: all_lt_imp_le Ord_omult lt_omult1 lt_Ord2)
+
+lemma omult_le_mono1: "[| k le j;  Ord(i) |] ==> k**i le j**i"
+apply (frule lt_Ord)
+apply (frule le_Ord2)
+apply (erule trans_induct3)
+apply (simp (no_asm_simp) add: le_refl Ord_0)
+apply (simp (no_asm_simp) add: omult_succ oadd_le_mono)
+apply (simp (no_asm_simp) add: omult_Limit)
+apply (rule le_implies_UN_le_UN, blast)
+done
+
+lemma omult_lt_mono2: "[| k<j;  0<i |] ==> i**k < i**j"
+apply (rule ltI)
+apply (simp (no_asm_simp) add: omult_unfold lt_Ord2)
+apply (safe elim!: ltE intro!: Ord_omult)
+apply (force simp add: Ord_omult)
+done
+
+lemma omult_le_mono2: "[| k le j;  Ord(i) |] ==> i**k le i**j"
+apply (rule subset_imp_le)
+apply (safe elim!: ltE dest!: Ord_succD intro!: Ord_omult)
+apply (simp add: omult_unfold)
+apply (blast intro: Ord_trans) 
+done
+
+lemma omult_le_mono: "[| i' le i;  j' le j |] ==> i'**j' le i**j"
+by (blast intro: le_trans omult_le_mono1 omult_le_mono2 Ord_succD elim: ltE)
+
+lemma omult_lt_mono: "[| i' le i;  j'<j;  0<i |] ==> i'**j' < i**j"
+by (blast intro: lt_trans1 omult_le_mono1 omult_lt_mono2 Ord_succD elim: ltE)
+
+lemma omult_le_self2: "[| Ord(i);  0<j |] ==> i le j**i"
+apply (frule lt_Ord2)
+apply (erule_tac i = i in trans_induct3)
+apply (simp (no_asm_simp))
+apply (simp (no_asm_simp) add: omult_succ)
+apply (erule lt_trans1)
+apply (rule_tac b = "j**x" in oadd_0 [THEN subst], rule_tac [2] oadd_lt_mono2)
+apply (blast intro: Ord_omult, assumption)
+apply (simp (no_asm_simp) add: omult_Limit)
+apply (rule le_trans)
+apply (rule_tac [2] le_implies_UN_le_UN)
+prefer 2 apply blast
+apply (simp (no_asm_simp) add: Union_eq_UN [symmetric] Limit_Union_eq Limit_is_Ord)
+done
+
+
+(** Further properties of ordinal multiplication **)
+
+lemma omult_inject: "[| i**j = i**k;  0<i;  Ord(j);  Ord(k) |] ==> j=k"
+apply (rule Ord_linear_lt)
+prefer 4 apply assumption
+apply auto 
+apply (force dest: omult_lt_mono2 simp add: lt_not_refl)+
+done
+
+ML {*
+val ordermap_def = thm "ordermap_def";
+val ordertype_def = thm "ordertype_def";
+val Ord_alt_def = thm "Ord_alt_def";
+val ordify_def = thm "ordify_def";
+
+val Ord_in_Ord' = thm "Ord_in_Ord'";
+val le_well_ord_Memrel = thm "le_well_ord_Memrel";
+val well_ord_Memrel = thm "well_ord_Memrel";
+val lt_pred_Memrel = thm "lt_pred_Memrel";
+val pred_Memrel = thm "pred_Memrel";
+val Ord_iso_implies_eq_lemma = thm "Ord_iso_implies_eq_lemma";
+val Ord_iso_implies_eq = thm "Ord_iso_implies_eq";
+val ordermap_type = thm "ordermap_type";
+val ordermap_eq_image = thm "ordermap_eq_image";
+val ordermap_pred_unfold = thm "ordermap_pred_unfold";
+val ordermap_unfold = thm "ordermap_unfold";
+val Ord_ordermap = thm "Ord_ordermap";
+val Ord_ordertype = thm "Ord_ordertype";
+val ordermap_mono = thm "ordermap_mono";
+val converse_ordermap_mono = thm "converse_ordermap_mono";
+val ordermap_surj = thm "ordermap_surj";
+val ordermap_bij = thm "ordermap_bij";
+val ordertype_ord_iso = thm "ordertype_ord_iso";
+val ordertype_eq = thm "ordertype_eq";
+val ordertype_eq_imp_ord_iso = thm "ordertype_eq_imp_ord_iso";
+val le_ordertype_Memrel = thm "le_ordertype_Memrel";
+val ordertype_Memrel = thm "ordertype_Memrel";
+val ordertype_0 = thm "ordertype_0";
+val bij_ordertype_vimage = thm "bij_ordertype_vimage";
+val ordermap_pred_eq_ordermap = thm "ordermap_pred_eq_ordermap";
+val ordertype_unfold = thm "ordertype_unfold";
+val ordertype_pred_subset = thm "ordertype_pred_subset";
+val ordertype_pred_lt = thm "ordertype_pred_lt";
+val ordertype_pred_unfold = thm "ordertype_pred_unfold";
+val Ord_is_Ord_alt = thm "Ord_is_Ord_alt";
+val Ord_alt_is_Ord = thm "Ord_alt_is_Ord";
+val bij_sum_0 = thm "bij_sum_0";
+val ordertype_sum_0_eq = thm "ordertype_sum_0_eq";
+val bij_0_sum = thm "bij_0_sum";
+val ordertype_0_sum_eq = thm "ordertype_0_sum_eq";
+val pred_Inl_bij = thm "pred_Inl_bij";
+val ordertype_pred_Inl_eq = thm "ordertype_pred_Inl_eq";
+val pred_Inr_bij = thm "pred_Inr_bij";
+val ordertype_pred_Inr_eq = thm "ordertype_pred_Inr_eq";
+val Ord_ordify = thm "Ord_ordify";
+val ordify_idem = thm "ordify_idem";
+val Ord_raw_oadd = thm "Ord_raw_oadd";
+val Ord_oadd = thm "Ord_oadd";
+val raw_oadd_0 = thm "raw_oadd_0";
+val oadd_0 = thm "oadd_0";
+val raw_oadd_0_left = thm "raw_oadd_0_left";
+val oadd_0_left = thm "oadd_0_left";
+val oadd_eq_if_raw_oadd = thm "oadd_eq_if_raw_oadd";
+val raw_oadd_eq_oadd = thm "raw_oadd_eq_oadd";
+val lt_oadd1 = thm "lt_oadd1";
+val oadd_le_self = thm "oadd_le_self";
+val id_ord_iso_Memrel = thm "id_ord_iso_Memrel";
+val ordertype_sum_Memrel = thm "ordertype_sum_Memrel";
+val oadd_lt_mono2 = thm "oadd_lt_mono2";
+val oadd_lt_cancel2 = thm "oadd_lt_cancel2";
+val oadd_lt_iff2 = thm "oadd_lt_iff2";
+val oadd_inject = thm "oadd_inject";
+val lt_oadd_disj = thm "lt_oadd_disj";
+val oadd_assoc = thm "oadd_assoc";
+val oadd_unfold = thm "oadd_unfold";
+val oadd_1 = thm "oadd_1";
+val oadd_succ = thm "oadd_succ";
+val oadd_UN = thm "oadd_UN";
+val oadd_Limit = thm "oadd_Limit";
+val oadd_le_self2 = thm "oadd_le_self2";
+val oadd_le_mono1 = thm "oadd_le_mono1";
+val oadd_lt_mono = thm "oadd_lt_mono";
+val oadd_le_mono = thm "oadd_le_mono";
+val oadd_le_iff2 = thm "oadd_le_iff2";
+val bij_sum_Diff = thm "bij_sum_Diff";
+val ordertype_sum_Diff = thm "ordertype_sum_Diff";
+val Ord_odiff = thm "Ord_odiff";
+val raw_oadd_ordertype_Diff = thm "raw_oadd_ordertype_Diff";
+val oadd_odiff_inverse = thm "oadd_odiff_inverse";
+val odiff_oadd_inverse = thm "odiff_oadd_inverse";
+val odiff_lt_mono2 = thm "odiff_lt_mono2";
+val Ord_omult = thm "Ord_omult";
+val pred_Pair_eq = thm "pred_Pair_eq";
+val ordertype_pred_Pair_eq = thm "ordertype_pred_Pair_eq";
+val ordertype_pred_Pair_lemma = thm "ordertype_pred_Pair_lemma";
+val lt_omult = thm "lt_omult";
+val omult_oadd_lt = thm "omult_oadd_lt";
+val omult_unfold = thm "omult_unfold";
+val omult_0 = thm "omult_0";
+val omult_0_left = thm "omult_0_left";
+val omult_1 = thm "omult_1";
+val omult_1_left = thm "omult_1_left";
+val oadd_omult_distrib = thm "oadd_omult_distrib";
+val omult_succ = thm "omult_succ";
+val omult_assoc = thm "omult_assoc";
+val omult_UN = thm "omult_UN";
+val omult_Limit = thm "omult_Limit";
+val lt_omult1 = thm "lt_omult1";
+val omult_le_self = thm "omult_le_self";
+val omult_le_mono1 = thm "omult_le_mono1";
+val omult_lt_mono2 = thm "omult_lt_mono2";
+val omult_le_mono2 = thm "omult_le_mono2";
+val omult_le_mono = thm "omult_le_mono";
+val omult_lt_mono = thm "omult_lt_mono";
+val omult_le_self2 = thm "omult_le_self2";
+val omult_inject = thm "omult_inject";
+*}
 
 end