--- /dev/null Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Analysis/Operator_Norm.thy Mon Aug 08 14:13:14 2016 +0200
@@ -0,0 +1,238 @@
+(* Title: HOL/Analysis/Operator_Norm.thy
+ Author: Amine Chaieb, University of Cambridge
+ Author: Brian Huffman
+*)
+
+section \<open>Operator Norm\<close>
+
+theory Operator_Norm
+imports Complex_Main
+begin
+
+text \<open>This formulation yields zero if \<open>'a\<close> is the trivial vector space.\<close>
+
+definition onorm :: "('a::real_normed_vector \<Rightarrow> 'b::real_normed_vector) \<Rightarrow> real"
+ where "onorm f = (SUP x. norm (f x) / norm x)"
+
+lemma onorm_bound:
+ assumes "0 \<le> b" and "\<And>x. norm (f x) \<le> b * norm x"
+ shows "onorm f \<le> b"
+ unfolding onorm_def
+proof (rule cSUP_least)
+ fix x
+ show "norm (f x) / norm x \<le> b"
+ using assms by (cases "x = 0") (simp_all add: pos_divide_le_eq)
+qed simp
+
+text \<open>In non-trivial vector spaces, the first assumption is redundant.\<close>
+
+lemma onorm_le:
+ fixes f :: "'a::{real_normed_vector, perfect_space} \<Rightarrow> 'b::real_normed_vector"
+ assumes "\<And>x. norm (f x) \<le> b * norm x"
+ shows "onorm f \<le> b"
+proof (rule onorm_bound [OF _ assms])
+ have "{0::'a} \<noteq> UNIV" by (metis not_open_singleton open_UNIV)
+ then obtain a :: 'a where "a \<noteq> 0" by fast
+ have "0 \<le> b * norm a"
+ by (rule order_trans [OF norm_ge_zero assms])
+ with \<open>a \<noteq> 0\<close> show "0 \<le> b"
+ by (simp add: zero_le_mult_iff)
+qed
+
+lemma le_onorm:
+ assumes "bounded_linear f"
+ shows "norm (f x) / norm x \<le> onorm f"
+proof -
+ interpret f: bounded_linear f by fact
+ obtain b where "0 \<le> b" and "\<forall>x. norm (f x) \<le> norm x * b"
+ using f.nonneg_bounded by auto
+ then have "\<forall>x. norm (f x) / norm x \<le> b"
+ by (clarify, case_tac "x = 0",
+ simp_all add: f.zero pos_divide_le_eq mult.commute)
+ then have "bdd_above (range (\<lambda>x. norm (f x) / norm x))"
+ unfolding bdd_above_def by fast
+ with UNIV_I show ?thesis
+ unfolding onorm_def by (rule cSUP_upper)
+qed
+
+lemma onorm:
+ assumes "bounded_linear f"
+ shows "norm (f x) \<le> onorm f * norm x"
+proof -
+ interpret f: bounded_linear f by fact
+ show ?thesis
+ proof (cases)
+ assume "x = 0"
+ then show ?thesis by (simp add: f.zero)
+ next
+ assume "x \<noteq> 0"
+ have "norm (f x) / norm x \<le> onorm f"
+ by (rule le_onorm [OF assms])
+ then show "norm (f x) \<le> onorm f * norm x"
+ by (simp add: pos_divide_le_eq \<open>x \<noteq> 0\<close>)
+ qed
+qed
+
+lemma onorm_pos_le:
+ assumes f: "bounded_linear f"
+ shows "0 \<le> onorm f"
+ using le_onorm [OF f, where x=0] by simp
+
+lemma onorm_zero: "onorm (\<lambda>x. 0) = 0"
+proof (rule order_antisym)
+ show "onorm (\<lambda>x. 0) \<le> 0"
+ by (simp add: onorm_bound)
+ show "0 \<le> onorm (\<lambda>x. 0)"
+ using bounded_linear_zero by (rule onorm_pos_le)
+qed
+
+lemma onorm_eq_0:
+ assumes f: "bounded_linear f"
+ shows "onorm f = 0 \<longleftrightarrow> (\<forall>x. f x = 0)"
+ using onorm [OF f] by (auto simp: fun_eq_iff [symmetric] onorm_zero)
+
+lemma onorm_pos_lt:
+ assumes f: "bounded_linear f"
+ shows "0 < onorm f \<longleftrightarrow> \<not> (\<forall>x. f x = 0)"
+ by (simp add: less_le onorm_pos_le [OF f] onorm_eq_0 [OF f])
+
+lemma onorm_id_le: "onorm (\<lambda>x. x) \<le> 1"
+ by (rule onorm_bound) simp_all
+
+lemma onorm_id: "onorm (\<lambda>x. x::'a::{real_normed_vector, perfect_space}) = 1"
+proof (rule antisym[OF onorm_id_le])
+ have "{0::'a} \<noteq> UNIV" by (metis not_open_singleton open_UNIV)
+ then obtain x :: 'a where "x \<noteq> 0" by fast
+ hence "1 \<le> norm x / norm x"
+ by simp
+ also have "\<dots> \<le> onorm (\<lambda>x::'a. x)"
+ by (rule le_onorm) (rule bounded_linear_ident)
+ finally show "1 \<le> onorm (\<lambda>x::'a. x)" .
+qed
+
+lemma onorm_compose:
+ assumes f: "bounded_linear f"
+ assumes g: "bounded_linear g"
+ shows "onorm (f \<circ> g) \<le> onorm f * onorm g"
+proof (rule onorm_bound)
+ show "0 \<le> onorm f * onorm g"
+ by (intro mult_nonneg_nonneg onorm_pos_le f g)
+next
+ fix x
+ have "norm (f (g x)) \<le> onorm f * norm (g x)"
+ by (rule onorm [OF f])
+ also have "onorm f * norm (g x) \<le> onorm f * (onorm g * norm x)"
+ by (rule mult_left_mono [OF onorm [OF g] onorm_pos_le [OF f]])
+ finally show "norm ((f \<circ> g) x) \<le> onorm f * onorm g * norm x"
+ by (simp add: mult.assoc)
+qed
+
+lemma onorm_scaleR_lemma:
+ assumes f: "bounded_linear f"
+ shows "onorm (\<lambda>x. r *\<^sub>R f x) \<le> \<bar>r\<bar> * onorm f"
+proof (rule onorm_bound)
+ show "0 \<le> \<bar>r\<bar> * onorm f"
+ by (intro mult_nonneg_nonneg onorm_pos_le abs_ge_zero f)
+next
+ fix x
+ have "\<bar>r\<bar> * norm (f x) \<le> \<bar>r\<bar> * (onorm f * norm x)"
+ by (intro mult_left_mono onorm abs_ge_zero f)
+ then show "norm (r *\<^sub>R f x) \<le> \<bar>r\<bar> * onorm f * norm x"
+ by (simp only: norm_scaleR mult.assoc)
+qed
+
+lemma onorm_scaleR:
+ assumes f: "bounded_linear f"
+ shows "onorm (\<lambda>x. r *\<^sub>R f x) = \<bar>r\<bar> * onorm f"
+proof (cases "r = 0")
+ assume "r \<noteq> 0"
+ show ?thesis
+ proof (rule order_antisym)
+ show "onorm (\<lambda>x. r *\<^sub>R f x) \<le> \<bar>r\<bar> * onorm f"
+ using f by (rule onorm_scaleR_lemma)
+ next
+ have "bounded_linear (\<lambda>x. r *\<^sub>R f x)"
+ using bounded_linear_scaleR_right f by (rule bounded_linear_compose)
+ then have "onorm (\<lambda>x. inverse r *\<^sub>R r *\<^sub>R f x) \<le> \<bar>inverse r\<bar> * onorm (\<lambda>x. r *\<^sub>R f x)"
+ by (rule onorm_scaleR_lemma)
+ with \<open>r \<noteq> 0\<close> show "\<bar>r\<bar> * onorm f \<le> onorm (\<lambda>x. r *\<^sub>R f x)"
+ by (simp add: inverse_eq_divide pos_le_divide_eq mult.commute)
+ qed
+qed (simp add: onorm_zero)
+
+lemma onorm_scaleR_left_lemma:
+ assumes r: "bounded_linear r"
+ shows "onorm (\<lambda>x. r x *\<^sub>R f) \<le> onorm r * norm f"
+proof (rule onorm_bound)
+ fix x
+ have "norm (r x *\<^sub>R f) = norm (r x) * norm f"
+ by simp
+ also have "\<dots> \<le> onorm r * norm x * norm f"
+ by (intro mult_right_mono onorm r norm_ge_zero)
+ finally show "norm (r x *\<^sub>R f) \<le> onorm r * norm f * norm x"
+ by (simp add: ac_simps)
+qed (intro mult_nonneg_nonneg norm_ge_zero onorm_pos_le r)
+
+lemma onorm_scaleR_left:
+ assumes f: "bounded_linear r"
+ shows "onorm (\<lambda>x. r x *\<^sub>R f) = onorm r * norm f"
+proof (cases "f = 0")
+ assume "f \<noteq> 0"
+ show ?thesis
+ proof (rule order_antisym)
+ show "onorm (\<lambda>x. r x *\<^sub>R f) \<le> onorm r * norm f"
+ using f by (rule onorm_scaleR_left_lemma)
+ next
+ have bl1: "bounded_linear (\<lambda>x. r x *\<^sub>R f)"
+ by (metis bounded_linear_scaleR_const f)
+ have "bounded_linear (\<lambda>x. r x * norm f)"
+ by (metis bounded_linear_mult_const f)
+ from onorm_scaleR_left_lemma[OF this, of "inverse (norm f)"]
+ have "onorm r \<le> onorm (\<lambda>x. r x * norm f) * inverse (norm f)"
+ using \<open>f \<noteq> 0\<close>
+ by (simp add: inverse_eq_divide)
+ also have "onorm (\<lambda>x. r x * norm f) \<le> onorm (\<lambda>x. r x *\<^sub>R f)"
+ by (rule onorm_bound)
+ (auto simp: abs_mult bl1 onorm_pos_le intro!: order_trans[OF _ onorm])
+ finally show "onorm r * norm f \<le> onorm (\<lambda>x. r x *\<^sub>R f)"
+ using \<open>f \<noteq> 0\<close>
+ by (simp add: inverse_eq_divide pos_le_divide_eq mult.commute)
+ qed
+qed (simp add: onorm_zero)
+
+lemma onorm_neg:
+ shows "onorm (\<lambda>x. - f x) = onorm f"
+ unfolding onorm_def by simp
+
+lemma onorm_triangle:
+ assumes f: "bounded_linear f"
+ assumes g: "bounded_linear g"
+ shows "onorm (\<lambda>x. f x + g x) \<le> onorm f + onorm g"
+proof (rule onorm_bound)
+ show "0 \<le> onorm f + onorm g"
+ by (intro add_nonneg_nonneg onorm_pos_le f g)
+next
+ fix x
+ have "norm (f x + g x) \<le> norm (f x) + norm (g x)"
+ by (rule norm_triangle_ineq)
+ also have "norm (f x) + norm (g x) \<le> onorm f * norm x + onorm g * norm x"
+ by (intro add_mono onorm f g)
+ finally show "norm (f x + g x) \<le> (onorm f + onorm g) * norm x"
+ by (simp only: distrib_right)
+qed
+
+lemma onorm_triangle_le:
+ assumes "bounded_linear f"
+ assumes "bounded_linear g"
+ assumes "onorm f + onorm g \<le> e"
+ shows "onorm (\<lambda>x. f x + g x) \<le> e"
+ using assms by (rule onorm_triangle [THEN order_trans])
+
+lemma onorm_triangle_lt:
+ assumes "bounded_linear f"
+ assumes "bounded_linear g"
+ assumes "onorm f + onorm g < e"
+ shows "onorm (\<lambda>x. f x + g x) < e"
+ using assms by (rule onorm_triangle [THEN order_le_less_trans])
+
+end