src/HOL/Analysis/Linear_Algebra.thy
changeset 63627 6ddb43c6b711
parent 63469 b6900858dcb9
child 63680 6e1e8b5abbfa
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Analysis/Linear_Algebra.thy	Mon Aug 08 14:13:14 2016 +0200
@@ -0,0 +1,3214 @@
+(*  Title:      HOL/Analysis/Linear_Algebra.thy
+    Author:     Amine Chaieb, University of Cambridge
+*)
+
+section \<open>Elementary linear algebra on Euclidean spaces\<close>
+
+theory Linear_Algebra
+imports
+  Euclidean_Space
+  "~~/src/HOL/Library/Infinite_Set"
+begin
+
+subsection \<open>A generic notion of "hull" (convex, affine, conic hull and closure).\<close>
+
+definition hull :: "('a set \<Rightarrow> bool) \<Rightarrow> 'a set \<Rightarrow> 'a set"  (infixl "hull" 75)
+  where "S hull s = \<Inter>{t. S t \<and> s \<subseteq> t}"
+
+lemma hull_same: "S s \<Longrightarrow> S hull s = s"
+  unfolding hull_def by auto
+
+lemma hull_in: "(\<And>T. Ball T S \<Longrightarrow> S (\<Inter>T)) \<Longrightarrow> S (S hull s)"
+  unfolding hull_def Ball_def by auto
+
+lemma hull_eq: "(\<And>T. Ball T S \<Longrightarrow> S (\<Inter>T)) \<Longrightarrow> (S hull s) = s \<longleftrightarrow> S s"
+  using hull_same[of S s] hull_in[of S s] by metis
+
+lemma hull_hull [simp]: "S hull (S hull s) = S hull s"
+  unfolding hull_def by blast
+
+lemma hull_subset[intro]: "s \<subseteq> (S hull s)"
+  unfolding hull_def by blast
+
+lemma hull_mono: "s \<subseteq> t \<Longrightarrow> (S hull s) \<subseteq> (S hull t)"
+  unfolding hull_def by blast
+
+lemma hull_antimono: "\<forall>x. S x \<longrightarrow> T x \<Longrightarrow> (T hull s) \<subseteq> (S hull s)"
+  unfolding hull_def by blast
+
+lemma hull_minimal: "s \<subseteq> t \<Longrightarrow> S t \<Longrightarrow> (S hull s) \<subseteq> t"
+  unfolding hull_def by blast
+
+lemma subset_hull: "S t \<Longrightarrow> S hull s \<subseteq> t \<longleftrightarrow> s \<subseteq> t"
+  unfolding hull_def by blast
+
+lemma hull_UNIV [simp]: "S hull UNIV = UNIV"
+  unfolding hull_def by auto
+
+lemma hull_unique: "s \<subseteq> t \<Longrightarrow> S t \<Longrightarrow> (\<And>t'. s \<subseteq> t' \<Longrightarrow> S t' \<Longrightarrow> t \<subseteq> t') \<Longrightarrow> (S hull s = t)"
+  unfolding hull_def by auto
+
+lemma hull_induct: "(\<And>x. x\<in> S \<Longrightarrow> P x) \<Longrightarrow> Q {x. P x} \<Longrightarrow> \<forall>x\<in> Q hull S. P x"
+  using hull_minimal[of S "{x. P x}" Q]
+  by (auto simp add: subset_eq)
+
+lemma hull_inc: "x \<in> S \<Longrightarrow> x \<in> P hull S"
+  by (metis hull_subset subset_eq)
+
+lemma hull_union_subset: "(S hull s) \<union> (S hull t) \<subseteq> (S hull (s \<union> t))"
+  unfolding Un_subset_iff by (metis hull_mono Un_upper1 Un_upper2)
+
+lemma hull_union:
+  assumes T: "\<And>T. Ball T S \<Longrightarrow> S (\<Inter>T)"
+  shows "S hull (s \<union> t) = S hull (S hull s \<union> S hull t)"
+  apply rule
+  apply (rule hull_mono)
+  unfolding Un_subset_iff
+  apply (metis hull_subset Un_upper1 Un_upper2 subset_trans)
+  apply (rule hull_minimal)
+  apply (metis hull_union_subset)
+  apply (metis hull_in T)
+  done
+
+lemma hull_redundant_eq: "a \<in> (S hull s) \<longleftrightarrow> S hull (insert a s) = S hull s"
+  unfolding hull_def by blast
+
+lemma hull_redundant: "a \<in> (S hull s) \<Longrightarrow> S hull (insert a s) = S hull s"
+  by (metis hull_redundant_eq)
+
+subsection \<open>Linear functions.\<close>
+
+lemma linear_iff:
+  "linear f \<longleftrightarrow> (\<forall>x y. f (x + y) = f x + f y) \<and> (\<forall>c x. f (c *\<^sub>R x) = c *\<^sub>R f x)"
+  (is "linear f \<longleftrightarrow> ?rhs")
+proof
+  assume "linear f"
+  then interpret f: linear f .
+  show "?rhs" by (simp add: f.add f.scaleR)
+next
+  assume "?rhs"
+  then show "linear f" by unfold_locales simp_all
+qed
+
+lemma linear_compose_cmul: "linear f \<Longrightarrow> linear (\<lambda>x. c *\<^sub>R f x)"
+  by (simp add: linear_iff algebra_simps)
+
+lemma linear_compose_scaleR: "linear f \<Longrightarrow> linear (\<lambda>x. f x *\<^sub>R c)"
+  by (simp add: linear_iff scaleR_add_left)
+
+lemma linear_compose_neg: "linear f \<Longrightarrow> linear (\<lambda>x. - f x)"
+  by (simp add: linear_iff)
+
+lemma linear_compose_add: "linear f \<Longrightarrow> linear g \<Longrightarrow> linear (\<lambda>x. f x + g x)"
+  by (simp add: linear_iff algebra_simps)
+
+lemma linear_compose_sub: "linear f \<Longrightarrow> linear g \<Longrightarrow> linear (\<lambda>x. f x - g x)"
+  by (simp add: linear_iff algebra_simps)
+
+lemma linear_compose: "linear f \<Longrightarrow> linear g \<Longrightarrow> linear (g \<circ> f)"
+  by (simp add: linear_iff)
+
+lemma linear_id: "linear id"
+  by (simp add: linear_iff id_def)
+
+lemma linear_zero: "linear (\<lambda>x. 0)"
+  by (simp add: linear_iff)
+
+lemma linear_uminus: "linear uminus"
+by (simp add: linear_iff)
+
+lemma linear_compose_setsum:
+  assumes lS: "\<forall>a \<in> S. linear (f a)"
+  shows "linear (\<lambda>x. setsum (\<lambda>a. f a x) S)"
+proof (cases "finite S")
+  case True
+  then show ?thesis
+    using lS by induct (simp_all add: linear_zero linear_compose_add)
+next
+  case False
+  then show ?thesis
+    by (simp add: linear_zero)
+qed
+
+lemma linear_0: "linear f \<Longrightarrow> f 0 = 0"
+  unfolding linear_iff
+  apply clarsimp
+  apply (erule allE[where x="0::'a"])
+  apply simp
+  done
+
+lemma linear_cmul: "linear f \<Longrightarrow> f (c *\<^sub>R x) = c *\<^sub>R f x"
+  by (rule linear.scaleR)
+
+lemma linear_neg: "linear f \<Longrightarrow> f (- x) = - f x"
+  using linear_cmul [where c="-1"] by simp
+
+lemma linear_add: "linear f \<Longrightarrow> f (x + y) = f x + f y"
+  by (metis linear_iff)
+
+lemma linear_diff: "linear f \<Longrightarrow> f (x - y) = f x - f y"
+  using linear_add [of f x "- y"] by (simp add: linear_neg)
+
+lemma linear_setsum:
+  assumes f: "linear f"
+  shows "f (setsum g S) = setsum (f \<circ> g) S"
+proof (cases "finite S")
+  case True
+  then show ?thesis
+    by induct (simp_all add: linear_0 [OF f] linear_add [OF f])
+next
+  case False
+  then show ?thesis
+    by (simp add: linear_0 [OF f])
+qed
+
+lemma linear_setsum_mul:
+  assumes lin: "linear f"
+  shows "f (setsum (\<lambda>i. c i *\<^sub>R v i) S) = setsum (\<lambda>i. c i *\<^sub>R f (v i)) S"
+  using linear_setsum[OF lin, of "\<lambda>i. c i *\<^sub>R v i" , unfolded o_def] linear_cmul[OF lin]
+  by simp
+
+lemma linear_injective_0:
+  assumes lin: "linear f"
+  shows "inj f \<longleftrightarrow> (\<forall>x. f x = 0 \<longrightarrow> x = 0)"
+proof -
+  have "inj f \<longleftrightarrow> (\<forall> x y. f x = f y \<longrightarrow> x = y)"
+    by (simp add: inj_on_def)
+  also have "\<dots> \<longleftrightarrow> (\<forall> x y. f x - f y = 0 \<longrightarrow> x - y = 0)"
+    by simp
+  also have "\<dots> \<longleftrightarrow> (\<forall> x y. f (x - y) = 0 \<longrightarrow> x - y = 0)"
+    by (simp add: linear_diff[OF lin])
+  also have "\<dots> \<longleftrightarrow> (\<forall> x. f x = 0 \<longrightarrow> x = 0)"
+    by auto
+  finally show ?thesis .
+qed
+
+lemma linear_scaleR  [simp]: "linear (\<lambda>x. scaleR c x)"
+  by (simp add: linear_iff scaleR_add_right)
+
+lemma linear_scaleR_left [simp]: "linear (\<lambda>r. scaleR r x)"
+  by (simp add: linear_iff scaleR_add_left)
+
+lemma injective_scaleR: "c \<noteq> 0 \<Longrightarrow> inj (\<lambda>x::'a::real_vector. scaleR c x)"
+  by (simp add: inj_on_def)
+
+lemma linear_add_cmul:
+  assumes "linear f"
+  shows "f (a *\<^sub>R x + b *\<^sub>R y) = a *\<^sub>R f x +  b *\<^sub>R f y"
+  using linear_add[of f] linear_cmul[of f] assms by simp
+
+subsection \<open>Subspaces of vector spaces\<close>
+
+definition (in real_vector) subspace :: "'a set \<Rightarrow> bool"
+  where "subspace S \<longleftrightarrow> 0 \<in> S \<and> (\<forall>x \<in> S. \<forall>y \<in> S. x + y \<in> S) \<and> (\<forall>c. \<forall>x \<in> S. c *\<^sub>R x \<in> S)"
+
+definition (in real_vector) "span S = (subspace hull S)"
+definition (in real_vector) "dependent S \<longleftrightarrow> (\<exists>a \<in> S. a \<in> span (S - {a}))"
+abbreviation (in real_vector) "independent s \<equiv> \<not> dependent s"
+
+text \<open>Closure properties of subspaces.\<close>
+
+lemma subspace_UNIV[simp]: "subspace UNIV"
+  by (simp add: subspace_def)
+
+lemma (in real_vector) subspace_0: "subspace S \<Longrightarrow> 0 \<in> S"
+  by (metis subspace_def)
+
+lemma (in real_vector) subspace_add: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x + y \<in> S"
+  by (metis subspace_def)
+
+lemma (in real_vector) subspace_mul: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> c *\<^sub>R x \<in> S"
+  by (metis subspace_def)
+
+lemma subspace_neg: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> - x \<in> S"
+  by (metis scaleR_minus1_left subspace_mul)
+
+lemma subspace_diff: "subspace S \<Longrightarrow> x \<in> S \<Longrightarrow> y \<in> S \<Longrightarrow> x - y \<in> S"
+  using subspace_add [of S x "- y"] by (simp add: subspace_neg)
+
+lemma (in real_vector) subspace_setsum:
+  assumes sA: "subspace A"
+    and f: "\<And>x. x \<in> B \<Longrightarrow> f x \<in> A"
+  shows "setsum f B \<in> A"
+proof (cases "finite B")
+  case True
+  then show ?thesis
+    using f by induct (simp_all add: subspace_0 [OF sA] subspace_add [OF sA])
+qed (simp add: subspace_0 [OF sA])
+
+lemma subspace_trivial [iff]: "subspace {0}"
+  by (simp add: subspace_def)
+
+lemma (in real_vector) subspace_inter: "subspace A \<Longrightarrow> subspace B \<Longrightarrow> subspace (A \<inter> B)"
+  by (simp add: subspace_def)
+
+lemma subspace_Times: "subspace A \<Longrightarrow> subspace B \<Longrightarrow> subspace (A \<times> B)"
+  unfolding subspace_def zero_prod_def by simp
+
+lemma subspace_sums: "\<lbrakk>subspace S; subspace T\<rbrakk> \<Longrightarrow> subspace {x + y|x y. x \<in> S \<and> y \<in> T}"
+apply (simp add: subspace_def)
+apply (intro conjI impI allI)
+  using add.right_neutral apply blast
+ apply clarify
+ apply (metis add.assoc add.left_commute)
+using scaleR_add_right by blast
+
+subsection \<open>Properties of span\<close>
+
+lemma (in real_vector) span_mono: "A \<subseteq> B \<Longrightarrow> span A \<subseteq> span B"
+  by (metis span_def hull_mono)
+
+lemma (in real_vector) subspace_span [iff]: "subspace (span S)"
+  unfolding span_def
+  apply (rule hull_in)
+  apply (simp only: subspace_def Inter_iff Int_iff subset_eq)
+  apply auto
+  done
+
+lemma (in real_vector) span_clauses:
+  "a \<in> S \<Longrightarrow> a \<in> span S"
+  "0 \<in> span S"
+  "x\<in> span S \<Longrightarrow> y \<in> span S \<Longrightarrow> x + y \<in> span S"
+  "x \<in> span S \<Longrightarrow> c *\<^sub>R x \<in> span S"
+  by (metis span_def hull_subset subset_eq) (metis subspace_span subspace_def)+
+
+lemma span_unique:
+  "S \<subseteq> T \<Longrightarrow> subspace T \<Longrightarrow> (\<And>T'. S \<subseteq> T' \<Longrightarrow> subspace T' \<Longrightarrow> T \<subseteq> T') \<Longrightarrow> span S = T"
+  unfolding span_def by (rule hull_unique)
+
+lemma span_minimal: "S \<subseteq> T \<Longrightarrow> subspace T \<Longrightarrow> span S \<subseteq> T"
+  unfolding span_def by (rule hull_minimal)
+
+lemma span_UNIV: "span UNIV = UNIV"
+  by (intro span_unique) auto
+
+lemma (in real_vector) span_induct:
+  assumes x: "x \<in> span S"
+    and P: "subspace (Collect P)"
+    and SP: "\<And>x. x \<in> S \<Longrightarrow> P x"
+  shows "P x"
+proof -
+  from SP have SP': "S \<subseteq> Collect P"
+    by (simp add: subset_eq)
+  from x hull_minimal[where S=subspace, OF SP' P, unfolded span_def[symmetric]]
+  show ?thesis
+    using subset_eq by force
+qed
+
+lemma span_empty[simp]: "span {} = {0}"
+  apply (simp add: span_def)
+  apply (rule hull_unique)
+  apply (auto simp add: subspace_def)
+  done
+
+lemma (in real_vector) independent_empty [iff]: "independent {}"
+  by (simp add: dependent_def)
+
+lemma dependent_single[simp]: "dependent {x} \<longleftrightarrow> x = 0"
+  unfolding dependent_def by auto
+
+lemma (in real_vector) independent_mono: "independent A \<Longrightarrow> B \<subseteq> A \<Longrightarrow> independent B"
+  apply (clarsimp simp add: dependent_def span_mono)
+  apply (subgoal_tac "span (B - {a}) \<le> span (A - {a})")
+  apply force
+  apply (rule span_mono)
+  apply auto
+  done
+
+lemma (in real_vector) span_subspace: "A \<subseteq> B \<Longrightarrow> B \<le> span A \<Longrightarrow>  subspace B \<Longrightarrow> span A = B"
+  by (metis order_antisym span_def hull_minimal)
+
+lemma (in real_vector) span_induct':
+  "\<forall>x \<in> S. P x \<Longrightarrow> subspace {x. P x} \<Longrightarrow> \<forall>x \<in> span S. P x"
+  unfolding span_def by (rule hull_induct) auto
+
+inductive_set (in real_vector) span_induct_alt_help for S :: "'a set"
+where
+  span_induct_alt_help_0: "0 \<in> span_induct_alt_help S"
+| span_induct_alt_help_S:
+    "x \<in> S \<Longrightarrow> z \<in> span_induct_alt_help S \<Longrightarrow>
+      (c *\<^sub>R x + z) \<in> span_induct_alt_help S"
+
+lemma span_induct_alt':
+  assumes h0: "h 0"
+    and hS: "\<And>c x y. x \<in> S \<Longrightarrow> h y \<Longrightarrow> h (c *\<^sub>R x + y)"
+  shows "\<forall>x \<in> span S. h x"
+proof -
+  {
+    fix x :: 'a
+    assume x: "x \<in> span_induct_alt_help S"
+    have "h x"
+      apply (rule span_induct_alt_help.induct[OF x])
+      apply (rule h0)
+      apply (rule hS)
+      apply assumption
+      apply assumption
+      done
+  }
+  note th0 = this
+  {
+    fix x
+    assume x: "x \<in> span S"
+    have "x \<in> span_induct_alt_help S"
+    proof (rule span_induct[where x=x and S=S])
+      show "x \<in> span S" by (rule x)
+    next
+      fix x
+      assume xS: "x \<in> S"
+      from span_induct_alt_help_S[OF xS span_induct_alt_help_0, of 1]
+      show "x \<in> span_induct_alt_help S"
+        by simp
+    next
+      have "0 \<in> span_induct_alt_help S" by (rule span_induct_alt_help_0)
+      moreover
+      {
+        fix x y
+        assume h: "x \<in> span_induct_alt_help S" "y \<in> span_induct_alt_help S"
+        from h have "(x + y) \<in> span_induct_alt_help S"
+          apply (induct rule: span_induct_alt_help.induct)
+          apply simp
+          unfolding add.assoc
+          apply (rule span_induct_alt_help_S)
+          apply assumption
+          apply simp
+          done
+      }
+      moreover
+      {
+        fix c x
+        assume xt: "x \<in> span_induct_alt_help S"
+        then have "(c *\<^sub>R x) \<in> span_induct_alt_help S"
+          apply (induct rule: span_induct_alt_help.induct)
+          apply (simp add: span_induct_alt_help_0)
+          apply (simp add: scaleR_right_distrib)
+          apply (rule span_induct_alt_help_S)
+          apply assumption
+          apply simp
+          done }
+      ultimately show "subspace {a. a \<in> span_induct_alt_help S}"
+        unfolding subspace_def Ball_def by blast
+    qed
+  }
+  with th0 show ?thesis by blast
+qed
+
+lemma span_induct_alt:
+  assumes h0: "h 0"
+    and hS: "\<And>c x y. x \<in> S \<Longrightarrow> h y \<Longrightarrow> h (c *\<^sub>R x + y)"
+    and x: "x \<in> span S"
+  shows "h x"
+  using span_induct_alt'[of h S] h0 hS x by blast
+
+text \<open>Individual closure properties.\<close>
+
+lemma span_span: "span (span A) = span A"
+  unfolding span_def hull_hull ..
+
+lemma (in real_vector) span_superset: "x \<in> S \<Longrightarrow> x \<in> span S"
+  by (metis span_clauses(1))
+
+lemma (in real_vector) span_0 [simp]: "0 \<in> span S"
+  by (metis subspace_span subspace_0)
+
+lemma span_inc: "S \<subseteq> span S"
+  by (metis subset_eq span_superset)
+
+lemma span_eq: "span S = span T \<longleftrightarrow> S \<subseteq> span T \<and> T \<subseteq> span S"
+  using span_inc[unfolded subset_eq] using span_mono[of T "span S"] span_mono[of S "span T"]
+  by (auto simp add: span_span)
+
+lemma (in real_vector) dependent_0:
+  assumes "0 \<in> A"
+  shows "dependent A"
+  unfolding dependent_def
+  using assms span_0
+  by blast
+
+lemma (in real_vector) span_add: "x \<in> span S \<Longrightarrow> y \<in> span S \<Longrightarrow> x + y \<in> span S"
+  by (metis subspace_add subspace_span)
+
+lemma (in real_vector) span_mul: "x \<in> span S \<Longrightarrow> c *\<^sub>R x \<in> span S"
+  by (metis subspace_span subspace_mul)
+
+lemma span_neg: "x \<in> span S \<Longrightarrow> - x \<in> span S"
+  by (metis subspace_neg subspace_span)
+
+lemma span_sub: "x \<in> span S \<Longrightarrow> y \<in> span S \<Longrightarrow> x - y \<in> span S"
+  by (metis subspace_span subspace_diff)
+
+lemma (in real_vector) span_setsum: "(\<And>x. x \<in> A \<Longrightarrow> f x \<in> span S) \<Longrightarrow> setsum f A \<in> span S"
+  by (rule subspace_setsum [OF subspace_span])
+
+lemma span_add_eq: "x \<in> span S \<Longrightarrow> x + y \<in> span S \<longleftrightarrow> y \<in> span S"
+  by (metis add_minus_cancel scaleR_minus1_left subspace_def subspace_span)
+
+text \<open>The key breakdown property.\<close>
+
+lemma span_singleton: "span {x} = range (\<lambda>k. k *\<^sub>R x)"
+proof (rule span_unique)
+  show "{x} \<subseteq> range (\<lambda>k. k *\<^sub>R x)"
+    by (fast intro: scaleR_one [symmetric])
+  show "subspace (range (\<lambda>k. k *\<^sub>R x))"
+    unfolding subspace_def
+    by (auto intro: scaleR_add_left [symmetric])
+next
+  fix T
+  assume "{x} \<subseteq> T" and "subspace T"
+  then show "range (\<lambda>k. k *\<^sub>R x) \<subseteq> T"
+    unfolding subspace_def by auto
+qed
+
+text \<open>Mapping under linear image.\<close>
+
+lemma subspace_linear_image:
+  assumes lf: "linear f"
+    and sS: "subspace S"
+  shows "subspace (f ` S)"
+  using lf sS linear_0[OF lf]
+  unfolding linear_iff subspace_def
+  apply (auto simp add: image_iff)
+  apply (rule_tac x="x + y" in bexI)
+  apply auto
+  apply (rule_tac x="c *\<^sub>R x" in bexI)
+  apply auto
+  done
+
+lemma subspace_linear_vimage: "linear f \<Longrightarrow> subspace S \<Longrightarrow> subspace (f -` S)"
+  by (auto simp add: subspace_def linear_iff linear_0[of f])
+
+lemma subspace_linear_preimage: "linear f \<Longrightarrow> subspace S \<Longrightarrow> subspace {x. f x \<in> S}"
+  by (auto simp add: subspace_def linear_iff linear_0[of f])
+
+lemma span_linear_image:
+  assumes lf: "linear f"
+  shows "span (f ` S) = f ` span S"
+proof (rule span_unique)
+  show "f ` S \<subseteq> f ` span S"
+    by (intro image_mono span_inc)
+  show "subspace (f ` span S)"
+    using lf subspace_span by (rule subspace_linear_image)
+next
+  fix T
+  assume "f ` S \<subseteq> T" and "subspace T"
+  then show "f ` span S \<subseteq> T"
+    unfolding image_subset_iff_subset_vimage
+    by (intro span_minimal subspace_linear_vimage lf)
+qed
+
+lemma spans_image:
+  assumes lf: "linear f"
+    and VB: "V \<subseteq> span B"
+  shows "f ` V \<subseteq> span (f ` B)"
+  unfolding span_linear_image[OF lf] by (metis VB image_mono)
+
+lemma span_Un: "span (A \<union> B) = (\<lambda>(a, b). a + b) ` (span A \<times> span B)"
+proof (rule span_unique)
+  show "A \<union> B \<subseteq> (\<lambda>(a, b). a + b) ` (span A \<times> span B)"
+    by safe (force intro: span_clauses)+
+next
+  have "linear (\<lambda>(a, b). a + b)"
+    by (simp add: linear_iff scaleR_add_right)
+  moreover have "subspace (span A \<times> span B)"
+    by (intro subspace_Times subspace_span)
+  ultimately show "subspace ((\<lambda>(a, b). a + b) ` (span A \<times> span B))"
+    by (rule subspace_linear_image)
+next
+  fix T
+  assume "A \<union> B \<subseteq> T" and "subspace T"
+  then show "(\<lambda>(a, b). a + b) ` (span A \<times> span B) \<subseteq> T"
+    by (auto intro!: subspace_add elim: span_induct)
+qed
+
+lemma span_insert: "span (insert a S) = {x. \<exists>k. (x - k *\<^sub>R a) \<in> span S}"
+proof -
+  have "span ({a} \<union> S) = {x. \<exists>k. (x - k *\<^sub>R a) \<in> span S}"
+    unfolding span_Un span_singleton
+    apply safe
+    apply (rule_tac x=k in exI, simp)
+    apply (erule rev_image_eqI [OF SigmaI [OF rangeI]])
+    apply auto
+    done
+  then show ?thesis by simp
+qed
+
+lemma span_breakdown:
+  assumes bS: "b \<in> S"
+    and aS: "a \<in> span S"
+  shows "\<exists>k. a - k *\<^sub>R b \<in> span (S - {b})"
+  using assms span_insert [of b "S - {b}"]
+  by (simp add: insert_absorb)
+
+lemma span_breakdown_eq: "x \<in> span (insert a S) \<longleftrightarrow> (\<exists>k. x - k *\<^sub>R a \<in> span S)"
+  by (simp add: span_insert)
+
+text \<open>Hence some "reversal" results.\<close>
+
+lemma in_span_insert:
+  assumes a: "a \<in> span (insert b S)"
+    and na: "a \<notin> span S"
+  shows "b \<in> span (insert a S)"
+proof -
+  from a obtain k where k: "a - k *\<^sub>R b \<in> span S"
+    unfolding span_insert by fast
+  show ?thesis
+  proof (cases "k = 0")
+    case True
+    with k have "a \<in> span S" by simp
+    with na show ?thesis by simp
+  next
+    case False
+    from k have "(- inverse k) *\<^sub>R (a - k *\<^sub>R b) \<in> span S"
+      by (rule span_mul)
+    then have "b - inverse k *\<^sub>R a \<in> span S"
+      using \<open>k \<noteq> 0\<close> by (simp add: scaleR_diff_right)
+    then show ?thesis
+      unfolding span_insert by fast
+  qed
+qed
+
+lemma in_span_delete:
+  assumes a: "a \<in> span S"
+    and na: "a \<notin> span (S - {b})"
+  shows "b \<in> span (insert a (S - {b}))"
+  apply (rule in_span_insert)
+  apply (rule set_rev_mp)
+  apply (rule a)
+  apply (rule span_mono)
+  apply blast
+  apply (rule na)
+  done
+
+text \<open>Transitivity property.\<close>
+
+lemma span_redundant: "x \<in> span S \<Longrightarrow> span (insert x S) = span S"
+  unfolding span_def by (rule hull_redundant)
+
+lemma span_trans:
+  assumes x: "x \<in> span S"
+    and y: "y \<in> span (insert x S)"
+  shows "y \<in> span S"
+  using assms by (simp only: span_redundant)
+
+lemma span_insert_0[simp]: "span (insert 0 S) = span S"
+  by (simp only: span_redundant span_0)
+
+text \<open>An explicit expansion is sometimes needed.\<close>
+
+lemma span_explicit:
+  "span P = {y. \<exists>S u. finite S \<and> S \<subseteq> P \<and> setsum (\<lambda>v. u v *\<^sub>R v) S = y}"
+  (is "_ = ?E" is "_ = {y. ?h y}" is "_ = {y. \<exists>S u. ?Q S u y}")
+proof -
+  {
+    fix x
+    assume "?h x"
+    then obtain S u where "finite S" and "S \<subseteq> P" and "setsum (\<lambda>v. u v *\<^sub>R v) S = x"
+      by blast
+    then have "x \<in> span P"
+      by (auto intro: span_setsum span_mul span_superset)
+  }
+  moreover
+  have "\<forall>x \<in> span P. ?h x"
+  proof (rule span_induct_alt')
+    show "?h 0"
+      by (rule exI[where x="{}"], simp)
+  next
+    fix c x y
+    assume x: "x \<in> P"
+    assume hy: "?h y"
+    from hy obtain S u where fS: "finite S" and SP: "S\<subseteq>P"
+      and u: "setsum (\<lambda>v. u v *\<^sub>R v) S = y" by blast
+    let ?S = "insert x S"
+    let ?u = "\<lambda>y. if y = x then (if x \<in> S then u y + c else c) else u y"
+    from fS SP x have th0: "finite (insert x S)" "insert x S \<subseteq> P"
+      by blast+
+    have "?Q ?S ?u (c*\<^sub>R x + y)"
+    proof cases
+      assume xS: "x \<in> S"
+      have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = (\<Sum>v\<in>S - {x}. u v *\<^sub>R v) + (u x + c) *\<^sub>R x"
+        using xS by (simp add: setsum.remove [OF fS xS] insert_absorb)
+      also have "\<dots> = (\<Sum>v\<in>S. u v *\<^sub>R v) + c *\<^sub>R x"
+        by (simp add: setsum.remove [OF fS xS] algebra_simps)
+      also have "\<dots> = c*\<^sub>R x + y"
+        by (simp add: add.commute u)
+      finally have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = c*\<^sub>R x + y" .
+      then show ?thesis using th0 by blast
+    next
+      assume xS: "x \<notin> S"
+      have th00: "(\<Sum>v\<in>S. (if v = x then c else u v) *\<^sub>R v) = y"
+        unfolding u[symmetric]
+        apply (rule setsum.cong)
+        using xS
+        apply auto
+        done
+      show ?thesis using fS xS th0
+        by (simp add: th00 add.commute cong del: if_weak_cong)
+    qed
+    then show "?h (c*\<^sub>R x + y)"
+      by fast
+  qed
+  ultimately show ?thesis by blast
+qed
+
+lemma dependent_explicit:
+  "dependent P \<longleftrightarrow> (\<exists>S u. finite S \<and> S \<subseteq> P \<and> (\<exists>v\<in>S. u v \<noteq> 0 \<and> setsum (\<lambda>v. u v *\<^sub>R v) S = 0))"
+  (is "?lhs = ?rhs")
+proof -
+  {
+    assume dP: "dependent P"
+    then obtain a S u where aP: "a \<in> P" and fS: "finite S"
+      and SP: "S \<subseteq> P - {a}" and ua: "setsum (\<lambda>v. u v *\<^sub>R v) S = a"
+      unfolding dependent_def span_explicit by blast
+    let ?S = "insert a S"
+    let ?u = "\<lambda>y. if y = a then - 1 else u y"
+    let ?v = a
+    from aP SP have aS: "a \<notin> S"
+      by blast
+    from fS SP aP have th0: "finite ?S" "?S \<subseteq> P" "?v \<in> ?S" "?u ?v \<noteq> 0"
+      by auto
+    have s0: "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = 0"
+      using fS aS
+      apply simp
+      apply (subst (2) ua[symmetric])
+      apply (rule setsum.cong)
+      apply auto
+      done
+    with th0 have ?rhs by fast
+  }
+  moreover
+  {
+    fix S u v
+    assume fS: "finite S"
+      and SP: "S \<subseteq> P"
+      and vS: "v \<in> S"
+      and uv: "u v \<noteq> 0"
+      and u: "setsum (\<lambda>v. u v *\<^sub>R v) S = 0"
+    let ?a = v
+    let ?S = "S - {v}"
+    let ?u = "\<lambda>i. (- u i) / u v"
+    have th0: "?a \<in> P" "finite ?S" "?S \<subseteq> P"
+      using fS SP vS by auto
+    have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S =
+      setsum (\<lambda>v. (- (inverse (u ?a))) *\<^sub>R (u v *\<^sub>R v)) S - ?u v *\<^sub>R v"
+      using fS vS uv by (simp add: setsum_diff1 field_simps)
+    also have "\<dots> = ?a"
+      unfolding scaleR_right.setsum [symmetric] u using uv by simp
+    finally have "setsum (\<lambda>v. ?u v *\<^sub>R v) ?S = ?a" .
+    with th0 have ?lhs
+      unfolding dependent_def span_explicit
+      apply -
+      apply (rule bexI[where x= "?a"])
+      apply (simp_all del: scaleR_minus_left)
+      apply (rule exI[where x= "?S"])
+      apply (auto simp del: scaleR_minus_left)
+      done
+  }
+  ultimately show ?thesis by blast
+qed
+
+lemma dependent_finite:
+  assumes "finite S"
+    shows "dependent S \<longleftrightarrow> (\<exists>u. (\<exists>v \<in> S. u v \<noteq> 0) \<and> (\<Sum>v\<in>S. u v *\<^sub>R v) = 0)"
+           (is "?lhs = ?rhs")
+proof
+  assume ?lhs
+  then obtain T u v
+         where "finite T" "T \<subseteq> S" "v\<in>T" "u v \<noteq> 0" "(\<Sum>v\<in>T. u v *\<^sub>R v) = 0"
+    by (force simp: dependent_explicit)
+  with assms show ?rhs
+    apply (rule_tac x="\<lambda>v. if v \<in> T then u v else 0" in exI)
+    apply (auto simp: setsum.mono_neutral_right)
+    done
+next
+  assume ?rhs  with assms show ?lhs
+    by (fastforce simp add: dependent_explicit)
+qed
+
+lemma span_alt:
+  "span B = {(\<Sum>x | f x \<noteq> 0. f x *\<^sub>R x) | f. {x. f x \<noteq> 0} \<subseteq> B \<and> finite {x. f x \<noteq> 0}}"
+  unfolding span_explicit
+  apply safe
+  subgoal for x S u
+    by (intro exI[of _ "\<lambda>x. if x \<in> S then u x else 0"])
+        (auto intro!: setsum.mono_neutral_cong_right)
+  apply auto
+  done
+
+lemma dependent_alt:
+  "dependent B \<longleftrightarrow>
+    (\<exists>X. finite {x. X x \<noteq> 0} \<and> {x. X x \<noteq> 0} \<subseteq> B \<and> (\<Sum>x|X x \<noteq> 0. X x *\<^sub>R x) = 0 \<and> (\<exists>x. X x \<noteq> 0))"
+  unfolding dependent_explicit
+  apply safe
+  subgoal for S u v
+    apply (intro exI[of _ "\<lambda>x. if x \<in> S then u x else 0"])
+    apply (subst setsum.mono_neutral_cong_left[where T=S])
+    apply (auto intro!: setsum.mono_neutral_cong_right cong: rev_conj_cong)
+    done
+  apply auto
+  done
+
+lemma independent_alt:
+  "independent B \<longleftrightarrow>
+    (\<forall>X. finite {x. X x \<noteq> 0} \<longrightarrow> {x. X x \<noteq> 0} \<subseteq> B \<longrightarrow> (\<Sum>x|X x \<noteq> 0. X x *\<^sub>R x) = 0 \<longrightarrow> (\<forall>x. X x = 0))"
+  unfolding dependent_alt by auto
+
+lemma independentD_alt:
+  "independent B \<Longrightarrow> finite {x. X x \<noteq> 0} \<Longrightarrow> {x. X x \<noteq> 0} \<subseteq> B \<Longrightarrow> (\<Sum>x|X x \<noteq> 0. X x *\<^sub>R x) = 0 \<Longrightarrow> X x = 0"
+  unfolding independent_alt by blast
+
+lemma independentD_unique:
+  assumes B: "independent B"
+    and X: "finite {x. X x \<noteq> 0}" "{x. X x \<noteq> 0} \<subseteq> B"
+    and Y: "finite {x. Y x \<noteq> 0}" "{x. Y x \<noteq> 0} \<subseteq> B"
+    and "(\<Sum>x | X x \<noteq> 0. X x *\<^sub>R x) = (\<Sum>x| Y x \<noteq> 0. Y x *\<^sub>R x)"
+  shows "X = Y"
+proof -
+  have "X x - Y x = 0" for x
+    using B
+  proof (rule independentD_alt)
+    have "{x. X x - Y x \<noteq> 0} \<subseteq> {x. X x \<noteq> 0} \<union> {x. Y x \<noteq> 0}"
+      by auto
+    then show "finite {x. X x - Y x \<noteq> 0}" "{x. X x - Y x \<noteq> 0} \<subseteq> B"
+      using X Y by (auto dest: finite_subset)
+    then have "(\<Sum>x | X x - Y x \<noteq> 0. (X x - Y x) *\<^sub>R x) = (\<Sum>v\<in>{S. X S \<noteq> 0} \<union> {S. Y S \<noteq> 0}. (X v - Y v) *\<^sub>R v)"
+      using X Y by (intro setsum.mono_neutral_cong_left) auto
+    also have "\<dots> = (\<Sum>v\<in>{S. X S \<noteq> 0} \<union> {S. Y S \<noteq> 0}. X v *\<^sub>R v) - (\<Sum>v\<in>{S. X S \<noteq> 0} \<union> {S. Y S \<noteq> 0}. Y v *\<^sub>R v)"
+      by (simp add: scaleR_diff_left setsum_subtractf assms)
+    also have "(\<Sum>v\<in>{S. X S \<noteq> 0} \<union> {S. Y S \<noteq> 0}. X v *\<^sub>R v) = (\<Sum>v\<in>{S. X S \<noteq> 0}. X v *\<^sub>R v)"
+      using X Y by (intro setsum.mono_neutral_cong_right) auto
+    also have "(\<Sum>v\<in>{S. X S \<noteq> 0} \<union> {S. Y S \<noteq> 0}. Y v *\<^sub>R v) = (\<Sum>v\<in>{S. Y S \<noteq> 0}. Y v *\<^sub>R v)"
+      using X Y by (intro setsum.mono_neutral_cong_right) auto
+    finally show "(\<Sum>x | X x - Y x \<noteq> 0. (X x - Y x) *\<^sub>R x) = 0"
+      using assms by simp
+  qed
+  then show ?thesis
+    by auto
+qed
+
+text \<open>This is useful for building a basis step-by-step.\<close>
+
+lemma independent_insert:
+  "independent (insert a S) \<longleftrightarrow>
+    (if a \<in> S then independent S else independent S \<and> a \<notin> span S)"
+  (is "?lhs \<longleftrightarrow> ?rhs")
+proof (cases "a \<in> S")
+  case True
+  then show ?thesis
+    using insert_absorb[OF True] by simp
+next
+  case False
+  show ?thesis
+  proof
+    assume i: ?lhs
+    then show ?rhs
+      using False
+      apply simp
+      apply (rule conjI)
+      apply (rule independent_mono)
+      apply assumption
+      apply blast
+      apply (simp add: dependent_def)
+      done
+  next
+    assume i: ?rhs
+    show ?lhs
+      using i False
+      apply (auto simp add: dependent_def)
+      by (metis in_span_insert insert_Diff_if insert_Diff_single insert_absorb)
+  qed
+qed
+
+lemma independent_Union_directed:
+  assumes directed: "\<And>c d. c \<in> C \<Longrightarrow> d \<in> C \<Longrightarrow> c \<subseteq> d \<or> d \<subseteq> c"
+  assumes indep: "\<And>c. c \<in> C \<Longrightarrow> independent c"
+  shows "independent (\<Union>C)"
+proof
+  assume "dependent (\<Union>C)"
+  then obtain u v S where S: "finite S" "S \<subseteq> \<Union>C" "v \<in> S" "u v \<noteq> 0" "(\<Sum>v\<in>S. u v *\<^sub>R v) = 0"
+    by (auto simp: dependent_explicit)
+
+  have "S \<noteq> {}"
+    using \<open>v \<in> S\<close> by auto
+  have "\<exists>c\<in>C. S \<subseteq> c"
+    using \<open>finite S\<close> \<open>S \<noteq> {}\<close> \<open>S \<subseteq> \<Union>C\<close>
+  proof (induction rule: finite_ne_induct)
+    case (insert i I)
+    then obtain c d where cd: "c \<in> C" "d \<in> C" and iI: "I \<subseteq> c" "i \<in> d"
+      by blast
+    from directed[OF cd] cd have "c \<union> d \<in> C"
+      by (auto simp: sup.absorb1 sup.absorb2)
+    with iI show ?case
+      by (intro bexI[of _ "c \<union> d"]) auto
+  qed auto
+  then obtain c where "c \<in> C" "S \<subseteq> c"
+    by auto
+  have "dependent c"
+    unfolding dependent_explicit
+    by (intro exI[of _ S] exI[of _ u] bexI[of _ v] conjI) fact+
+  with indep[OF \<open>c \<in> C\<close>] show False
+    by auto
+qed
+
+text \<open>Hence we can create a maximal independent subset.\<close>
+
+lemma maximal_independent_subset_extend:
+  assumes "S \<subseteq> V" "independent S"
+  shows "\<exists>B. S \<subseteq> B \<and> B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B"
+proof -
+  let ?C = "{B. S \<subseteq> B \<and> independent B \<and> B \<subseteq> V}"
+  have "\<exists>M\<in>?C. \<forall>X\<in>?C. M \<subseteq> X \<longrightarrow> X = M"
+  proof (rule subset_Zorn)
+    fix C :: "'a set set" assume "subset.chain ?C C"
+    then have C: "\<And>c. c \<in> C \<Longrightarrow> c \<subseteq> V" "\<And>c. c \<in> C \<Longrightarrow> S \<subseteq> c" "\<And>c. c \<in> C \<Longrightarrow> independent c"
+      "\<And>c d. c \<in> C \<Longrightarrow> d \<in> C \<Longrightarrow> c \<subseteq> d \<or> d \<subseteq> c"
+      unfolding subset.chain_def by blast+
+
+    show "\<exists>U\<in>?C. \<forall>X\<in>C. X \<subseteq> U"
+    proof cases
+      assume "C = {}" with assms show ?thesis
+        by (auto intro!: exI[of _ S])
+    next
+      assume "C \<noteq> {}"
+      with C(2) have "S \<subseteq> \<Union>C"
+        by auto
+      moreover have "independent (\<Union>C)"
+        by (intro independent_Union_directed C)
+      moreover have "\<Union>C \<subseteq> V"
+        using C by auto
+      ultimately show ?thesis
+        by auto
+    qed
+  qed
+  then obtain B where B: "independent B" "B \<subseteq> V" "S \<subseteq> B"
+    and max: "\<And>S. independent S \<Longrightarrow> S \<subseteq> V \<Longrightarrow> B \<subseteq> S \<Longrightarrow> S = B"
+    by auto
+  moreover
+  { assume "\<not> V \<subseteq> span B"
+    then obtain v where "v \<in> V" "v \<notin> span B"
+      by auto
+    with B have "independent (insert v B)"
+      unfolding independent_insert by auto
+    from max[OF this] \<open>v \<in> V\<close> \<open>B \<subseteq> V\<close>
+    have "v \<in> B"
+      by auto
+    with \<open>v \<notin> span B\<close> have False
+      by (auto intro: span_superset) }
+  ultimately show ?thesis
+    by (auto intro!: exI[of _ B])
+qed
+
+
+lemma maximal_independent_subset:
+  "\<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B"
+  by (metis maximal_independent_subset_extend[of "{}"] empty_subsetI independent_empty)
+
+lemma span_finite:
+  assumes fS: "finite S"
+  shows "span S = {y. \<exists>u. setsum (\<lambda>v. u v *\<^sub>R v) S = y}"
+  (is "_ = ?rhs")
+proof -
+  {
+    fix y
+    assume y: "y \<in> span S"
+    from y obtain S' u where fS': "finite S'"
+      and SS': "S' \<subseteq> S"
+      and u: "setsum (\<lambda>v. u v *\<^sub>R v) S' = y"
+      unfolding span_explicit by blast
+    let ?u = "\<lambda>x. if x \<in> S' then u x else 0"
+    have "setsum (\<lambda>v. ?u v *\<^sub>R v) S = setsum (\<lambda>v. u v *\<^sub>R v) S'"
+      using SS' fS by (auto intro!: setsum.mono_neutral_cong_right)
+    then have "setsum (\<lambda>v. ?u v *\<^sub>R v) S = y" by (metis u)
+    then have "y \<in> ?rhs" by auto
+  }
+  moreover
+  {
+    fix y u
+    assume u: "setsum (\<lambda>v. u v *\<^sub>R v) S = y"
+    then have "y \<in> span S" using fS unfolding span_explicit by auto
+  }
+  ultimately show ?thesis by blast
+qed
+
+lemma linear_independent_extend_subspace:
+  assumes "independent B"
+  shows "\<exists>g. linear g \<and> (\<forall>x\<in>B. g x = f x) \<and> range g = span (f`B)"
+proof -
+  from maximal_independent_subset_extend[OF _ \<open>independent B\<close>, of UNIV]
+  obtain B' where "B \<subseteq> B'" "independent B'" "span B' = UNIV"
+    by (auto simp: top_unique)
+  have "\<forall>y. \<exists>X. {x. X x \<noteq> 0} \<subseteq> B' \<and> finite {x. X x \<noteq> 0} \<and> y = (\<Sum>x|X x \<noteq> 0. X x *\<^sub>R x)"
+    using \<open>span B' = UNIV\<close> unfolding span_alt by auto
+  then obtain X where X: "\<And>y. {x. X y x \<noteq> 0} \<subseteq> B'" "\<And>y. finite {x. X y x \<noteq> 0}"
+    "\<And>y. y = (\<Sum>x|X y x \<noteq> 0. X y x *\<^sub>R x)"
+    unfolding choice_iff by auto
+
+  have X_add: "X (x + y) = (\<lambda>z. X x z + X y z)" for x y
+    using \<open>independent B'\<close>
+  proof (rule independentD_unique)
+    have "(\<Sum>z | X x z + X y z \<noteq> 0. (X x z + X y z) *\<^sub>R z)
+      = (\<Sum>z\<in>{z. X x z \<noteq> 0} \<union> {z. X y z \<noteq> 0}. (X x z + X y z) *\<^sub>R z)"
+      by (intro setsum.mono_neutral_cong_left) (auto intro: X)
+    also have "\<dots> = (\<Sum>z\<in>{z. X x z \<noteq> 0}. X x z *\<^sub>R z) + (\<Sum>z\<in>{z. X y z \<noteq> 0}. X y z *\<^sub>R z)"
+      by (auto simp add: scaleR_add_left setsum.distrib
+               intro!: arg_cong2[where f="op +"]  setsum.mono_neutral_cong_right X)
+    also have "\<dots> = x + y"
+      by (simp add: X(3)[symmetric])
+    also have "\<dots> = (\<Sum>z | X (x + y) z \<noteq> 0. X (x + y) z *\<^sub>R z)"
+      by (rule X(3))
+    finally show "(\<Sum>z | X (x + y) z \<noteq> 0. X (x + y) z *\<^sub>R z) = (\<Sum>z | X x z + X y z \<noteq> 0. (X x z + X y z) *\<^sub>R z)"
+      ..
+    have "{z. X x z + X y z \<noteq> 0} \<subseteq> {z. X x z \<noteq> 0} \<union> {z. X y z \<noteq> 0}"
+      by auto
+    then show "finite {z. X x z + X y z \<noteq> 0}" "{xa. X x xa + X y xa \<noteq> 0} \<subseteq> B'"
+        "finite {xa. X (x + y) xa \<noteq> 0}" "{xa. X (x + y) xa \<noteq> 0} \<subseteq> B'"
+      using X(1) by (auto dest: finite_subset intro: X)
+  qed
+
+  have X_cmult: "X (c *\<^sub>R x) = (\<lambda>z. c * X x z)" for x c
+    using \<open>independent B'\<close>
+  proof (rule independentD_unique)
+    show "finite {z. X (c *\<^sub>R x) z \<noteq> 0}" "{z. X (c *\<^sub>R x) z \<noteq> 0} \<subseteq> B'"
+      "finite {z. c * X x z \<noteq> 0}" "{z. c * X x z \<noteq> 0} \<subseteq> B' "
+      using X(1,2) by auto
+    show "(\<Sum>z | X (c *\<^sub>R x) z \<noteq> 0. X (c *\<^sub>R x) z *\<^sub>R z) = (\<Sum>z | c * X x z \<noteq> 0. (c * X x z) *\<^sub>R z)"
+      unfolding scaleR_scaleR[symmetric] scaleR_setsum_right[symmetric]
+      by (cases "c = 0") (auto simp: X(3)[symmetric])
+  qed
+
+  have X_B': "x \<in> B' \<Longrightarrow> X x = (\<lambda>z. if z = x then 1 else 0)" for x
+    using \<open>independent B'\<close>
+    by (rule independentD_unique[OF _ X(2) X(1)]) (auto intro: X simp: X(3)[symmetric])
+
+  define f' where "f' y = (if y \<in> B then f y else 0)" for y
+  define g where "g y = (\<Sum>x|X y x \<noteq> 0. X y x *\<^sub>R f' x)" for y
+
+  have g_f': "x \<in> B' \<Longrightarrow> g x = f' x" for x
+    by (auto simp: g_def X_B')
+
+  have "linear g"
+  proof
+    fix x y
+    have *: "(\<Sum>z | X x z + X y z \<noteq> 0. (X x z + X y z) *\<^sub>R f' z)
+      = (\<Sum>z\<in>{z. X x z \<noteq> 0} \<union> {z. X y z \<noteq> 0}. (X x z + X y z) *\<^sub>R f' z)"
+      by (intro setsum.mono_neutral_cong_left) (auto intro: X)
+    show "g (x + y) = g x + g y"
+      unfolding g_def X_add *
+      by (auto simp add: scaleR_add_left setsum.distrib
+               intro!: arg_cong2[where f="op +"]  setsum.mono_neutral_cong_right X)
+  next
+    show "g (r *\<^sub>R x) = r *\<^sub>R g x" for r x
+      by (auto simp add: g_def X_cmult scaleR_setsum_right intro!: setsum.mono_neutral_cong_left X)
+  qed
+  moreover have "\<forall>x\<in>B. g x = f x"
+    using \<open>B \<subseteq> B'\<close> by (auto simp: g_f' f'_def)
+  moreover have "range g = span (f`B)"
+    unfolding \<open>span B' = UNIV\<close>[symmetric] span_linear_image[OF \<open>linear g\<close>, symmetric]
+  proof (rule span_subspace)
+    have "g ` B' \<subseteq> f`B \<union> {0}"
+      by (auto simp: g_f' f'_def)
+    also have "\<dots> \<subseteq> span (f`B)"
+      by (auto intro: span_superset span_0)
+    finally show "g ` B' \<subseteq> span (f`B)"
+      by auto
+    have "x \<in> B \<Longrightarrow> f x = g x" for x
+      using \<open>B \<subseteq> B'\<close> by (auto simp add: g_f' f'_def)
+    then show "span (f ` B) \<subseteq> span (g ` B')"
+      using \<open>B \<subseteq> B'\<close> by (intro span_mono) auto
+  qed (rule subspace_span)
+  ultimately show ?thesis
+    by auto
+qed
+
+lemma linear_independent_extend:
+  "independent B \<Longrightarrow> \<exists>g. linear g \<and> (\<forall>x\<in>B. g x = f x)"
+  using linear_independent_extend_subspace[of B f] by auto
+
+text \<open>Linear functions are equal on a subspace if they are on a spanning set.\<close>
+
+lemma subspace_kernel:
+  assumes lf: "linear f"
+  shows "subspace {x. f x = 0}"
+  apply (simp add: subspace_def)
+  apply (simp add: linear_add[OF lf] linear_cmul[OF lf] linear_0[OF lf])
+  done
+
+lemma linear_eq_0_span:
+  assumes lf: "linear f" and f0: "\<forall>x\<in>B. f x = 0"
+  shows "\<forall>x \<in> span B. f x = 0"
+  using f0 subspace_kernel[OF lf]
+  by (rule span_induct')
+
+lemma linear_eq_0: "linear f \<Longrightarrow> S \<subseteq> span B \<Longrightarrow> \<forall>x\<in>B. f x = 0 \<Longrightarrow> \<forall>x\<in>S. f x = 0"
+  using linear_eq_0_span[of f B] by auto
+
+lemma linear_eq_span:  "linear f \<Longrightarrow> linear g \<Longrightarrow> \<forall>x\<in>B. f x = g x \<Longrightarrow> \<forall>x \<in> span B. f x = g x"
+  using linear_eq_0_span[of "\<lambda>x. f x - g x" B] by (auto simp: linear_compose_sub)
+
+lemma linear_eq: "linear f \<Longrightarrow> linear g \<Longrightarrow> S \<subseteq> span B \<Longrightarrow> \<forall>x\<in>B. f x = g x \<Longrightarrow> \<forall>x\<in>S. f x = g x"
+  using linear_eq_span[of f g B] by auto
+
+text \<open>The degenerate case of the Exchange Lemma.\<close>
+
+lemma spanning_subset_independent:
+  assumes BA: "B \<subseteq> A"
+    and iA: "independent A"
+    and AsB: "A \<subseteq> span B"
+  shows "A = B"
+proof
+  show "B \<subseteq> A" by (rule BA)
+
+  from span_mono[OF BA] span_mono[OF AsB]
+  have sAB: "span A = span B" unfolding span_span by blast
+
+  {
+    fix x
+    assume x: "x \<in> A"
+    from iA have th0: "x \<notin> span (A - {x})"
+      unfolding dependent_def using x by blast
+    from x have xsA: "x \<in> span A"
+      by (blast intro: span_superset)
+    have "A - {x} \<subseteq> A" by blast
+    then have th1: "span (A - {x}) \<subseteq> span A"
+      by (metis span_mono)
+    {
+      assume xB: "x \<notin> B"
+      from xB BA have "B \<subseteq> A - {x}"
+        by blast
+      then have "span B \<subseteq> span (A - {x})"
+        by (metis span_mono)
+      with th1 th0 sAB have "x \<notin> span A"
+        by blast
+      with x have False
+        by (metis span_superset)
+    }
+    then have "x \<in> B" by blast
+  }
+  then show "A \<subseteq> B" by blast
+qed
+
+text \<open>Relation between bases and injectivity/surjectivity of map.\<close>
+
+lemma spanning_surjective_image:
+  assumes us: "UNIV \<subseteq> span S"
+    and lf: "linear f"
+    and sf: "surj f"
+  shows "UNIV \<subseteq> span (f ` S)"
+proof -
+  have "UNIV \<subseteq> f ` UNIV"
+    using sf by (auto simp add: surj_def)
+  also have " \<dots> \<subseteq> span (f ` S)"
+    using spans_image[OF lf us] .
+  finally show ?thesis .
+qed
+
+lemma independent_inj_on_image:
+  assumes iS: "independent S"
+    and lf: "linear f"
+    and fi: "inj_on f (span S)"
+  shows "independent (f ` S)"
+proof -
+  {
+    fix a
+    assume a: "a \<in> S" "f a \<in> span (f ` S - {f a})"
+    have eq: "f ` S - {f a} = f ` (S - {a})"
+      using fi \<open>a\<in>S\<close> by (auto simp add: inj_on_def span_superset)
+    from a have "f a \<in> f ` span (S - {a})"
+      unfolding eq span_linear_image[OF lf, of "S - {a}"] by blast
+    then have "a \<in> span (S - {a})"
+      by (rule inj_on_image_mem_iff_alt[OF fi, rotated])
+         (insert span_mono[of "S - {a}" S], auto intro: span_superset \<open>a\<in>S\<close>)
+    with a(1) iS have False
+      by (simp add: dependent_def)
+  }
+  then show ?thesis
+    unfolding dependent_def by blast
+qed
+
+lemma independent_injective_image:
+  "independent S \<Longrightarrow> linear f \<Longrightarrow> inj f \<Longrightarrow> independent (f ` S)"
+  using independent_inj_on_image[of S f] by (auto simp: subset_inj_on)
+
+text \<open>Detailed theorems about left and right invertibility in general case.\<close>
+
+lemma linear_inj_on_left_inverse:
+  assumes lf: "linear f" and fi: "inj_on f (span S)"
+  shows "\<exists>g. range g \<subseteq> span S \<and> linear g \<and> (\<forall>x\<in>span S. g (f x) = x)"
+proof -
+  obtain B where "independent B" "B \<subseteq> S" "S \<subseteq> span B"
+    using maximal_independent_subset[of S] by auto
+  then have "span S = span B"
+    unfolding span_eq by (auto simp: span_superset)
+  with linear_independent_extend_subspace[OF independent_inj_on_image, OF \<open>independent B\<close> lf] fi
+  obtain g where g: "linear g" "\<forall>x\<in>f ` B. g x = inv_into B f x" "range g = span (inv_into B f ` f ` B)"
+    by fastforce
+  have fB: "inj_on f B"
+    using fi by (auto simp: \<open>span S = span B\<close> intro: subset_inj_on span_superset)
+
+  have "\<forall>x\<in>span B. g (f x) = x"
+  proof (intro linear_eq_span)
+    show "linear (\<lambda>x. x)" "linear (\<lambda>x. g (f x))"
+      using linear_id linear_compose[OF \<open>linear f\<close> \<open>linear g\<close>] by (auto simp: id_def comp_def)
+    show "\<forall>x \<in> B. g (f x) = x"
+      using g fi \<open>span S = span B\<close> by (auto simp: fB)
+  qed
+  moreover
+  have "inv_into B f ` f ` B \<subseteq> B"
+    by (auto simp: fB)
+  then have "range g \<subseteq> span S"
+    unfolding g \<open>span S = span B\<close> by (intro span_mono)
+  ultimately show ?thesis
+    using \<open>span S = span B\<close> \<open>linear g\<close> by auto
+qed
+
+lemma linear_injective_left_inverse: "linear f \<Longrightarrow> inj f \<Longrightarrow> \<exists>g. linear g \<and> g \<circ> f = id"
+  using linear_inj_on_left_inverse[of f UNIV] by (auto simp: fun_eq_iff span_UNIV)
+
+lemma linear_surj_right_inverse:
+  assumes lf: "linear f" and sf: "span T \<subseteq> f`span S"
+  shows "\<exists>g. range g \<subseteq> span S \<and> linear g \<and> (\<forall>x\<in>span T. f (g x) = x)"
+proof -
+  obtain B where "independent B" "B \<subseteq> T" "T \<subseteq> span B"
+    using maximal_independent_subset[of T] by auto
+  then have "span T = span B"
+    unfolding span_eq by (auto simp: span_superset)
+
+  from linear_independent_extend_subspace[OF \<open>independent B\<close>, of "inv_into (span S) f"]
+  obtain g where g: "linear g" "\<forall>x\<in>B. g x = inv_into (span S) f x" "range g = span (inv_into (span S) f`B)"
+    by auto
+  moreover have "x \<in> B \<Longrightarrow> f (inv_into (span S) f x) = x" for x
+    using \<open>B \<subseteq> T\<close> \<open>span T \<subseteq> f`span S\<close> by (intro f_inv_into_f) (auto intro: span_superset)
+  ultimately have "\<forall>x\<in>B. f (g x) = x"
+    by auto
+  then have "\<forall>x\<in>span B. f (g x) = x"
+    using linear_id linear_compose[OF \<open>linear g\<close> \<open>linear f\<close>]
+    by (intro linear_eq_span) (auto simp: id_def comp_def)
+  moreover have "inv_into (span S) f ` B \<subseteq> span S"
+    using \<open>B \<subseteq> T\<close> \<open>span T \<subseteq> f`span S\<close> by (auto intro: inv_into_into span_superset)
+  then have "range g \<subseteq> span S"
+    unfolding g by (intro span_minimal subspace_span) auto
+  ultimately show ?thesis
+    using \<open>linear g\<close> \<open>span T = span B\<close> by auto
+qed
+
+lemma linear_surjective_right_inverse: "linear f \<Longrightarrow> surj f \<Longrightarrow> \<exists>g. linear g \<and> f \<circ> g = id"
+  using linear_surj_right_inverse[of f UNIV UNIV]
+  by (auto simp: span_UNIV fun_eq_iff)
+
+text \<open>The general case of the Exchange Lemma, the key to what follows.\<close>
+
+lemma exchange_lemma:
+  assumes f:"finite t"
+    and i: "independent s"
+    and sp: "s \<subseteq> span t"
+  shows "\<exists>t'. card t' = card t \<and> finite t' \<and> s \<subseteq> t' \<and> t' \<subseteq> s \<union> t \<and> s \<subseteq> span t'"
+  using f i sp
+proof (induct "card (t - s)" arbitrary: s t rule: less_induct)
+  case less
+  note ft = \<open>finite t\<close> and s = \<open>independent s\<close> and sp = \<open>s \<subseteq> span t\<close>
+  let ?P = "\<lambda>t'. card t' = card t \<and> finite t' \<and> s \<subseteq> t' \<and> t' \<subseteq> s \<union> t \<and> s \<subseteq> span t'"
+  let ?ths = "\<exists>t'. ?P t'"
+  {
+    assume "s \<subseteq> t"
+    then have ?ths
+      by (metis ft Un_commute sp sup_ge1)
+  }
+  moreover
+  {
+    assume st: "t \<subseteq> s"
+    from spanning_subset_independent[OF st s sp] st ft span_mono[OF st]
+    have ?ths
+      by (metis Un_absorb sp)
+  }
+  moreover
+  {
+    assume st: "\<not> s \<subseteq> t" "\<not> t \<subseteq> s"
+    from st(2) obtain b where b: "b \<in> t" "b \<notin> s"
+      by blast
+    from b have "t - {b} - s \<subset> t - s"
+      by blast
+    then have cardlt: "card (t - {b} - s) < card (t - s)"
+      using ft by (auto intro: psubset_card_mono)
+    from b ft have ct0: "card t \<noteq> 0"
+      by auto
+    have ?ths
+    proof cases
+      assume stb: "s \<subseteq> span (t - {b})"
+      from ft have ftb: "finite (t - {b})"
+        by auto
+      from less(1)[OF cardlt ftb s stb]
+      obtain u where u: "card u = card (t - {b})" "s \<subseteq> u" "u \<subseteq> s \<union> (t - {b})" "s \<subseteq> span u"
+        and fu: "finite u" by blast
+      let ?w = "insert b u"
+      have th0: "s \<subseteq> insert b u"
+        using u by blast
+      from u(3) b have "u \<subseteq> s \<union> t"
+        by blast
+      then have th1: "insert b u \<subseteq> s \<union> t"
+        using u b by blast
+      have bu: "b \<notin> u"
+        using b u by blast
+      from u(1) ft b have "card u = (card t - 1)"
+        by auto
+      then have th2: "card (insert b u) = card t"
+        using card_insert_disjoint[OF fu bu] ct0 by auto
+      from u(4) have "s \<subseteq> span u" .
+      also have "\<dots> \<subseteq> span (insert b u)"
+        by (rule span_mono) blast
+      finally have th3: "s \<subseteq> span (insert b u)" .
+      from th0 th1 th2 th3 fu have th: "?P ?w"
+        by blast
+      from th show ?thesis by blast
+    next
+      assume stb: "\<not> s \<subseteq> span (t - {b})"
+      from stb obtain a where a: "a \<in> s" "a \<notin> span (t - {b})"
+        by blast
+      have ab: "a \<noteq> b"
+        using a b by blast
+      have at: "a \<notin> t"
+        using a ab span_superset[of a "t- {b}"] by auto
+      have mlt: "card ((insert a (t - {b})) - s) < card (t - s)"
+        using cardlt ft a b by auto
+      have ft': "finite (insert a (t - {b}))"
+        using ft by auto
+      {
+        fix x
+        assume xs: "x \<in> s"
+        have t: "t \<subseteq> insert b (insert a (t - {b}))"
+          using b by auto
+        from b(1) have "b \<in> span t"
+          by (simp add: span_superset)
+        have bs: "b \<in> span (insert a (t - {b}))"
+          apply (rule in_span_delete)
+          using a sp unfolding subset_eq
+          apply auto
+          done
+        from xs sp have "x \<in> span t"
+          by blast
+        with span_mono[OF t] have x: "x \<in> span (insert b (insert a (t - {b})))" ..
+        from span_trans[OF bs x] have "x \<in> span (insert a (t - {b}))" .
+      }
+      then have sp': "s \<subseteq> span (insert a (t - {b}))"
+        by blast
+      from less(1)[OF mlt ft' s sp'] obtain u where u:
+        "card u = card (insert a (t - {b}))"
+        "finite u" "s \<subseteq> u" "u \<subseteq> s \<union> insert a (t - {b})"
+        "s \<subseteq> span u" by blast
+      from u a b ft at ct0 have "?P u"
+        by auto
+      then show ?thesis by blast
+    qed
+  }
+  ultimately show ?ths by blast
+qed
+
+text \<open>This implies corresponding size bounds.\<close>
+
+lemma independent_span_bound:
+  assumes f: "finite t"
+    and i: "independent s"
+    and sp: "s \<subseteq> span t"
+  shows "finite s \<and> card s \<le> card t"
+  by (metis exchange_lemma[OF f i sp] finite_subset card_mono)
+
+lemma finite_Atleast_Atmost_nat[simp]: "finite {f x |x. x\<in> (UNIV::'a::finite set)}"
+proof -
+  have eq: "{f x |x. x\<in> UNIV} = f ` UNIV"
+    by auto
+  show ?thesis unfolding eq
+    apply (rule finite_imageI)
+    apply (rule finite)
+    done
+qed
+
+
+subsection \<open>More interesting properties of the norm.\<close>
+
+lemma cond_application_beta: "(if b then f else g) x = (if b then f x else g x)"
+  by auto
+
+notation inner (infix "\<bullet>" 70)
+
+lemma square_bound_lemma:
+  fixes x :: real
+  shows "x < (1 + x) * (1 + x)"
+proof -
+  have "(x + 1/2)\<^sup>2 + 3/4 > 0"
+    using zero_le_power2[of "x+1/2"] by arith
+  then show ?thesis
+    by (simp add: field_simps power2_eq_square)
+qed
+
+lemma square_continuous:
+  fixes e :: real
+  shows "e > 0 \<Longrightarrow> \<exists>d. 0 < d \<and> (\<forall>y. \<bar>y - x\<bar> < d \<longrightarrow> \<bar>y * y - x * x\<bar> < e)"
+  using isCont_power[OF continuous_ident, of x, unfolded isCont_def LIM_eq, rule_format, of e 2]
+  by (force simp add: power2_eq_square)
+
+
+lemma norm_eq_0_dot: "norm x = 0 \<longleftrightarrow> x \<bullet> x = (0::real)"
+  by simp (* TODO: delete *)
+
+lemma norm_triangle_sub:
+  fixes x y :: "'a::real_normed_vector"
+  shows "norm x \<le> norm y + norm (x - y)"
+  using norm_triangle_ineq[of "y" "x - y"] by (simp add: field_simps)
+
+lemma norm_le: "norm x \<le> norm y \<longleftrightarrow> x \<bullet> x \<le> y \<bullet> y"
+  by (simp add: norm_eq_sqrt_inner)
+
+lemma norm_lt: "norm x < norm y \<longleftrightarrow> x \<bullet> x < y \<bullet> y"
+  by (simp add: norm_eq_sqrt_inner)
+
+lemma norm_eq: "norm x = norm y \<longleftrightarrow> x \<bullet> x = y \<bullet> y"
+  apply (subst order_eq_iff)
+  apply (auto simp: norm_le)
+  done
+
+lemma norm_eq_1: "norm x = 1 \<longleftrightarrow> x \<bullet> x = 1"
+  by (simp add: norm_eq_sqrt_inner)
+
+text\<open>Squaring equations and inequalities involving norms.\<close>
+
+lemma dot_square_norm: "x \<bullet> x = (norm x)\<^sup>2"
+  by (simp only: power2_norm_eq_inner) (* TODO: move? *)
+
+lemma norm_eq_square: "norm x = a \<longleftrightarrow> 0 \<le> a \<and> x \<bullet> x = a\<^sup>2"
+  by (auto simp add: norm_eq_sqrt_inner)
+
+lemma norm_le_square: "norm x \<le> a \<longleftrightarrow> 0 \<le> a \<and> x \<bullet> x \<le> a\<^sup>2"
+  apply (simp add: dot_square_norm abs_le_square_iff[symmetric])
+  using norm_ge_zero[of x]
+  apply arith
+  done
+
+lemma norm_ge_square: "norm x \<ge> a \<longleftrightarrow> a \<le> 0 \<or> x \<bullet> x \<ge> a\<^sup>2"
+  apply (simp add: dot_square_norm abs_le_square_iff[symmetric])
+  using norm_ge_zero[of x]
+  apply arith
+  done
+
+lemma norm_lt_square: "norm x < a \<longleftrightarrow> 0 < a \<and> x \<bullet> x < a\<^sup>2"
+  by (metis not_le norm_ge_square)
+
+lemma norm_gt_square: "norm x > a \<longleftrightarrow> a < 0 \<or> x \<bullet> x > a\<^sup>2"
+  by (metis norm_le_square not_less)
+
+text\<open>Dot product in terms of the norm rather than conversely.\<close>
+
+lemmas inner_simps = inner_add_left inner_add_right inner_diff_right inner_diff_left
+  inner_scaleR_left inner_scaleR_right
+
+lemma dot_norm: "x \<bullet> y = ((norm (x + y))\<^sup>2 - (norm x)\<^sup>2 - (norm y)\<^sup>2) / 2"
+  by (simp only: power2_norm_eq_inner inner_simps inner_commute) auto
+
+lemma dot_norm_neg: "x \<bullet> y = (((norm x)\<^sup>2 + (norm y)\<^sup>2) - (norm (x - y))\<^sup>2) / 2"
+  by (simp only: power2_norm_eq_inner inner_simps inner_commute)
+    (auto simp add: algebra_simps)
+
+text\<open>Equality of vectors in terms of @{term "op \<bullet>"} products.\<close>
+
+lemma linear_componentwise:
+  fixes f:: "'a::euclidean_space \<Rightarrow> 'b::real_inner"
+  assumes lf: "linear f"
+  shows "(f x) \<bullet> j = (\<Sum>i\<in>Basis. (x\<bullet>i) * (f i\<bullet>j))" (is "?lhs = ?rhs")
+proof -
+  have "?rhs = (\<Sum>i\<in>Basis. (x\<bullet>i) *\<^sub>R (f i))\<bullet>j"
+    by (simp add: inner_setsum_left)
+  then show ?thesis
+    unfolding linear_setsum_mul[OF lf, symmetric]
+    unfolding euclidean_representation ..
+qed
+
+lemma vector_eq: "x = y \<longleftrightarrow> x \<bullet> x = x \<bullet> y \<and> y \<bullet> y = x \<bullet> x"
+  (is "?lhs \<longleftrightarrow> ?rhs")
+proof
+  assume ?lhs
+  then show ?rhs by simp
+next
+  assume ?rhs
+  then have "x \<bullet> x - x \<bullet> y = 0 \<and> x \<bullet> y - y \<bullet> y = 0"
+    by simp
+  then have "x \<bullet> (x - y) = 0 \<and> y \<bullet> (x - y) = 0"
+    by (simp add: inner_diff inner_commute)
+  then have "(x - y) \<bullet> (x - y) = 0"
+    by (simp add: field_simps inner_diff inner_commute)
+  then show "x = y" by simp
+qed
+
+lemma norm_triangle_half_r:
+  "norm (y - x1) < e / 2 \<Longrightarrow> norm (y - x2) < e / 2 \<Longrightarrow> norm (x1 - x2) < e"
+  using dist_triangle_half_r unfolding dist_norm[symmetric] by auto
+
+lemma norm_triangle_half_l:
+  assumes "norm (x - y) < e / 2"
+    and "norm (x' - y) < e / 2"
+  shows "norm (x - x') < e"
+  using dist_triangle_half_l[OF assms[unfolded dist_norm[symmetric]]]
+  unfolding dist_norm[symmetric] .
+
+lemma norm_triangle_le: "norm x + norm y \<le> e \<Longrightarrow> norm (x + y) \<le> e"
+  by (rule norm_triangle_ineq [THEN order_trans])
+
+lemma norm_triangle_lt: "norm x + norm y < e \<Longrightarrow> norm (x + y) < e"
+  by (rule norm_triangle_ineq [THEN le_less_trans])
+
+lemma setsum_clauses:
+  shows "setsum f {} = 0"
+    and "finite S \<Longrightarrow> setsum f (insert x S) = (if x \<in> S then setsum f S else f x + setsum f S)"
+  by (auto simp add: insert_absorb)
+
+lemma setsum_norm_le:
+  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
+  assumes fg: "\<forall>x \<in> S. norm (f x) \<le> g x"
+  shows "norm (setsum f S) \<le> setsum g S"
+  by (rule order_trans [OF norm_setsum setsum_mono]) (simp add: fg)
+
+lemma setsum_norm_bound:
+  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
+  assumes K: "\<forall>x \<in> S. norm (f x) \<le> K"
+  shows "norm (setsum f S) \<le> of_nat (card S) * K"
+  using setsum_norm_le[OF K] setsum_constant[symmetric]
+  by simp
+
+lemma setsum_group:
+  assumes fS: "finite S" and fT: "finite T" and fST: "f ` S \<subseteq> T"
+  shows "setsum (\<lambda>y. setsum g {x. x \<in> S \<and> f x = y}) T = setsum g S"
+  apply (subst setsum_image_gen[OF fS, of g f])
+  apply (rule setsum.mono_neutral_right[OF fT fST])
+  apply (auto intro: setsum.neutral)
+  done
+
+lemma vector_eq_ldot: "(\<forall>x. x \<bullet> y = x \<bullet> z) \<longleftrightarrow> y = z"
+proof
+  assume "\<forall>x. x \<bullet> y = x \<bullet> z"
+  then have "\<forall>x. x \<bullet> (y - z) = 0"
+    by (simp add: inner_diff)
+  then have "(y - z) \<bullet> (y - z) = 0" ..
+  then show "y = z" by simp
+qed simp
+
+lemma vector_eq_rdot: "(\<forall>z. x \<bullet> z = y \<bullet> z) \<longleftrightarrow> x = y"
+proof
+  assume "\<forall>z. x \<bullet> z = y \<bullet> z"
+  then have "\<forall>z. (x - y) \<bullet> z = 0"
+    by (simp add: inner_diff)
+  then have "(x - y) \<bullet> (x - y) = 0" ..
+  then show "x = y" by simp
+qed simp
+
+
+subsection \<open>Orthogonality.\<close>
+
+context real_inner
+begin
+
+definition "orthogonal x y \<longleftrightarrow> x \<bullet> y = 0"
+
+lemma orthogonal_self: "orthogonal x x \<longleftrightarrow> x = 0"
+  by (simp add: orthogonal_def)
+
+lemma orthogonal_clauses:
+  "orthogonal a 0"
+  "orthogonal a x \<Longrightarrow> orthogonal a (c *\<^sub>R x)"
+  "orthogonal a x \<Longrightarrow> orthogonal a (- x)"
+  "orthogonal a x \<Longrightarrow> orthogonal a y \<Longrightarrow> orthogonal a (x + y)"
+  "orthogonal a x \<Longrightarrow> orthogonal a y \<Longrightarrow> orthogonal a (x - y)"
+  "orthogonal 0 a"
+  "orthogonal x a \<Longrightarrow> orthogonal (c *\<^sub>R x) a"
+  "orthogonal x a \<Longrightarrow> orthogonal (- x) a"
+  "orthogonal x a \<Longrightarrow> orthogonal y a \<Longrightarrow> orthogonal (x + y) a"
+  "orthogonal x a \<Longrightarrow> orthogonal y a \<Longrightarrow> orthogonal (x - y) a"
+  unfolding orthogonal_def inner_add inner_diff by auto
+
+end
+
+lemma orthogonal_commute: "orthogonal x y \<longleftrightarrow> orthogonal y x"
+  by (simp add: orthogonal_def inner_commute)
+
+lemma orthogonal_scaleR [simp]: "c \<noteq> 0 \<Longrightarrow> orthogonal (c *\<^sub>R x) = orthogonal x"
+  by (rule ext) (simp add: orthogonal_def)
+
+lemma pairwise_ortho_scaleR:
+    "pairwise (\<lambda>i j. orthogonal (f i) (g j)) B
+    \<Longrightarrow> pairwise (\<lambda>i j. orthogonal (a i *\<^sub>R f i) (a j *\<^sub>R g j)) B"
+  by (auto simp: pairwise_def orthogonal_clauses)
+
+lemma orthogonal_rvsum:
+    "\<lbrakk>finite s; \<And>y. y \<in> s \<Longrightarrow> orthogonal x (f y)\<rbrakk> \<Longrightarrow> orthogonal x (setsum f s)"
+  by (induction s rule: finite_induct) (auto simp: orthogonal_clauses)
+
+lemma orthogonal_lvsum:
+    "\<lbrakk>finite s; \<And>x. x \<in> s \<Longrightarrow> orthogonal (f x) y\<rbrakk> \<Longrightarrow> orthogonal (setsum f s) y"
+  by (induction s rule: finite_induct) (auto simp: orthogonal_clauses)
+
+lemma norm_add_Pythagorean:
+  assumes "orthogonal a b"
+    shows "norm(a + b) ^ 2 = norm a ^ 2 + norm b ^ 2"
+proof -
+  from assms have "(a - (0 - b)) \<bullet> (a - (0 - b)) = a \<bullet> a - (0 - b \<bullet> b)"
+    by (simp add: algebra_simps orthogonal_def inner_commute)
+  then show ?thesis
+    by (simp add: power2_norm_eq_inner)
+qed
+
+lemma norm_setsum_Pythagorean:
+  assumes "finite I" "pairwise (\<lambda>i j. orthogonal (f i) (f j)) I"
+    shows "(norm (setsum f I))\<^sup>2 = (\<Sum>i\<in>I. (norm (f i))\<^sup>2)"
+using assms
+proof (induction I rule: finite_induct)
+  case empty then show ?case by simp
+next
+  case (insert x I)
+  then have "orthogonal (f x) (setsum f I)"
+    by (metis pairwise_insert orthogonal_rvsum)
+  with insert show ?case
+    by (simp add: pairwise_insert norm_add_Pythagorean)
+qed
+
+
+subsection \<open>Bilinear functions.\<close>
+
+definition "bilinear f \<longleftrightarrow> (\<forall>x. linear (\<lambda>y. f x y)) \<and> (\<forall>y. linear (\<lambda>x. f x y))"
+
+lemma bilinear_ladd: "bilinear h \<Longrightarrow> h (x + y) z = h x z + h y z"
+  by (simp add: bilinear_def linear_iff)
+
+lemma bilinear_radd: "bilinear h \<Longrightarrow> h x (y + z) = h x y + h x z"
+  by (simp add: bilinear_def linear_iff)
+
+lemma bilinear_lmul: "bilinear h \<Longrightarrow> h (c *\<^sub>R x) y = c *\<^sub>R h x y"
+  by (simp add: bilinear_def linear_iff)
+
+lemma bilinear_rmul: "bilinear h \<Longrightarrow> h x (c *\<^sub>R y) = c *\<^sub>R h x y"
+  by (simp add: bilinear_def linear_iff)
+
+lemma bilinear_lneg: "bilinear h \<Longrightarrow> h (- x) y = - h x y"
+  by (drule bilinear_lmul [of _ "- 1"]) simp
+
+lemma bilinear_rneg: "bilinear h \<Longrightarrow> h x (- y) = - h x y"
+  by (drule bilinear_rmul [of _ _ "- 1"]) simp
+
+lemma (in ab_group_add) eq_add_iff: "x = x + y \<longleftrightarrow> y = 0"
+  using add_left_imp_eq[of x y 0] by auto
+
+lemma bilinear_lzero:
+  assumes "bilinear h"
+  shows "h 0 x = 0"
+  using bilinear_ladd [OF assms, of 0 0 x] by (simp add: eq_add_iff field_simps)
+
+lemma bilinear_rzero:
+  assumes "bilinear h"
+  shows "h x 0 = 0"
+  using bilinear_radd [OF assms, of x 0 0 ] by (simp add: eq_add_iff field_simps)
+
+lemma bilinear_lsub: "bilinear h \<Longrightarrow> h (x - y) z = h x z - h y z"
+  using bilinear_ladd [of h x "- y"] by (simp add: bilinear_lneg)
+
+lemma bilinear_rsub: "bilinear h \<Longrightarrow> h z (x - y) = h z x - h z y"
+  using bilinear_radd [of h _ x "- y"] by (simp add: bilinear_rneg)
+
+lemma bilinear_setsum:
+  assumes bh: "bilinear h"
+    and fS: "finite S"
+    and fT: "finite T"
+  shows "h (setsum f S) (setsum g T) = setsum (\<lambda>(i,j). h (f i) (g j)) (S \<times> T) "
+proof -
+  have "h (setsum f S) (setsum g T) = setsum (\<lambda>x. h (f x) (setsum g T)) S"
+    apply (rule linear_setsum[unfolded o_def])
+    using bh fS
+    apply (auto simp add: bilinear_def)
+    done
+  also have "\<dots> = setsum (\<lambda>x. setsum (\<lambda>y. h (f x) (g y)) T) S"
+    apply (rule setsum.cong, simp)
+    apply (rule linear_setsum[unfolded o_def])
+    using bh fT
+    apply (auto simp add: bilinear_def)
+    done
+  finally show ?thesis
+    unfolding setsum.cartesian_product .
+qed
+
+
+subsection \<open>Adjoints.\<close>
+
+definition "adjoint f = (SOME f'. \<forall>x y. f x \<bullet> y = x \<bullet> f' y)"
+
+lemma adjoint_unique:
+  assumes "\<forall>x y. inner (f x) y = inner x (g y)"
+  shows "adjoint f = g"
+  unfolding adjoint_def
+proof (rule some_equality)
+  show "\<forall>x y. inner (f x) y = inner x (g y)"
+    by (rule assms)
+next
+  fix h
+  assume "\<forall>x y. inner (f x) y = inner x (h y)"
+  then have "\<forall>x y. inner x (g y) = inner x (h y)"
+    using assms by simp
+  then have "\<forall>x y. inner x (g y - h y) = 0"
+    by (simp add: inner_diff_right)
+  then have "\<forall>y. inner (g y - h y) (g y - h y) = 0"
+    by simp
+  then have "\<forall>y. h y = g y"
+    by simp
+  then show "h = g" by (simp add: ext)
+qed
+
+text \<open>TODO: The following lemmas about adjoints should hold for any
+Hilbert space (i.e. complete inner product space).
+(see @{url "http://en.wikipedia.org/wiki/Hermitian_adjoint"})
+\<close>
+
+lemma adjoint_works:
+  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
+  assumes lf: "linear f"
+  shows "x \<bullet> adjoint f y = f x \<bullet> y"
+proof -
+  have "\<forall>y. \<exists>w. \<forall>x. f x \<bullet> y = x \<bullet> w"
+  proof (intro allI exI)
+    fix y :: "'m" and x
+    let ?w = "(\<Sum>i\<in>Basis. (f i \<bullet> y) *\<^sub>R i) :: 'n"
+    have "f x \<bullet> y = f (\<Sum>i\<in>Basis. (x \<bullet> i) *\<^sub>R i) \<bullet> y"
+      by (simp add: euclidean_representation)
+    also have "\<dots> = (\<Sum>i\<in>Basis. (x \<bullet> i) *\<^sub>R f i) \<bullet> y"
+      unfolding linear_setsum[OF lf]
+      by (simp add: linear_cmul[OF lf])
+    finally show "f x \<bullet> y = x \<bullet> ?w"
+      by (simp add: inner_setsum_left inner_setsum_right mult.commute)
+  qed
+  then show ?thesis
+    unfolding adjoint_def choice_iff
+    by (intro someI2_ex[where Q="\<lambda>f'. x \<bullet> f' y = f x \<bullet> y"]) auto
+qed
+
+lemma adjoint_clauses:
+  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
+  assumes lf: "linear f"
+  shows "x \<bullet> adjoint f y = f x \<bullet> y"
+    and "adjoint f y \<bullet> x = y \<bullet> f x"
+  by (simp_all add: adjoint_works[OF lf] inner_commute)
+
+lemma adjoint_linear:
+  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
+  assumes lf: "linear f"
+  shows "linear (adjoint f)"
+  by (simp add: lf linear_iff euclidean_eq_iff[where 'a='n] euclidean_eq_iff[where 'a='m]
+    adjoint_clauses[OF lf] inner_distrib)
+
+lemma adjoint_adjoint:
+  fixes f :: "'n::euclidean_space \<Rightarrow> 'm::euclidean_space"
+  assumes lf: "linear f"
+  shows "adjoint (adjoint f) = f"
+  by (rule adjoint_unique, simp add: adjoint_clauses [OF lf])
+
+
+subsection \<open>Interlude: Some properties of real sets\<close>
+
+lemma seq_mono_lemma:
+  assumes "\<forall>(n::nat) \<ge> m. (d n :: real) < e n"
+    and "\<forall>n \<ge> m. e n \<le> e m"
+  shows "\<forall>n \<ge> m. d n < e m"
+  using assms
+  apply auto
+  apply (erule_tac x="n" in allE)
+  apply (erule_tac x="n" in allE)
+  apply auto
+  done
+
+lemma infinite_enumerate:
+  assumes fS: "infinite S"
+  shows "\<exists>r. subseq r \<and> (\<forall>n. r n \<in> S)"
+  unfolding subseq_def
+  using enumerate_in_set[OF fS] enumerate_mono[of _ _ S] fS by auto
+
+lemma approachable_lt_le: "(\<exists>(d::real) > 0. \<forall>x. f x < d \<longrightarrow> P x) \<longleftrightarrow> (\<exists>d>0. \<forall>x. f x \<le> d \<longrightarrow> P x)"
+  apply auto
+  apply (rule_tac x="d/2" in exI)
+  apply auto
+  done
+
+lemma approachable_lt_le2:  \<comment>\<open>like the above, but pushes aside an extra formula\<close>
+    "(\<exists>(d::real) > 0. \<forall>x. Q x \<longrightarrow> f x < d \<longrightarrow> P x) \<longleftrightarrow> (\<exists>d>0. \<forall>x. f x \<le> d \<longrightarrow> Q x \<longrightarrow> P x)"
+  apply auto
+  apply (rule_tac x="d/2" in exI, auto)
+  done
+
+lemma triangle_lemma:
+  fixes x y z :: real
+  assumes x: "0 \<le> x"
+    and y: "0 \<le> y"
+    and z: "0 \<le> z"
+    and xy: "x\<^sup>2 \<le> y\<^sup>2 + z\<^sup>2"
+  shows "x \<le> y + z"
+proof -
+  have "y\<^sup>2 + z\<^sup>2 \<le> y\<^sup>2 + 2 * y * z + z\<^sup>2"
+    using z y by simp
+  with xy have th: "x\<^sup>2 \<le> (y + z)\<^sup>2"
+    by (simp add: power2_eq_square field_simps)
+  from y z have yz: "y + z \<ge> 0"
+    by arith
+  from power2_le_imp_le[OF th yz] show ?thesis .
+qed
+
+
+
+subsection \<open>Archimedean properties and useful consequences\<close>
+
+text\<open>Bernoulli's inequality\<close>
+proposition Bernoulli_inequality:
+  fixes x :: real
+  assumes "-1 \<le> x"
+    shows "1 + n * x \<le> (1 + x) ^ n"
+proof (induct n)
+  case 0
+  then show ?case by simp
+next
+  case (Suc n)
+  have "1 + Suc n * x \<le> 1 + (Suc n)*x + n * x^2"
+    by (simp add: algebra_simps)
+  also have "... = (1 + x) * (1 + n*x)"
+    by (auto simp: power2_eq_square algebra_simps  of_nat_Suc)
+  also have "... \<le> (1 + x) ^ Suc n"
+    using Suc.hyps assms mult_left_mono by fastforce
+  finally show ?case .
+qed
+
+corollary Bernoulli_inequality_even:
+  fixes x :: real
+  assumes "even n"
+    shows "1 + n * x \<le> (1 + x) ^ n"
+proof (cases "-1 \<le> x \<or> n=0")
+  case True
+  then show ?thesis
+    by (auto simp: Bernoulli_inequality)
+next
+  case False
+  then have "real n \<ge> 1"
+    by simp
+  with False have "n * x \<le> -1"
+    by (metis linear minus_zero mult.commute mult.left_neutral mult_left_mono_neg neg_le_iff_le order_trans zero_le_one)
+  then have "1 + n * x \<le> 0"
+    by auto
+  also have "... \<le> (1 + x) ^ n"
+    using assms
+    using zero_le_even_power by blast
+  finally show ?thesis .
+qed
+
+corollary real_arch_pow:
+  fixes x :: real
+  assumes x: "1 < x"
+  shows "\<exists>n. y < x^n"
+proof -
+  from x have x0: "x - 1 > 0"
+    by arith
+  from reals_Archimedean3[OF x0, rule_format, of y]
+  obtain n :: nat where n: "y < real n * (x - 1)" by metis
+  from x0 have x00: "x- 1 \<ge> -1" by arith
+  from Bernoulli_inequality[OF x00, of n] n
+  have "y < x^n" by auto
+  then show ?thesis by metis
+qed
+
+corollary real_arch_pow_inv:
+  fixes x y :: real
+  assumes y: "y > 0"
+    and x1: "x < 1"
+  shows "\<exists>n. x^n < y"
+proof (cases "x > 0")
+  case True
+  with x1 have ix: "1 < 1/x" by (simp add: field_simps)
+  from real_arch_pow[OF ix, of "1/y"]
+  obtain n where n: "1/y < (1/x)^n" by blast
+  then show ?thesis using y \<open>x > 0\<close>
+    by (auto simp add: field_simps)
+next
+  case False
+  with y x1 show ?thesis
+    apply auto
+    apply (rule exI[where x=1])
+    apply auto
+    done
+qed
+
+lemma forall_pos_mono:
+  "(\<And>d e::real. d < e \<Longrightarrow> P d \<Longrightarrow> P e) \<Longrightarrow>
+    (\<And>n::nat. n \<noteq> 0 \<Longrightarrow> P (inverse (real n))) \<Longrightarrow> (\<And>e. 0 < e \<Longrightarrow> P e)"
+  by (metis real_arch_inverse)
+
+lemma forall_pos_mono_1:
+  "(\<And>d e::real. d < e \<Longrightarrow> P d \<Longrightarrow> P e) \<Longrightarrow>
+    (\<And>n. P (inverse (real (Suc n)))) \<Longrightarrow> 0 < e \<Longrightarrow> P e"
+  apply (rule forall_pos_mono)
+  apply auto
+  apply (metis Suc_pred of_nat_Suc)
+  done
+
+
+subsection \<open>Euclidean Spaces as Typeclass\<close>
+
+lemma independent_Basis: "independent Basis"
+  unfolding dependent_def
+  apply (subst span_finite)
+  apply simp
+  apply clarify
+  apply (drule_tac f="inner a" in arg_cong)
+  apply (simp add: inner_Basis inner_setsum_right eq_commute)
+  done
+
+lemma span_Basis [simp]: "span Basis = UNIV"
+  unfolding span_finite [OF finite_Basis]
+  by (fast intro: euclidean_representation)
+
+lemma in_span_Basis: "x \<in> span Basis"
+  unfolding span_Basis ..
+
+lemma Basis_le_norm: "b \<in> Basis \<Longrightarrow> \<bar>x \<bullet> b\<bar> \<le> norm x"
+  by (rule order_trans [OF Cauchy_Schwarz_ineq2]) simp
+
+lemma norm_bound_Basis_le: "b \<in> Basis \<Longrightarrow> norm x \<le> e \<Longrightarrow> \<bar>x \<bullet> b\<bar> \<le> e"
+  by (metis Basis_le_norm order_trans)
+
+lemma norm_bound_Basis_lt: "b \<in> Basis \<Longrightarrow> norm x < e \<Longrightarrow> \<bar>x \<bullet> b\<bar> < e"
+  by (metis Basis_le_norm le_less_trans)
+
+lemma norm_le_l1: "norm x \<le> (\<Sum>b\<in>Basis. \<bar>x \<bullet> b\<bar>)"
+  apply (subst euclidean_representation[of x, symmetric])
+  apply (rule order_trans[OF norm_setsum])
+  apply (auto intro!: setsum_mono)
+  done
+
+lemma setsum_norm_allsubsets_bound:
+  fixes f :: "'a \<Rightarrow> 'n::euclidean_space"
+  assumes fP: "finite P"
+    and fPs: "\<And>Q. Q \<subseteq> P \<Longrightarrow> norm (setsum f Q) \<le> e"
+  shows "(\<Sum>x\<in>P. norm (f x)) \<le> 2 * real DIM('n) * e"
+proof -
+  have "(\<Sum>x\<in>P. norm (f x)) \<le> (\<Sum>x\<in>P. \<Sum>b\<in>Basis. \<bar>f x \<bullet> b\<bar>)"
+    by (rule setsum_mono) (rule norm_le_l1)
+  also have "(\<Sum>x\<in>P. \<Sum>b\<in>Basis. \<bar>f x \<bullet> b\<bar>) = (\<Sum>b\<in>Basis. \<Sum>x\<in>P. \<bar>f x \<bullet> b\<bar>)"
+    by (rule setsum.commute)
+  also have "\<dots> \<le> of_nat (card (Basis :: 'n set)) * (2 * e)"
+  proof (rule setsum_bounded_above)
+    fix i :: 'n
+    assume i: "i \<in> Basis"
+    have "norm (\<Sum>x\<in>P. \<bar>f x \<bullet> i\<bar>) \<le>
+      norm ((\<Sum>x\<in>P \<inter> - {x. f x \<bullet> i < 0}. f x) \<bullet> i) + norm ((\<Sum>x\<in>P \<inter> {x. f x \<bullet> i < 0}. f x) \<bullet> i)"
+      by (simp add: abs_real_def setsum.If_cases[OF fP] setsum_negf norm_triangle_ineq4 inner_setsum_left
+        del: real_norm_def)
+    also have "\<dots> \<le> e + e"
+      unfolding real_norm_def
+      by (intro add_mono norm_bound_Basis_le i fPs) auto
+    finally show "(\<Sum>x\<in>P. \<bar>f x \<bullet> i\<bar>) \<le> 2*e" by simp
+  qed
+  also have "\<dots> = 2 * real DIM('n) * e" by simp
+  finally show ?thesis .
+qed
+
+
+subsection \<open>Linearity and Bilinearity continued\<close>
+
+lemma linear_bounded:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
+  assumes lf: "linear f"
+  shows "\<exists>B. \<forall>x. norm (f x) \<le> B * norm x"
+proof
+  let ?B = "\<Sum>b\<in>Basis. norm (f b)"
+  show "\<forall>x. norm (f x) \<le> ?B * norm x"
+  proof
+    fix x :: 'a
+    let ?g = "\<lambda>b. (x \<bullet> b) *\<^sub>R f b"
+    have "norm (f x) = norm (f (\<Sum>b\<in>Basis. (x \<bullet> b) *\<^sub>R b))"
+      unfolding euclidean_representation ..
+    also have "\<dots> = norm (setsum ?g Basis)"
+      by (simp add: linear_setsum [OF lf] linear_cmul [OF lf])
+    finally have th0: "norm (f x) = norm (setsum ?g Basis)" .
+    have th: "\<forall>b\<in>Basis. norm (?g b) \<le> norm (f b) * norm x"
+    proof
+      fix i :: 'a
+      assume i: "i \<in> Basis"
+      from Basis_le_norm[OF i, of x]
+      show "norm (?g i) \<le> norm (f i) * norm x"
+        unfolding norm_scaleR
+        apply (subst mult.commute)
+        apply (rule mult_mono)
+        apply (auto simp add: field_simps)
+        done
+    qed
+    from setsum_norm_le[of _ ?g, OF th]
+    show "norm (f x) \<le> ?B * norm x"
+      unfolding th0 setsum_left_distrib by metis
+  qed
+qed
+
+lemma linear_conv_bounded_linear:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
+  shows "linear f \<longleftrightarrow> bounded_linear f"
+proof
+  assume "linear f"
+  then interpret f: linear f .
+  show "bounded_linear f"
+  proof
+    have "\<exists>B. \<forall>x. norm (f x) \<le> B * norm x"
+      using \<open>linear f\<close> by (rule linear_bounded)
+    then show "\<exists>K. \<forall>x. norm (f x) \<le> norm x * K"
+      by (simp add: mult.commute)
+  qed
+next
+  assume "bounded_linear f"
+  then interpret f: bounded_linear f .
+  show "linear f" ..
+qed
+
+lemmas linear_linear = linear_conv_bounded_linear[symmetric]
+
+lemma linear_bounded_pos:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
+  assumes lf: "linear f"
+  shows "\<exists>B > 0. \<forall>x. norm (f x) \<le> B * norm x"
+proof -
+  have "\<exists>B > 0. \<forall>x. norm (f x) \<le> norm x * B"
+    using lf unfolding linear_conv_bounded_linear
+    by (rule bounded_linear.pos_bounded)
+  then show ?thesis
+    by (simp only: mult.commute)
+qed
+
+lemma bounded_linearI':
+  fixes f ::"'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
+  assumes "\<And>x y. f (x + y) = f x + f y"
+    and "\<And>c x. f (c *\<^sub>R x) = c *\<^sub>R f x"
+  shows "bounded_linear f"
+  unfolding linear_conv_bounded_linear[symmetric]
+  by (rule linearI[OF assms])
+
+lemma bilinear_bounded:
+  fixes h :: "'m::euclidean_space \<Rightarrow> 'n::euclidean_space \<Rightarrow> 'k::real_normed_vector"
+  assumes bh: "bilinear h"
+  shows "\<exists>B. \<forall>x y. norm (h x y) \<le> B * norm x * norm y"
+proof (clarify intro!: exI[of _ "\<Sum>i\<in>Basis. \<Sum>j\<in>Basis. norm (h i j)"])
+  fix x :: 'm
+  fix y :: 'n
+  have "norm (h x y) = norm (h (setsum (\<lambda>i. (x \<bullet> i) *\<^sub>R i) Basis) (setsum (\<lambda>i. (y \<bullet> i) *\<^sub>R i) Basis))"
+    apply (subst euclidean_representation[where 'a='m])
+    apply (subst euclidean_representation[where 'a='n])
+    apply rule
+    done
+  also have "\<dots> = norm (setsum (\<lambda> (i,j). h ((x \<bullet> i) *\<^sub>R i) ((y \<bullet> j) *\<^sub>R j)) (Basis \<times> Basis))"
+    unfolding bilinear_setsum[OF bh finite_Basis finite_Basis] ..
+  finally have th: "norm (h x y) = \<dots>" .
+  show "norm (h x y) \<le> (\<Sum>i\<in>Basis. \<Sum>j\<in>Basis. norm (h i j)) * norm x * norm y"
+    apply (auto simp add: setsum_left_distrib th setsum.cartesian_product)
+    apply (rule setsum_norm_le)
+    apply simp
+    apply (auto simp add: bilinear_rmul[OF bh] bilinear_lmul[OF bh]
+      field_simps simp del: scaleR_scaleR)
+    apply (rule mult_mono)
+    apply (auto simp add: zero_le_mult_iff Basis_le_norm)
+    apply (rule mult_mono)
+    apply (auto simp add: zero_le_mult_iff Basis_le_norm)
+    done
+qed
+
+lemma bilinear_conv_bounded_bilinear:
+  fixes h :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::real_normed_vector"
+  shows "bilinear h \<longleftrightarrow> bounded_bilinear h"
+proof
+  assume "bilinear h"
+  show "bounded_bilinear h"
+  proof
+    fix x y z
+    show "h (x + y) z = h x z + h y z"
+      using \<open>bilinear h\<close> unfolding bilinear_def linear_iff by simp
+  next
+    fix x y z
+    show "h x (y + z) = h x y + h x z"
+      using \<open>bilinear h\<close> unfolding bilinear_def linear_iff by simp
+  next
+    fix r x y
+    show "h (scaleR r x) y = scaleR r (h x y)"
+      using \<open>bilinear h\<close> unfolding bilinear_def linear_iff
+      by simp
+  next
+    fix r x y
+    show "h x (scaleR r y) = scaleR r (h x y)"
+      using \<open>bilinear h\<close> unfolding bilinear_def linear_iff
+      by simp
+  next
+    have "\<exists>B. \<forall>x y. norm (h x y) \<le> B * norm x * norm y"
+      using \<open>bilinear h\<close> by (rule bilinear_bounded)
+    then show "\<exists>K. \<forall>x y. norm (h x y) \<le> norm x * norm y * K"
+      by (simp add: ac_simps)
+  qed
+next
+  assume "bounded_bilinear h"
+  then interpret h: bounded_bilinear h .
+  show "bilinear h"
+    unfolding bilinear_def linear_conv_bounded_linear
+    using h.bounded_linear_left h.bounded_linear_right by simp
+qed
+
+lemma bilinear_bounded_pos:
+  fixes h :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> 'c::real_normed_vector"
+  assumes bh: "bilinear h"
+  shows "\<exists>B > 0. \<forall>x y. norm (h x y) \<le> B * norm x * norm y"
+proof -
+  have "\<exists>B > 0. \<forall>x y. norm (h x y) \<le> norm x * norm y * B"
+    using bh [unfolded bilinear_conv_bounded_bilinear]
+    by (rule bounded_bilinear.pos_bounded)
+  then show ?thesis
+    by (simp only: ac_simps)
+qed
+
+lemma bounded_linear_imp_has_derivative:
+     "bounded_linear f \<Longrightarrow> (f has_derivative f) net"
+  by (simp add: has_derivative_def bounded_linear.linear linear_diff)
+
+lemma linear_imp_has_derivative:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
+  shows "linear f \<Longrightarrow> (f has_derivative f) net"
+by (simp add: has_derivative_def linear_conv_bounded_linear linear_diff)
+
+lemma bounded_linear_imp_differentiable: "bounded_linear f \<Longrightarrow> f differentiable net"
+  using bounded_linear_imp_has_derivative differentiable_def by blast
+
+lemma linear_imp_differentiable:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
+  shows "linear f \<Longrightarrow> f differentiable net"
+by (metis linear_imp_has_derivative differentiable_def)
+
+
+subsection \<open>We continue.\<close>
+
+lemma independent_bound:
+  fixes S :: "'a::euclidean_space set"
+  shows "independent S \<Longrightarrow> finite S \<and> card S \<le> DIM('a)"
+  using independent_span_bound[OF finite_Basis, of S] by auto
+
+corollary
+  fixes S :: "'a::euclidean_space set"
+  assumes "independent S"
+  shows independent_imp_finite: "finite S" and independent_card_le:"card S \<le> DIM('a)"
+using assms independent_bound by auto
+
+lemma independent_explicit:
+  fixes B :: "'a::euclidean_space set"
+  shows "independent B \<longleftrightarrow>
+         finite B \<and> (\<forall>c. (\<Sum>v\<in>B. c v *\<^sub>R v) = 0 \<longrightarrow> (\<forall>v \<in> B. c v = 0))"
+apply (cases "finite B")
+ apply (force simp: dependent_finite)
+using independent_bound
+apply auto
+done
+
+lemma dependent_biggerset:
+  fixes S :: "'a::euclidean_space set"
+  shows "(finite S \<Longrightarrow> card S > DIM('a)) \<Longrightarrow> dependent S"
+  by (metis independent_bound not_less)
+
+text \<open>Notion of dimension.\<close>
+
+definition "dim V = (SOME n. \<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> card B = n)"
+
+lemma basis_exists:
+  "\<exists>B. (B :: ('a::euclidean_space) set) \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (card B = dim V)"
+  unfolding dim_def some_eq_ex[of "\<lambda>n. \<exists>B. B \<subseteq> V \<and> independent B \<and> V \<subseteq> span B \<and> (card B = n)"]
+  using maximal_independent_subset[of V] independent_bound
+  by auto
+
+corollary dim_le_card:
+  fixes s :: "'a::euclidean_space set"
+  shows "finite s \<Longrightarrow> dim s \<le> card s"
+by (metis basis_exists card_mono)
+
+text \<open>Consequences of independence or spanning for cardinality.\<close>
+
+lemma independent_card_le_dim:
+  fixes B :: "'a::euclidean_space set"
+  assumes "B \<subseteq> V"
+    and "independent B"
+  shows "card B \<le> dim V"
+proof -
+  from basis_exists[of V] \<open>B \<subseteq> V\<close>
+  obtain B' where "independent B'"
+    and "B \<subseteq> span B'"
+    and "card B' = dim V"
+    by blast
+  with independent_span_bound[OF _ \<open>independent B\<close> \<open>B \<subseteq> span B'\<close>] independent_bound[of B']
+  show ?thesis by auto
+qed
+
+lemma span_card_ge_dim:
+  fixes B :: "'a::euclidean_space set"
+  shows "B \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> finite B \<Longrightarrow> dim V \<le> card B"
+  by (metis basis_exists[of V] independent_span_bound subset_trans)
+
+lemma basis_card_eq_dim:
+  fixes V :: "'a::euclidean_space set"
+  shows "B \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> independent B \<Longrightarrow> finite B \<and> card B = dim V"
+  by (metis order_eq_iff independent_card_le_dim span_card_ge_dim independent_bound)
+
+lemma dim_unique:
+  fixes B :: "'a::euclidean_space set"
+  shows "B \<subseteq> V \<Longrightarrow> V \<subseteq> span B \<Longrightarrow> independent B \<Longrightarrow> card B = n \<Longrightarrow> dim V = n"
+  by (metis basis_card_eq_dim)
+
+text \<open>More lemmas about dimension.\<close>
+
+lemma dim_UNIV: "dim (UNIV :: 'a::euclidean_space set) = DIM('a)"
+  using independent_Basis
+  by (intro dim_unique[of Basis]) auto
+
+lemma dim_subset:
+  fixes S :: "'a::euclidean_space set"
+  shows "S \<subseteq> T \<Longrightarrow> dim S \<le> dim T"
+  using basis_exists[of T] basis_exists[of S]
+  by (metis independent_card_le_dim subset_trans)
+
+lemma dim_subset_UNIV:
+  fixes S :: "'a::euclidean_space set"
+  shows "dim S \<le> DIM('a)"
+  by (metis dim_subset subset_UNIV dim_UNIV)
+
+text \<open>Converses to those.\<close>
+
+lemma card_ge_dim_independent:
+  fixes B :: "'a::euclidean_space set"
+  assumes BV: "B \<subseteq> V"
+    and iB: "independent B"
+    and dVB: "dim V \<le> card B"
+  shows "V \<subseteq> span B"
+proof
+  fix a
+  assume aV: "a \<in> V"
+  {
+    assume aB: "a \<notin> span B"
+    then have iaB: "independent (insert a B)"
+      using iB aV BV by (simp add: independent_insert)
+    from aV BV have th0: "insert a B \<subseteq> V"
+      by blast
+    from aB have "a \<notin>B"
+      by (auto simp add: span_superset)
+    with independent_card_le_dim[OF th0 iaB] dVB independent_bound[OF iB]
+    have False by auto
+  }
+  then show "a \<in> span B" by blast
+qed
+
+lemma card_le_dim_spanning:
+  assumes BV: "(B:: ('a::euclidean_space) set) \<subseteq> V"
+    and VB: "V \<subseteq> span B"
+    and fB: "finite B"
+    and dVB: "dim V \<ge> card B"
+  shows "independent B"
+proof -
+  {
+    fix a
+    assume a: "a \<in> B" "a \<in> span (B - {a})"
+    from a fB have c0: "card B \<noteq> 0"
+      by auto
+    from a fB have cb: "card (B - {a}) = card B - 1"
+      by auto
+    from BV a have th0: "B - {a} \<subseteq> V"
+      by blast
+    {
+      fix x
+      assume x: "x \<in> V"
+      from a have eq: "insert a (B - {a}) = B"
+        by blast
+      from x VB have x': "x \<in> span B"
+        by blast
+      from span_trans[OF a(2), unfolded eq, OF x']
+      have "x \<in> span (B - {a})" .
+    }
+    then have th1: "V \<subseteq> span (B - {a})"
+      by blast
+    have th2: "finite (B - {a})"
+      using fB by auto
+    from span_card_ge_dim[OF th0 th1 th2]
+    have c: "dim V \<le> card (B - {a})" .
+    from c c0 dVB cb have False by simp
+  }
+  then show ?thesis
+    unfolding dependent_def by blast
+qed
+
+lemma card_eq_dim:
+  fixes B :: "'a::euclidean_space set"
+  shows "B \<subseteq> V \<Longrightarrow> card B = dim V \<Longrightarrow> finite B \<Longrightarrow> independent B \<longleftrightarrow> V \<subseteq> span B"
+  by (metis order_eq_iff card_le_dim_spanning card_ge_dim_independent)
+
+text \<open>More general size bound lemmas.\<close>
+
+lemma independent_bound_general:
+  fixes S :: "'a::euclidean_space set"
+  shows "independent S \<Longrightarrow> finite S \<and> card S \<le> dim S"
+  by (metis independent_card_le_dim independent_bound subset_refl)
+
+lemma dependent_biggerset_general:
+  fixes S :: "'a::euclidean_space set"
+  shows "(finite S \<Longrightarrow> card S > dim S) \<Longrightarrow> dependent S"
+  using independent_bound_general[of S] by (metis linorder_not_le)
+
+lemma dim_span [simp]:
+  fixes S :: "'a::euclidean_space set"
+  shows "dim (span S) = dim S"
+proof -
+  have th0: "dim S \<le> dim (span S)"
+    by (auto simp add: subset_eq intro: dim_subset span_superset)
+  from basis_exists[of S]
+  obtain B where B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S"
+    by blast
+  from B have fB: "finite B" "card B = dim S"
+    using independent_bound by blast+
+  have bSS: "B \<subseteq> span S"
+    using B(1) by (metis subset_eq span_inc)
+  have sssB: "span S \<subseteq> span B"
+    using span_mono[OF B(3)] by (simp add: span_span)
+  from span_card_ge_dim[OF bSS sssB fB(1)] th0 show ?thesis
+    using fB(2) by arith
+qed
+
+lemma subset_le_dim:
+  fixes S :: "'a::euclidean_space set"
+  shows "S \<subseteq> span T \<Longrightarrow> dim S \<le> dim T"
+  by (metis dim_span dim_subset)
+
+lemma span_eq_dim:
+  fixes S :: "'a::euclidean_space set"
+  shows "span S = span T \<Longrightarrow> dim S = dim T"
+  by (metis dim_span)
+
+lemma dim_image_le:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
+  assumes lf: "linear f"
+  shows "dim (f ` S) \<le> dim (S)"
+proof -
+  from basis_exists[of S] obtain B where
+    B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S" by blast
+  from B have fB: "finite B" "card B = dim S"
+    using independent_bound by blast+
+  have "dim (f ` S) \<le> card (f ` B)"
+    apply (rule span_card_ge_dim)
+    using lf B fB
+    apply (auto simp add: span_linear_image spans_image subset_image_iff)
+    done
+  also have "\<dots> \<le> dim S"
+    using card_image_le[OF fB(1)] fB by simp
+  finally show ?thesis .
+qed
+
+text \<open>Picking an orthogonal replacement for a spanning set.\<close>
+
+lemma vector_sub_project_orthogonal:
+  fixes b x :: "'a::euclidean_space"
+  shows "b \<bullet> (x - ((b \<bullet> x) / (b \<bullet> b)) *\<^sub>R b) = 0"
+  unfolding inner_simps by auto
+
+lemma pairwise_orthogonal_insert:
+  assumes "pairwise orthogonal S"
+    and "\<And>y. y \<in> S \<Longrightarrow> orthogonal x y"
+  shows "pairwise orthogonal (insert x S)"
+  using assms unfolding pairwise_def
+  by (auto simp add: orthogonal_commute)
+
+lemma basis_orthogonal:
+  fixes B :: "'a::real_inner set"
+  assumes fB: "finite B"
+  shows "\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C"
+  (is " \<exists>C. ?P B C")
+  using fB
+proof (induct rule: finite_induct)
+  case empty
+  then show ?case
+    apply (rule exI[where x="{}"])
+    apply (auto simp add: pairwise_def)
+    done
+next
+  case (insert a B)
+  note fB = \<open>finite B\<close> and aB = \<open>a \<notin> B\<close>
+  from \<open>\<exists>C. finite C \<and> card C \<le> card B \<and> span C = span B \<and> pairwise orthogonal C\<close>
+  obtain C where C: "finite C" "card C \<le> card B"
+    "span C = span B" "pairwise orthogonal C" by blast
+  let ?a = "a - setsum (\<lambda>x. (x \<bullet> a / (x \<bullet> x)) *\<^sub>R x) C"
+  let ?C = "insert ?a C"
+  from C(1) have fC: "finite ?C"
+    by simp
+  from fB aB C(1,2) have cC: "card ?C \<le> card (insert a B)"
+    by (simp add: card_insert_if)
+  {
+    fix x k
+    have th0: "\<And>(a::'a) b c. a - (b - c) = c + (a - b)"
+      by (simp add: field_simps)
+    have "x - k *\<^sub>R (a - (\<Sum>x\<in>C. (x \<bullet> a / (x \<bullet> x)) *\<^sub>R x)) \<in> span C \<longleftrightarrow> x - k *\<^sub>R a \<in> span C"
+      apply (simp only: scaleR_right_diff_distrib th0)
+      apply (rule span_add_eq)
+      apply (rule span_mul)
+      apply (rule span_setsum)
+      apply (rule span_mul)
+      apply (rule span_superset)
+      apply assumption
+      done
+  }
+  then have SC: "span ?C = span (insert a B)"
+    unfolding set_eq_iff span_breakdown_eq C(3)[symmetric] by auto
+  {
+    fix y
+    assume yC: "y \<in> C"
+    then have Cy: "C = insert y (C - {y})"
+      by blast
+    have fth: "finite (C - {y})"
+      using C by simp
+    have "orthogonal ?a y"
+      unfolding orthogonal_def
+      unfolding inner_diff inner_setsum_left right_minus_eq
+      unfolding setsum.remove [OF \<open>finite C\<close> \<open>y \<in> C\<close>]
+      apply (clarsimp simp add: inner_commute[of y a])
+      apply (rule setsum.neutral)
+      apply clarsimp
+      apply (rule C(4)[unfolded pairwise_def orthogonal_def, rule_format])
+      using \<open>y \<in> C\<close> by auto
+  }
+  with \<open>pairwise orthogonal C\<close> have CPO: "pairwise orthogonal ?C"
+    by (rule pairwise_orthogonal_insert)
+  from fC cC SC CPO have "?P (insert a B) ?C"
+    by blast
+  then show ?case by blast
+qed
+
+lemma orthogonal_basis_exists:
+  fixes V :: "('a::euclidean_space) set"
+  shows "\<exists>B. independent B \<and> B \<subseteq> span V \<and> V \<subseteq> span B \<and> (card B = dim V) \<and> pairwise orthogonal B"
+proof -
+  from basis_exists[of V] obtain B where
+    B: "B \<subseteq> V" "independent B" "V \<subseteq> span B" "card B = dim V"
+    by blast
+  from B have fB: "finite B" "card B = dim V"
+    using independent_bound by auto
+  from basis_orthogonal[OF fB(1)] obtain C where
+    C: "finite C" "card C \<le> card B" "span C = span B" "pairwise orthogonal C"
+    by blast
+  from C B have CSV: "C \<subseteq> span V"
+    by (metis span_inc span_mono subset_trans)
+  from span_mono[OF B(3)] C have SVC: "span V \<subseteq> span C"
+    by (simp add: span_span)
+  from card_le_dim_spanning[OF CSV SVC C(1)] C(2,3) fB
+  have iC: "independent C"
+    by (simp add: dim_span)
+  from C fB have "card C \<le> dim V"
+    by simp
+  moreover have "dim V \<le> card C"
+    using span_card_ge_dim[OF CSV SVC C(1)]
+    by (simp add: dim_span)
+  ultimately have CdV: "card C = dim V"
+    using C(1) by simp
+  from C B CSV CdV iC show ?thesis
+    by auto
+qed
+
+text \<open>Low-dimensional subset is in a hyperplane (weak orthogonal complement).\<close>
+
+lemma span_not_univ_orthogonal:
+  fixes S :: "'a::euclidean_space set"
+  assumes sU: "span S \<noteq> UNIV"
+  shows "\<exists>a::'a. a \<noteq> 0 \<and> (\<forall>x \<in> span S. a \<bullet> x = 0)"
+proof -
+  from sU obtain a where a: "a \<notin> span S"
+    by blast
+  from orthogonal_basis_exists obtain B where
+    B: "independent B" "B \<subseteq> span S" "S \<subseteq> span B" "card B = dim S" "pairwise orthogonal B"
+    by blast
+  from B have fB: "finite B" "card B = dim S"
+    using independent_bound by auto
+  from span_mono[OF B(2)] span_mono[OF B(3)]
+  have sSB: "span S = span B"
+    by (simp add: span_span)
+  let ?a = "a - setsum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *\<^sub>R b) B"
+  have "setsum (\<lambda>b. (a \<bullet> b / (b \<bullet> b)) *\<^sub>R b) B \<in> span S"
+    unfolding sSB
+    apply (rule span_setsum)
+    apply (rule span_mul)
+    apply (rule span_superset)
+    apply assumption
+    done
+  with a have a0:"?a  \<noteq> 0"
+    by auto
+  have "\<forall>x\<in>span B. ?a \<bullet> x = 0"
+  proof (rule span_induct')
+    show "subspace {x. ?a \<bullet> x = 0}"
+      by (auto simp add: subspace_def inner_add)
+  next
+    {
+      fix x
+      assume x: "x \<in> B"
+      from x have B': "B = insert x (B - {x})"
+        by blast
+      have fth: "finite (B - {x})"
+        using fB by simp
+      have "?a \<bullet> x = 0"
+        apply (subst B')
+        using fB fth
+        unfolding setsum_clauses(2)[OF fth]
+        apply simp unfolding inner_simps
+        apply (clarsimp simp add: inner_add inner_setsum_left)
+        apply (rule setsum.neutral, rule ballI)
+        apply (simp only: inner_commute)
+        apply (auto simp add: x field_simps
+          intro: B(5)[unfolded pairwise_def orthogonal_def, rule_format])
+        done
+    }
+    then show "\<forall>x \<in> B. ?a \<bullet> x = 0"
+      by blast
+  qed
+  with a0 show ?thesis
+    unfolding sSB by (auto intro: exI[where x="?a"])
+qed
+
+lemma span_not_univ_subset_hyperplane:
+  fixes S :: "'a::euclidean_space set"
+  assumes SU: "span S \<noteq> UNIV"
+  shows "\<exists> a. a \<noteq>0 \<and> span S \<subseteq> {x. a \<bullet> x = 0}"
+  using span_not_univ_orthogonal[OF SU] by auto
+
+lemma lowdim_subset_hyperplane:
+  fixes S :: "'a::euclidean_space set"
+  assumes d: "dim S < DIM('a)"
+  shows "\<exists>a::'a. a \<noteq> 0 \<and> span S \<subseteq> {x. a \<bullet> x = 0}"
+proof -
+  {
+    assume "span S = UNIV"
+    then have "dim (span S) = dim (UNIV :: ('a) set)"
+      by simp
+    then have "dim S = DIM('a)"
+      by (simp add: dim_span dim_UNIV)
+    with d have False by arith
+  }
+  then have th: "span S \<noteq> UNIV"
+    by blast
+  from span_not_univ_subset_hyperplane[OF th] show ?thesis .
+qed
+
+text \<open>We can extend a linear basis-basis injection to the whole set.\<close>
+
+lemma linear_indep_image_lemma:
+  assumes lf: "linear f"
+    and fB: "finite B"
+    and ifB: "independent (f ` B)"
+    and fi: "inj_on f B"
+    and xsB: "x \<in> span B"
+    and fx: "f x = 0"
+  shows "x = 0"
+  using fB ifB fi xsB fx
+proof (induct arbitrary: x rule: finite_induct[OF fB])
+  case 1
+  then show ?case by auto
+next
+  case (2 a b x)
+  have fb: "finite b" using "2.prems" by simp
+  have th0: "f ` b \<subseteq> f ` (insert a b)"
+    apply (rule image_mono)
+    apply blast
+    done
+  from independent_mono[ OF "2.prems"(2) th0]
+  have ifb: "independent (f ` b)"  .
+  have fib: "inj_on f b"
+    apply (rule subset_inj_on [OF "2.prems"(3)])
+    apply blast
+    done
+  from span_breakdown[of a "insert a b", simplified, OF "2.prems"(4)]
+  obtain k where k: "x - k*\<^sub>R a \<in> span (b - {a})"
+    by blast
+  have "f (x - k*\<^sub>R a) \<in> span (f ` b)"
+    unfolding span_linear_image[OF lf]
+    apply (rule imageI)
+    using k span_mono[of "b - {a}" b]
+    apply blast
+    done
+  then have "f x - k*\<^sub>R f a \<in> span (f ` b)"
+    by (simp add: linear_diff[OF lf] linear_cmul[OF lf])
+  then have th: "-k *\<^sub>R f a \<in> span (f ` b)"
+    using "2.prems"(5) by simp
+  have xsb: "x \<in> span b"
+  proof (cases "k = 0")
+    case True
+    with k have "x \<in> span (b - {a})" by simp
+    then show ?thesis using span_mono[of "b - {a}" b]
+      by blast
+  next
+    case False
+    with span_mul[OF th, of "- 1/ k"]
+    have th1: "f a \<in> span (f ` b)"
+      by auto
+    from inj_on_image_set_diff[OF "2.prems"(3), of "insert a b " "{a}", symmetric]
+    have tha: "f ` insert a b - f ` {a} = f ` (insert a b - {a})" by blast
+    from "2.prems"(2) [unfolded dependent_def bex_simps(8), rule_format, of "f a"]
+    have "f a \<notin> span (f ` b)" using tha
+      using "2.hyps"(2)
+      "2.prems"(3) by auto
+    with th1 have False by blast
+    then show ?thesis by blast
+  qed
+  from "2.hyps"(3)[OF fb ifb fib xsb "2.prems"(5)] show "x = 0" .
+qed
+
+text \<open>Can construct an isomorphism between spaces of same dimension.\<close>
+
+lemma subspace_isomorphism:
+  fixes S :: "'a::euclidean_space set"
+    and T :: "'b::euclidean_space set"
+  assumes s: "subspace S"
+    and t: "subspace T"
+    and d: "dim S = dim T"
+  shows "\<exists>f. linear f \<and> f ` S = T \<and> inj_on f S"
+proof -
+  from basis_exists[of S] independent_bound
+  obtain B where B: "B \<subseteq> S" "independent B" "S \<subseteq> span B" "card B = dim S" and fB: "finite B"
+    by blast
+  from basis_exists[of T] independent_bound
+  obtain C where C: "C \<subseteq> T" "independent C" "T \<subseteq> span C" "card C = dim T" and fC: "finite C"
+    by blast
+  from B(4) C(4) card_le_inj[of B C] d
+  obtain f where f: "f ` B \<subseteq> C" "inj_on f B" using \<open>finite B\<close> \<open>finite C\<close>
+    by auto
+  from linear_independent_extend[OF B(2)]
+  obtain g where g: "linear g" "\<forall>x\<in> B. g x = f x"
+    by blast
+  from inj_on_iff_eq_card[OF fB, of f] f(2) have "card (f ` B) = card B"
+    by simp
+  with B(4) C(4) have ceq: "card (f ` B) = card C"
+    using d by simp
+  have "g ` B = f ` B"
+    using g(2) by (auto simp add: image_iff)
+  also have "\<dots> = C" using card_subset_eq[OF fC f(1) ceq] .
+  finally have gBC: "g ` B = C" .
+  have gi: "inj_on g B"
+    using f(2) g(2) by (auto simp add: inj_on_def)
+  note g0 = linear_indep_image_lemma[OF g(1) fB, unfolded gBC, OF C(2) gi]
+  {
+    fix x y
+    assume x: "x \<in> S" and y: "y \<in> S" and gxy: "g x = g y"
+    from B(3) x y have x': "x \<in> span B" and y': "y \<in> span B"
+      by blast+
+    from gxy have th0: "g (x - y) = 0"
+      by (simp add: linear_diff[OF g(1)])
+    have th1: "x - y \<in> span B"
+      using x' y' by (metis span_sub)
+    have "x = y"
+      using g0[OF th1 th0] by simp
+  }
+  then have giS: "inj_on g S"
+    unfolding inj_on_def by blast
+  from span_subspace[OF B(1,3) s] have "g ` S = span (g ` B)"
+    by (simp add: span_linear_image[OF g(1)])
+  also have "\<dots> = span C" unfolding gBC ..
+  also have "\<dots> = T" using span_subspace[OF C(1,3) t] .
+  finally have gS: "g ` S = T" .
+  from g(1) gS giS show ?thesis
+    by blast
+qed
+
+lemma linear_eq_stdbasis:
+  fixes f :: "'a::euclidean_space \<Rightarrow> _"
+  assumes lf: "linear f"
+    and lg: "linear g"
+    and fg: "\<forall>b\<in>Basis. f b = g b"
+  shows "f = g"
+  using linear_eq[OF lf lg, of _ Basis] fg by auto
+
+text \<open>Similar results for bilinear functions.\<close>
+
+lemma bilinear_eq:
+  assumes bf: "bilinear f"
+    and bg: "bilinear g"
+    and SB: "S \<subseteq> span B"
+    and TC: "T \<subseteq> span C"
+    and fg: "\<forall>x\<in> B. \<forall>y\<in> C. f x y = g x y"
+  shows "\<forall>x\<in>S. \<forall>y\<in>T. f x y = g x y "
+proof -
+  let ?P = "{x. \<forall>y\<in> span C. f x y = g x y}"
+  from bf bg have sp: "subspace ?P"
+    unfolding bilinear_def linear_iff subspace_def bf bg
+    by (auto simp add: span_0 bilinear_lzero[OF bf] bilinear_lzero[OF bg] span_add Ball_def
+      intro: bilinear_ladd[OF bf])
+
+  have "\<forall>x \<in> span B. \<forall>y\<in> span C. f x y = g x y"
+    apply (rule span_induct' [OF _ sp])
+    apply (rule ballI)
+    apply (rule span_induct')
+    apply (simp add: fg)
+    apply (auto simp add: subspace_def)
+    using bf bg unfolding bilinear_def linear_iff
+    apply (auto simp add: span_0 bilinear_rzero[OF bf] bilinear_rzero[OF bg] span_add Ball_def
+      intro: bilinear_ladd[OF bf])
+    done
+  then show ?thesis
+    using SB TC by auto
+qed
+
+lemma bilinear_eq_stdbasis:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space \<Rightarrow> _"
+  assumes bf: "bilinear f"
+    and bg: "bilinear g"
+    and fg: "\<forall>i\<in>Basis. \<forall>j\<in>Basis. f i j = g i j"
+  shows "f = g"
+  using bilinear_eq[OF bf bg equalityD2[OF span_Basis] equalityD2[OF span_Basis] fg] by blast
+
+text \<open>An injective map @{typ "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"} is also surjective.\<close>
+
+lemma linear_injective_imp_surjective:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
+  assumes lf: "linear f"
+    and fi: "inj f"
+  shows "surj f"
+proof -
+  let ?U = "UNIV :: 'a set"
+  from basis_exists[of ?U] obtain B
+    where B: "B \<subseteq> ?U" "independent B" "?U \<subseteq> span B" "card B = dim ?U"
+    by blast
+  from B(4) have d: "dim ?U = card B"
+    by simp
+  have th: "?U \<subseteq> span (f ` B)"
+    apply (rule card_ge_dim_independent)
+    apply blast
+    apply (rule independent_injective_image[OF B(2) lf fi])
+    apply (rule order_eq_refl)
+    apply (rule sym)
+    unfolding d
+    apply (rule card_image)
+    apply (rule subset_inj_on[OF fi])
+    apply blast
+    done
+  from th show ?thesis
+    unfolding span_linear_image[OF lf] surj_def
+    using B(3) by blast
+qed
+
+text \<open>And vice versa.\<close>
+
+lemma surjective_iff_injective_gen:
+  assumes fS: "finite S"
+    and fT: "finite T"
+    and c: "card S = card T"
+    and ST: "f ` S \<subseteq> T"
+  shows "(\<forall>y \<in> T. \<exists>x \<in> S. f x = y) \<longleftrightarrow> inj_on f S"
+  (is "?lhs \<longleftrightarrow> ?rhs")
+proof
+  assume h: "?lhs"
+  {
+    fix x y
+    assume x: "x \<in> S"
+    assume y: "y \<in> S"
+    assume f: "f x = f y"
+    from x fS have S0: "card S \<noteq> 0"
+      by auto
+    have "x = y"
+    proof (rule ccontr)
+      assume xy: "\<not> ?thesis"
+      have th: "card S \<le> card (f ` (S - {y}))"
+        unfolding c
+        apply (rule card_mono)
+        apply (rule finite_imageI)
+        using fS apply simp
+        using h xy x y f unfolding subset_eq image_iff
+        apply auto
+        apply (case_tac "xa = f x")
+        apply (rule bexI[where x=x])
+        apply auto
+        done
+      also have " \<dots> \<le> card (S - {y})"
+        apply (rule card_image_le)
+        using fS by simp
+      also have "\<dots> \<le> card S - 1" using y fS by simp
+      finally show False using S0 by arith
+    qed
+  }
+  then show ?rhs
+    unfolding inj_on_def by blast
+next
+  assume h: ?rhs
+  have "f ` S = T"
+    apply (rule card_subset_eq[OF fT ST])
+    unfolding card_image[OF h]
+    apply (rule c)
+    done
+  then show ?lhs by blast
+qed
+
+lemma linear_surjective_imp_injective:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
+  assumes lf: "linear f"
+    and sf: "surj f"
+  shows "inj f"
+proof -
+  let ?U = "UNIV :: 'a set"
+  from basis_exists[of ?U] obtain B
+    where B: "B \<subseteq> ?U" "independent B" "?U \<subseteq> span B" and d: "card B = dim ?U"
+    by blast
+  {
+    fix x
+    assume x: "x \<in> span B"
+    assume fx: "f x = 0"
+    from B(2) have fB: "finite B"
+      using independent_bound by auto
+    have fBi: "independent (f ` B)"
+      apply (rule card_le_dim_spanning[of "f ` B" ?U])
+      apply blast
+      using sf B(3)
+      unfolding span_linear_image[OF lf] surj_def subset_eq image_iff
+      apply blast
+      using fB apply blast
+      unfolding d[symmetric]
+      apply (rule card_image_le)
+      apply (rule fB)
+      done
+    have th0: "dim ?U \<le> card (f ` B)"
+      apply (rule span_card_ge_dim)
+      apply blast
+      unfolding span_linear_image[OF lf]
+      apply (rule subset_trans[where B = "f ` UNIV"])
+      using sf unfolding surj_def
+      apply blast
+      apply (rule image_mono)
+      apply (rule B(3))
+      apply (metis finite_imageI fB)
+      done
+    moreover have "card (f ` B) \<le> card B"
+      by (rule card_image_le, rule fB)
+    ultimately have th1: "card B = card (f ` B)"
+      unfolding d by arith
+    have fiB: "inj_on f B"
+      unfolding surjective_iff_injective_gen[OF fB finite_imageI[OF fB] th1 subset_refl, symmetric]
+      by blast
+    from linear_indep_image_lemma[OF lf fB fBi fiB x] fx
+    have "x = 0" by blast
+  }
+  then show ?thesis
+    unfolding linear_injective_0[OF lf]
+    using B(3)
+    by blast
+qed
+
+text \<open>Hence either is enough for isomorphism.\<close>
+
+lemma left_right_inverse_eq:
+  assumes fg: "f \<circ> g = id"
+    and gh: "g \<circ> h = id"
+  shows "f = h"
+proof -
+  have "f = f \<circ> (g \<circ> h)"
+    unfolding gh by simp
+  also have "\<dots> = (f \<circ> g) \<circ> h"
+    by (simp add: o_assoc)
+  finally show "f = h"
+    unfolding fg by simp
+qed
+
+lemma isomorphism_expand:
+  "f \<circ> g = id \<and> g \<circ> f = id \<longleftrightarrow> (\<forall>x. f (g x) = x) \<and> (\<forall>x. g (f x) = x)"
+  by (simp add: fun_eq_iff o_def id_def)
+
+lemma linear_injective_isomorphism:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
+  assumes lf: "linear f"
+    and fi: "inj f"
+  shows "\<exists>f'. linear f' \<and> (\<forall>x. f' (f x) = x) \<and> (\<forall>x. f (f' x) = x)"
+  unfolding isomorphism_expand[symmetric]
+  using linear_surjective_right_inverse[OF lf linear_injective_imp_surjective[OF lf fi]]
+    linear_injective_left_inverse[OF lf fi]
+  by (metis left_right_inverse_eq)
+
+lemma linear_surjective_isomorphism:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
+  assumes lf: "linear f"
+    and sf: "surj f"
+  shows "\<exists>f'. linear f' \<and> (\<forall>x. f' (f x) = x) \<and> (\<forall>x. f (f' x) = x)"
+  unfolding isomorphism_expand[symmetric]
+  using linear_surjective_right_inverse[OF lf sf]
+    linear_injective_left_inverse[OF lf linear_surjective_imp_injective[OF lf sf]]
+  by (metis left_right_inverse_eq)
+
+text \<open>Left and right inverses are the same for
+  @{typ "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"}.\<close>
+
+lemma linear_inverse_left:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
+  assumes lf: "linear f"
+    and lf': "linear f'"
+  shows "f \<circ> f' = id \<longleftrightarrow> f' \<circ> f = id"
+proof -
+  {
+    fix f f':: "'a \<Rightarrow> 'a"
+    assume lf: "linear f" "linear f'"
+    assume f: "f \<circ> f' = id"
+    from f have sf: "surj f"
+      apply (auto simp add: o_def id_def surj_def)
+      apply metis
+      done
+    from linear_surjective_isomorphism[OF lf(1) sf] lf f
+    have "f' \<circ> f = id"
+      unfolding fun_eq_iff o_def id_def by metis
+  }
+  then show ?thesis
+    using lf lf' by metis
+qed
+
+text \<open>Moreover, a one-sided inverse is automatically linear.\<close>
+
+lemma left_inverse_linear:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
+  assumes lf: "linear f"
+    and gf: "g \<circ> f = id"
+  shows "linear g"
+proof -
+  from gf have fi: "inj f"
+    apply (auto simp add: inj_on_def o_def id_def fun_eq_iff)
+    apply metis
+    done
+  from linear_injective_isomorphism[OF lf fi]
+  obtain h :: "'a \<Rightarrow> 'a" where h: "linear h" "\<forall>x. h (f x) = x" "\<forall>x. f (h x) = x"
+    by blast
+  have "h = g"
+    apply (rule ext) using gf h(2,3)
+    apply (simp add: o_def id_def fun_eq_iff)
+    apply metis
+    done
+  with h(1) show ?thesis by blast
+qed
+
+lemma inj_linear_imp_inv_linear:
+  fixes f :: "'a::euclidean_space \<Rightarrow> 'a::euclidean_space"
+  assumes "linear f" "inj f" shows "linear (inv f)"
+using assms inj_iff left_inverse_linear by blast
+
+
+subsection \<open>Infinity norm\<close>
+
+definition "infnorm (x::'a::euclidean_space) = Sup {\<bar>x \<bullet> b\<bar> |b. b \<in> Basis}"
+
+lemma infnorm_set_image:
+  fixes x :: "'a::euclidean_space"
+  shows "{\<bar>x \<bullet> i\<bar> |i. i \<in> Basis} = (\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis"
+  by blast
+
+lemma infnorm_Max:
+  fixes x :: "'a::euclidean_space"
+  shows "infnorm x = Max ((\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis)"
+  by (simp add: infnorm_def infnorm_set_image cSup_eq_Max)
+
+lemma infnorm_set_lemma:
+  fixes x :: "'a::euclidean_space"
+  shows "finite {\<bar>x \<bullet> i\<bar> |i. i \<in> Basis}"
+    and "{\<bar>x \<bullet> i\<bar> |i. i \<in> Basis} \<noteq> {}"
+  unfolding infnorm_set_image
+  by auto
+
+lemma infnorm_pos_le:
+  fixes x :: "'a::euclidean_space"
+  shows "0 \<le> infnorm x"
+  by (simp add: infnorm_Max Max_ge_iff ex_in_conv)
+
+lemma infnorm_triangle:
+  fixes x :: "'a::euclidean_space"
+  shows "infnorm (x + y) \<le> infnorm x + infnorm y"
+proof -
+  have *: "\<And>a b c d :: real. \<bar>a\<bar> \<le> c \<Longrightarrow> \<bar>b\<bar> \<le> d \<Longrightarrow> \<bar>a + b\<bar> \<le> c + d"
+    by simp
+  show ?thesis
+    by (auto simp: infnorm_Max inner_add_left intro!: *)
+qed
+
+lemma infnorm_eq_0:
+  fixes x :: "'a::euclidean_space"
+  shows "infnorm x = 0 \<longleftrightarrow> x = 0"
+proof -
+  have "infnorm x \<le> 0 \<longleftrightarrow> x = 0"
+    unfolding infnorm_Max by (simp add: euclidean_all_zero_iff)
+  then show ?thesis
+    using infnorm_pos_le[of x] by simp
+qed
+
+lemma infnorm_0: "infnorm 0 = 0"
+  by (simp add: infnorm_eq_0)
+
+lemma infnorm_neg: "infnorm (- x) = infnorm x"
+  unfolding infnorm_def
+  apply (rule cong[of "Sup" "Sup"])
+  apply blast
+  apply auto
+  done
+
+lemma infnorm_sub: "infnorm (x - y) = infnorm (y - x)"
+proof -
+  have "y - x = - (x - y)" by simp
+  then show ?thesis
+    by (metis infnorm_neg)
+qed
+
+lemma real_abs_sub_infnorm: "\<bar>infnorm x - infnorm y\<bar> \<le> infnorm (x - y)"
+proof -
+  have th: "\<And>(nx::real) n ny. nx \<le> n + ny \<Longrightarrow> ny \<le> n + nx \<Longrightarrow> \<bar>nx - ny\<bar> \<le> n"
+    by arith
+  from infnorm_triangle[of "x - y" " y"] infnorm_triangle[of "x - y" "-x"]
+  have ths: "infnorm x \<le> infnorm (x - y) + infnorm y"
+    "infnorm y \<le> infnorm (x - y) + infnorm x"
+    by (simp_all add: field_simps infnorm_neg)
+  from th[OF ths] show ?thesis .
+qed
+
+lemma real_abs_infnorm: "\<bar>infnorm x\<bar> = infnorm x"
+  using infnorm_pos_le[of x] by arith
+
+lemma Basis_le_infnorm:
+  fixes x :: "'a::euclidean_space"
+  shows "b \<in> Basis \<Longrightarrow> \<bar>x \<bullet> b\<bar> \<le> infnorm x"
+  by (simp add: infnorm_Max)
+
+lemma infnorm_mul: "infnorm (a *\<^sub>R x) = \<bar>a\<bar> * infnorm x"
+  unfolding infnorm_Max
+proof (safe intro!: Max_eqI)
+  let ?B = "(\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis"
+  {
+    fix b :: 'a
+    assume "b \<in> Basis"
+    then show "\<bar>a *\<^sub>R x \<bullet> b\<bar> \<le> \<bar>a\<bar> * Max ?B"
+      by (simp add: abs_mult mult_left_mono)
+  next
+    from Max_in[of ?B] obtain b where "b \<in> Basis" "Max ?B = \<bar>x \<bullet> b\<bar>"
+      by (auto simp del: Max_in)
+    then show "\<bar>a\<bar> * Max ((\<lambda>i. \<bar>x \<bullet> i\<bar>) ` Basis) \<in> (\<lambda>i. \<bar>a *\<^sub>R x \<bullet> i\<bar>) ` Basis"
+      by (intro image_eqI[where x=b]) (auto simp: abs_mult)
+  }
+qed simp
+
+lemma infnorm_mul_lemma: "infnorm (a *\<^sub>R x) \<le> \<bar>a\<bar> * infnorm x"
+  unfolding infnorm_mul ..
+
+lemma infnorm_pos_lt: "infnorm x > 0 \<longleftrightarrow> x \<noteq> 0"
+  using infnorm_pos_le[of x] infnorm_eq_0[of x] by arith
+
+text \<open>Prove that it differs only up to a bound from Euclidean norm.\<close>
+
+lemma infnorm_le_norm: "infnorm x \<le> norm x"
+  by (simp add: Basis_le_norm infnorm_Max)
+
+lemma (in euclidean_space) euclidean_inner: "inner x y = (\<Sum>b\<in>Basis. (x \<bullet> b) * (y \<bullet> b))"
+  by (subst (1 2) euclidean_representation [symmetric])
+    (simp add: inner_setsum_right inner_Basis ac_simps)
+
+lemma norm_le_infnorm:
+  fixes x :: "'a::euclidean_space"
+  shows "norm x \<le> sqrt DIM('a) * infnorm x"
+proof -
+  let ?d = "DIM('a)"
+  have "real ?d \<ge> 0"
+    by simp
+  then have d2: "(sqrt (real ?d))\<^sup>2 = real ?d"
+    by (auto intro: real_sqrt_pow2)
+  have th: "sqrt (real ?d) * infnorm x \<ge> 0"
+    by (simp add: zero_le_mult_iff infnorm_pos_le)
+  have th1: "x \<bullet> x \<le> (sqrt (real ?d) * infnorm x)\<^sup>2"
+    unfolding power_mult_distrib d2
+    apply (subst euclidean_inner)
+    apply (subst power2_abs[symmetric])
+    apply (rule order_trans[OF setsum_bounded_above[where K="\<bar>infnorm x\<bar>\<^sup>2"]])
+    apply (auto simp add: power2_eq_square[symmetric])
+    apply (subst power2_abs[symmetric])
+    apply (rule power_mono)
+    apply (auto simp: infnorm_Max)
+    done
+  from real_le_lsqrt[OF inner_ge_zero th th1]
+  show ?thesis
+    unfolding norm_eq_sqrt_inner id_def .
+qed
+
+lemma tendsto_infnorm [tendsto_intros]:
+  assumes "(f \<longlongrightarrow> a) F"
+  shows "((\<lambda>x. infnorm (f x)) \<longlongrightarrow> infnorm a) F"
+proof (rule tendsto_compose [OF LIM_I assms])
+  fix r :: real
+  assume "r > 0"
+  then show "\<exists>s>0. \<forall>x. x \<noteq> a \<and> norm (x - a) < s \<longrightarrow> norm (infnorm x - infnorm a) < r"
+    by (metis real_norm_def le_less_trans real_abs_sub_infnorm infnorm_le_norm)
+qed
+
+text \<open>Equality in Cauchy-Schwarz and triangle inequalities.\<close>
+
+lemma norm_cauchy_schwarz_eq: "x \<bullet> y = norm x * norm y \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x"
+  (is "?lhs \<longleftrightarrow> ?rhs")
+proof -
+  {
+    assume h: "x = 0"
+    then have ?thesis by simp
+  }
+  moreover
+  {
+    assume h: "y = 0"
+    then have ?thesis by simp
+  }
+  moreover
+  {
+    assume x: "x \<noteq> 0" and y: "y \<noteq> 0"
+    from inner_eq_zero_iff[of "norm y *\<^sub>R x - norm x *\<^sub>R y"]
+    have "?rhs \<longleftrightarrow>
+      (norm y * (norm y * norm x * norm x - norm x * (x \<bullet> y)) -
+        norm x * (norm y * (y \<bullet> x) - norm x * norm y * norm y) =  0)"
+      using x y
+      unfolding inner_simps
+      unfolding power2_norm_eq_inner[symmetric] power2_eq_square right_minus_eq
+      apply (simp add: inner_commute)
+      apply (simp add: field_simps)
+      apply metis
+      done
+    also have "\<dots> \<longleftrightarrow> (2 * norm x * norm y * (norm x * norm y - x \<bullet> y) = 0)" using x y
+      by (simp add: field_simps inner_commute)
+    also have "\<dots> \<longleftrightarrow> ?lhs" using x y
+      apply simp
+      apply metis
+      done
+    finally have ?thesis by blast
+  }
+  ultimately show ?thesis by blast
+qed
+
+lemma norm_cauchy_schwarz_abs_eq:
+  "\<bar>x \<bullet> y\<bar> = norm x * norm y \<longleftrightarrow>
+    norm x *\<^sub>R y = norm y *\<^sub>R x \<or> norm x *\<^sub>R y = - norm y *\<^sub>R x"
+  (is "?lhs \<longleftrightarrow> ?rhs")
+proof -
+  have th: "\<And>(x::real) a. a \<ge> 0 \<Longrightarrow> \<bar>x\<bar> = a \<longleftrightarrow> x = a \<or> x = - a"
+    by arith
+  have "?rhs \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x \<or> norm (- x) *\<^sub>R y = norm y *\<^sub>R (- x)"
+    by simp
+  also have "\<dots> \<longleftrightarrow>(x \<bullet> y = norm x * norm y \<or> (- x) \<bullet> y = norm x * norm y)"
+    unfolding norm_cauchy_schwarz_eq[symmetric]
+    unfolding norm_minus_cancel norm_scaleR ..
+  also have "\<dots> \<longleftrightarrow> ?lhs"
+    unfolding th[OF mult_nonneg_nonneg, OF norm_ge_zero[of x] norm_ge_zero[of y]] inner_simps
+    by auto
+  finally show ?thesis ..
+qed
+
+lemma norm_triangle_eq:
+  fixes x y :: "'a::real_inner"
+  shows "norm (x + y) = norm x + norm y \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x"
+proof -
+  {
+    assume x: "x = 0 \<or> y = 0"
+    then have ?thesis
+      by (cases "x = 0") simp_all
+  }
+  moreover
+  {
+    assume x: "x \<noteq> 0" and y: "y \<noteq> 0"
+    then have "norm x \<noteq> 0" "norm y \<noteq> 0"
+      by simp_all
+    then have n: "norm x > 0" "norm y > 0"
+      using norm_ge_zero[of x] norm_ge_zero[of y] by arith+
+    have th: "\<And>(a::real) b c. a + b + c \<noteq> 0 \<Longrightarrow> a = b + c \<longleftrightarrow> a\<^sup>2 = (b + c)\<^sup>2"
+      by algebra
+    have "norm (x + y) = norm x + norm y \<longleftrightarrow> (norm (x + y))\<^sup>2 = (norm x + norm y)\<^sup>2"
+      apply (rule th)
+      using n norm_ge_zero[of "x + y"]
+      apply arith
+      done
+    also have "\<dots> \<longleftrightarrow> norm x *\<^sub>R y = norm y *\<^sub>R x"
+      unfolding norm_cauchy_schwarz_eq[symmetric]
+      unfolding power2_norm_eq_inner inner_simps
+      by (simp add: power2_norm_eq_inner[symmetric] power2_eq_square inner_commute field_simps)
+    finally have ?thesis .
+  }
+  ultimately show ?thesis by blast
+qed
+
+
+subsection \<open>Collinearity\<close>
+
+definition collinear :: "'a::real_vector set \<Rightarrow> bool"
+  where "collinear S \<longleftrightarrow> (\<exists>u. \<forall>x \<in> S. \<forall> y \<in> S. \<exists>c. x - y = c *\<^sub>R u)"
+
+lemma collinear_empty [iff]: "collinear {}"
+  by (simp add: collinear_def)
+
+lemma collinear_sing [iff]: "collinear {x}"
+  by (simp add: collinear_def)
+
+lemma collinear_2 [iff]: "collinear {x, y}"
+  apply (simp add: collinear_def)
+  apply (rule exI[where x="x - y"])
+  apply auto
+  apply (rule exI[where x=1], simp)
+  apply (rule exI[where x="- 1"], simp)
+  done
+
+lemma collinear_lemma: "collinear {0, x, y} \<longleftrightarrow> x = 0 \<or> y = 0 \<or> (\<exists>c. y = c *\<^sub>R x)"
+  (is "?lhs \<longleftrightarrow> ?rhs")
+proof -
+  {
+    assume "x = 0 \<or> y = 0"
+    then have ?thesis
+      by (cases "x = 0") (simp_all add: collinear_2 insert_commute)
+  }
+  moreover
+  {
+    assume x: "x \<noteq> 0" and y: "y \<noteq> 0"
+    have ?thesis
+    proof
+      assume h: "?lhs"
+      then obtain u where u: "\<forall> x\<in> {0,x,y}. \<forall>y\<in> {0,x,y}. \<exists>c. x - y = c *\<^sub>R u"
+        unfolding collinear_def by blast
+      from u[rule_format, of x 0] u[rule_format, of y 0]
+      obtain cx and cy where
+        cx: "x = cx *\<^sub>R u" and cy: "y = cy *\<^sub>R u"
+        by auto
+      from cx x have cx0: "cx \<noteq> 0" by auto
+      from cy y have cy0: "cy \<noteq> 0" by auto
+      let ?d = "cy / cx"
+      from cx cy cx0 have "y = ?d *\<^sub>R x"
+        by simp
+      then show ?rhs using x y by blast
+    next
+      assume h: "?rhs"
+      then obtain c where c: "y = c *\<^sub>R x"
+        using x y by blast
+      show ?lhs
+        unfolding collinear_def c
+        apply (rule exI[where x=x])
+        apply auto
+        apply (rule exI[where x="- 1"], simp)
+        apply (rule exI[where x= "-c"], simp)
+        apply (rule exI[where x=1], simp)
+        apply (rule exI[where x="1 - c"], simp add: scaleR_left_diff_distrib)
+        apply (rule exI[where x="c - 1"], simp add: scaleR_left_diff_distrib)
+        done
+    qed
+  }
+  ultimately show ?thesis by blast
+qed
+
+lemma norm_cauchy_schwarz_equal: "\<bar>x \<bullet> y\<bar> = norm x * norm y \<longleftrightarrow> collinear {0, x, y}"
+  unfolding norm_cauchy_schwarz_abs_eq
+  apply (cases "x=0", simp_all)
+  apply (cases "y=0", simp_all add: insert_commute)
+  unfolding collinear_lemma
+  apply simp
+  apply (subgoal_tac "norm x \<noteq> 0")
+  apply (subgoal_tac "norm y \<noteq> 0")
+  apply (rule iffI)
+  apply (cases "norm x *\<^sub>R y = norm y *\<^sub>R x")
+  apply (rule exI[where x="(1/norm x) * norm y"])
+  apply (drule sym)
+  unfolding scaleR_scaleR[symmetric]
+  apply (simp add: field_simps)
+  apply (rule exI[where x="(1/norm x) * - norm y"])
+  apply clarify
+  apply (drule sym)
+  unfolding scaleR_scaleR[symmetric]
+  apply (simp add: field_simps)
+  apply (erule exE)
+  apply (erule ssubst)
+  unfolding scaleR_scaleR
+  unfolding norm_scaleR
+  apply (subgoal_tac "norm x * c = \<bar>c\<bar> * norm x \<or> norm x * c = - \<bar>c\<bar> * norm x")
+  apply (auto simp add: field_simps)
+  done
+
+end