src/HOL/Analysis/ex/Approximations.thy
changeset 63627 6ddb43c6b711
parent 63417 c184ec919c70
child 63918 6bf55e6e0b75
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Analysis/ex/Approximations.thy	Mon Aug 08 14:13:14 2016 +0200
@@ -0,0 +1,723 @@
+section \<open>Numeric approximations to Constants\<close>
+
+theory Approximations
+imports "../Complex_Transcendental" "../Harmonic_Numbers"
+begin
+
+text \<open>
+  In this theory, we will approximate some standard mathematical constants with high precision,
+  using only Isabelle's simplifier. (no oracles, code generator, etc.)
+  
+  The constants we will look at are: $\pi$, $e$, $\ln 2$, and $\gamma$ (the Euler--Mascheroni
+  constant).
+\<close>
+
+lemma eval_fact:
+  "fact 0 = 1"
+  "fact (Suc 0) = 1"
+  "fact (numeral n) = numeral n * fact (pred_numeral n)"
+  by (simp, simp, simp_all only: numeral_eq_Suc fact_Suc,
+      simp only: numeral_eq_Suc [symmetric] of_nat_numeral)
+
+lemma setsum_poly_horner_expand:
+  "(\<Sum>k<(numeral n::nat). f k * x^k) = f 0 + (\<Sum>k<pred_numeral n. f (k+1) * x^k) * x"
+  "(\<Sum>k<Suc 0. f k * x^k) = (f 0 :: 'a :: semiring_1)"
+  "(\<Sum>k<(0::nat). f k * x^k) = 0"
+proof -
+  {
+    fix m :: nat
+    have "(\<Sum>k<Suc m. f k * x^k) = f 0 + (\<Sum>k=Suc 0..<Suc m. f k * x^k)"
+      by (subst atLeast0LessThan [symmetric], subst setsum_head_upt_Suc) simp_all
+    also have "(\<Sum>k=Suc 0..<Suc m. f k * x^k) = (\<Sum>k<m. f (k+1) * x^k) * x"
+      by (subst setsum_shift_bounds_Suc_ivl)
+         (simp add: setsum_left_distrib algebra_simps atLeast0LessThan power_commutes)
+    finally have "(\<Sum>k<Suc m. f k * x ^ k) = f 0 + (\<Sum>k<m. f (k + 1) * x ^ k) * x" .
+  }
+  from this[of "pred_numeral n"]
+    show "(\<Sum>k<numeral n. f k * x^k) = f 0 + (\<Sum>k<pred_numeral n. f (k+1) * x^k) * x"
+    by (simp add: numeral_eq_Suc)
+qed simp_all
+
+lemma power_less_one:
+  assumes "n > 0" "x \<ge> 0" "x < 1"
+  shows   "x ^ n < (1::'a::linordered_semidom)"
+proof -
+  from assms consider "x > 0" | "x = 0" by force
+  thus ?thesis
+  proof cases
+    assume "x > 0"
+    with assms show ?thesis
+      by (cases n) (simp, hypsubst, rule power_Suc_less_one)
+  qed (insert assms, cases n, simp_all)
+qed
+
+lemma combine_bounds:
+  "x \<in> {a1..b1} \<Longrightarrow> y \<in> {a2..b2} \<Longrightarrow> a3 = a1 + a2 \<Longrightarrow> b3 = b1 + b2 \<Longrightarrow> x + y \<in> {a3..(b3::real)}"
+  "x \<in> {a1..b1} \<Longrightarrow> y \<in> {a2..b2} \<Longrightarrow> a3 = a1 - b2 \<Longrightarrow> b3 = b1 - a2 \<Longrightarrow> x - y \<in> {a3..(b3::real)}"
+  "c \<ge> 0 \<Longrightarrow> x \<in> {a..b} \<Longrightarrow> c * x \<in> {c*a..c*b}"
+  by (auto simp: mult_left_mono)
+
+lemma approx_coarsen:
+  "\<bar>x - a1\<bar> \<le> eps1 \<Longrightarrow> \<bar>a1 - a2\<bar> \<le> eps2 - eps1 \<Longrightarrow> \<bar>x - a2\<bar> \<le> (eps2 :: real)"
+  by simp
+
+
+
+subsection \<open>Approximations of the exponential function\<close>
+
+lemma two_power_fact_le_fact:
+  assumes "n \<ge> 1"
+  shows   "2^k * fact n \<le> (fact (n + k) :: 'a :: {semiring_char_0,linordered_semidom})"
+proof (induction k)
+  case (Suc k)
+  have "2 ^ Suc k * fact n = 2 * (2 ^ k * fact n)" by (simp add: algebra_simps)
+  also note Suc.IH
+  also from assms have "of_nat 1 + of_nat 1 \<le> of_nat n + (of_nat (Suc k) :: 'a)"
+    by (intro add_mono) (unfold of_nat_le_iff, simp_all)
+  hence "2 * (fact (n + k) :: 'a) \<le> of_nat (n + Suc k) * fact (n + k)"
+    by (intro mult_right_mono) (simp_all add: add_ac)
+  also have "\<dots> = fact (n + Suc k)" by simp
+  finally show ?case by - (simp add: mult_left_mono)
+qed simp_all
+
+text \<open>
+  We approximate the exponential function with inputs between $0$ and $2$ by its
+  Taylor series expansion and bound the error term with $0$ from below and with a 
+  geometric series from above.
+\<close>
+lemma exp_approx:
+  assumes "n > 0" "0 \<le> x" "x < 2"
+  shows   "exp (x::real) - (\<Sum>k<n. x^k / fact k) \<in> {0..(2 * x^n / (2 - x)) / fact n}"
+proof (unfold atLeastAtMost_iff, safe)
+  define approx where "approx = (\<Sum>k<n. x^k / fact k)"
+  have "(\<lambda>k. x^k / fact k) sums exp x"
+    using exp_converges[of x] by (simp add: field_simps)
+  from sums_split_initial_segment[OF this, of n]
+    have sums: "(\<lambda>k. x^n * (x^k / fact (n+k))) sums (exp x - approx)"
+    by (simp add: approx_def algebra_simps power_add)
+
+  from assms show "(exp x - approx) \<ge> 0"
+    by (intro sums_le[OF _ sums_zero sums]) auto
+
+  have "\<forall>k. x^n * (x^k / fact (n+k)) \<le> (x^n / fact n) * (x / 2)^k"
+  proof
+    fix k :: nat
+    have "x^n * (x^k / fact (n + k)) = x^(n+k) / fact (n + k)" by (simp add: power_add)
+    also from assms have "\<dots> \<le> x^(n+k) / (2^k * fact n)"
+      by (intro divide_left_mono two_power_fact_le_fact zero_le_power) simp_all
+    also have "\<dots> = (x^n / fact n) * (x / 2) ^ k"
+      by (simp add: field_simps power_add)
+    finally show "x^n * (x^k / fact (n+k)) \<le> (x^n / fact n) * (x / 2)^k" .
+  qed
+  moreover note sums
+  moreover {
+    from assms have "(\<lambda>k. (x^n / fact n) * (x / 2)^k) sums ((x^n / fact n) * (1 / (1 - x / 2)))"
+      by (intro sums_mult geometric_sums) simp_all
+    also from assms have "((x^n / fact n) * (1 / (1 - x / 2))) = (2 * x^n / (2 - x)) / fact n"
+      by (auto simp: divide_simps)
+    finally have "(\<lambda>k. (x^n / fact n) * (x / 2)^k) sums \<dots>" .
+  }
+  ultimately show "(exp x - approx) \<le> (2 * x^n / (2 - x)) / fact n"
+    by (rule sums_le)
+qed
+
+text \<open>
+  The following variant gives a simpler error estimate for inputs between $0$ and $1$:  
+\<close>
+lemma exp_approx':
+  assumes "n > 0" "0 \<le> x" "x \<le> 1"
+  shows   "\<bar>exp (x::real) - (\<Sum>k\<le>n. x^k / fact k)\<bar> \<le> x ^ n / fact n"
+proof -
+  from assms have "x^n / (2 - x) \<le> x^n / 1" by (intro frac_le) simp_all 
+  hence "(2 * x^n / (2 - x)) / fact n \<le> 2 * x^n / fact n"
+    using assms by (simp add: divide_simps)
+  with exp_approx[of n x] assms
+    have "exp (x::real) - (\<Sum>k<n. x^k / fact k) \<in> {0..2 * x^n / fact n}" by simp
+  moreover have "(\<Sum>k\<le>n. x^k / fact k) = (\<Sum>k<n. x^k / fact k) + x ^ n / fact n"
+    by (simp add: lessThan_Suc_atMost [symmetric])
+  ultimately show "\<bar>exp (x::real) - (\<Sum>k\<le>n. x^k / fact k)\<bar> \<le> x ^ n / fact n"
+    unfolding atLeastAtMost_iff by linarith
+qed
+
+text \<open>
+  By adding $x^n / n!$ to the approximation (i.e. taking one more term from the
+  Taylor series), one can get the error bound down to $x^n / n!$.
+  
+  This means that the number of accurate binary digits produced by the approximation is
+  asymptotically equal to $(n \log n - n) / \log 2$ by Stirling's formula.
+\<close>
+lemma exp_approx'':
+  assumes "n > 0" "0 \<le> x" "x \<le> 1"
+  shows   "\<bar>exp (x::real) - (\<Sum>k\<le>n. x^k / fact k)\<bar> \<le> 1 / fact n"
+proof -
+  from assms have "\<bar>exp x - (\<Sum>k\<le>n. x ^ k / fact k)\<bar> \<le> x ^ n / fact n"
+    by (rule exp_approx')
+  also from assms have "\<dots> \<le> 1 / fact n" by (simp add: divide_simps power_le_one)
+  finally show ?thesis .
+qed
+
+
+text \<open>
+  We now define an approximation function for Euler's constant $e$.  
+\<close>
+
+definition euler_approx :: "nat \<Rightarrow> real" where
+  "euler_approx n = (\<Sum>k\<le>n. inverse (fact k))"
+
+definition euler_approx_aux :: "nat \<Rightarrow> nat" where
+  "euler_approx_aux n = (\<Sum>k\<le>n. \<Prod>{k + 1..n})"
+
+lemma exp_1_approx:
+  "n > 0 \<Longrightarrow> \<bar>exp (1::real) - euler_approx n\<bar> \<le> 1 / fact n"
+  using exp_approx''[of n 1] by (simp add: euler_approx_def divide_simps)
+
+text \<open>
+  The following allows us to compute the numerator and the denominator of the result
+  separately, which greatly reduces the amount of rational number arithmetic that we
+  have to do.
+\<close>
+lemma euler_approx_altdef [code]:
+  "euler_approx n = real (euler_approx_aux n) / real (fact n)"
+proof -
+  have "real (\<Sum>k\<le>n. \<Prod>{k+1..n}) = (\<Sum>k\<le>n. \<Prod>i=k+1..n. real i)" by simp
+  also have "\<dots> / fact n = (\<Sum>k\<le>n. 1 / (fact n / (\<Prod>i=k+1..n. real i)))"
+    by (simp add: setsum_divide_distrib)
+  also have "\<dots> = (\<Sum>k\<le>n. 1 / fact k)"
+  proof (intro setsum.cong refl)
+    fix k assume k: "k \<in> {..n}"
+    have "fact n = (\<Prod>i=1..n. real i)" by (simp add: fact_setprod)
+    also from k have "{1..n} = {1..k} \<union> {k+1..n}" by auto
+    also have "setprod real \<dots> / (\<Prod>i=k+1..n. real i) = (\<Prod>i=1..k. real i)"
+      by (subst nonzero_divide_eq_eq, simp, subst setprod.union_disjoint [symmetric]) auto
+    also have "\<dots> = fact k" by (simp add: fact_setprod)
+    finally show "1 / (fact n / setprod real {k + 1..n}) = 1 / fact k" by simp
+  qed
+  also have "\<dots> = euler_approx n" by (simp add: euler_approx_def field_simps)
+  finally show ?thesis by (simp add: euler_approx_aux_def)
+qed
+
+lemma euler_approx_aux_Suc:
+  "euler_approx_aux (Suc m) = 1 + Suc m * euler_approx_aux m"
+  unfolding euler_approx_aux_def
+  by (subst setsum_right_distrib) (simp add: atLeastAtMostSuc_conv)
+
+lemma eval_euler_approx_aux:
+  "euler_approx_aux 0 = 1"
+  "euler_approx_aux 1 = 2"
+  "euler_approx_aux (Suc 0) = 2"
+  "euler_approx_aux (numeral n) = 1 + numeral n * euler_approx_aux (pred_numeral n)" (is "?th")
+proof -
+  have A: "euler_approx_aux (Suc m) = 1 + Suc m * euler_approx_aux m" for m :: nat
+    unfolding euler_approx_aux_def
+    by (subst setsum_right_distrib) (simp add: atLeastAtMostSuc_conv)
+  show ?th by (subst numeral_eq_Suc, subst A, subst numeral_eq_Suc [symmetric]) simp
+qed (simp_all add: euler_approx_aux_def)
+
+lemma euler_approx_aux_code [code]:
+  "euler_approx_aux n = (if n = 0 then 1 else 1 + n * euler_approx_aux (n - 1))"
+  by (cases n) (simp_all add: eval_euler_approx_aux euler_approx_aux_Suc)
+
+lemmas eval_euler_approx = euler_approx_altdef eval_euler_approx_aux
+
+
+text \<open>Approximations of $e$ to 60 decimals / 128 and 64 bits:\<close>
+
+lemma euler_60_decimals:
+  "\<bar>exp 1 - 2.718281828459045235360287471352662497757247093699959574966968\<bar> 
+      \<le> inverse (10^60::real)"
+  by (rule approx_coarsen, rule exp_1_approx[of 48])
+     (simp_all add: eval_euler_approx eval_fact)
+
+lemma euler_128:
+  "\<bar>exp 1 - 924983374546220337150911035843336795079 / 2 ^ 128\<bar> \<le> inverse (2 ^ 128 :: real)"
+  by (rule approx_coarsen[OF euler_60_decimals]) simp_all
+
+lemma euler_64:
+  "\<bar>exp 1 - 50143449209799256683 / 2 ^ 64\<bar> \<le> inverse (2 ^ 64 :: real)"
+  by (rule approx_coarsen[OF euler_128]) simp_all
+
+text \<open>
+  An approximation of $e$ to 60 decimals. This is about as far as we can go with the 
+  simplifier with this kind of setup; the exported code of the code generator, on the other
+  hand, can easily approximate $e$ to 1000 decimals and verify that approximation within
+  fractions of a second.
+\<close>
+
+(* (Uncommented because we don't want to use the code generator; 
+   don't forget to import Code\_Target\_Numeral)) *)
+(*
+lemma "\<bar>exp 1 - 2.7182818284590452353602874713526624977572470936999595749669676277240766303535475945713821785251664274274663919320030599218174135966290435729003342952605956307381323286279434907632338298807531952510190115738341879307021540891499348841675092447614606680822648001684774118537423454424371075390777449920695517027618386062613313845830007520449338265602976067371132007093287091274437470472306969772093101416928368190255151086574637721112523897844250569536967707854499699679468644549059879316368892300987931277361782154249992295763514822082698951936680331825288693984964651058209392398294887933203625094431173012381970684161403970198376793206832823764648042953118023287825098194558153017567173613320698112509961818815930416903515988885193458072738667385894228792284998920868058257492796104841984443634632449684875602336248270419786232090021609902353043699418491463140934317381436405462531520961836908887070167683964243781405927145635490613031072085103837505101157477041718986106873969655212671546889570350354021\<bar>
+  \<le> inverse (10^1000::real)"
+  by (rule approx_coarsen, rule exp_1_approx[of 450], simp) eval
+*)
+
+
+subsection \<open>Approximation of $\ln 2$\<close>
+
+text \<open>
+  The following three auxiliary constants allow us to force the simplifier to
+  evaluate intermediate results, simulating call-by-value.
+\<close>
+
+definition "ln_approx_aux3 x' e n y d \<longleftrightarrow> 
+  \<bar>(2 * y) * (\<Sum>k<n. inverse (real (2*k+1)) * (y^2)^k) + d - x'\<bar> \<le> e - d"
+definition "ln_approx_aux2 x' e n y \<longleftrightarrow> 
+  ln_approx_aux3 x' e n y (y^(2*n+1) / (1 - y^2) / real (2*n+1))" 
+definition "ln_approx_aux1 x' e n x \<longleftrightarrow> 
+  ln_approx_aux2 x' e n ((x - 1) / (x + 1))"
+
+lemma ln_approx_abs'':
+  fixes x :: real and n :: nat
+  defines "y \<equiv> (x-1)/(x+1)"
+  defines "approx \<equiv> (\<Sum>k<n. 2*y^(2*k+1) / of_nat (2*k+1))"
+  defines "d \<equiv> y^(2*n+1) / (1 - y^2) / of_nat (2*n+1)"
+  assumes x: "x > 1"
+  assumes A: "ln_approx_aux1 x' e n x"  
+  shows   "\<bar>ln x - x'\<bar> \<le> e"
+proof (rule approx_coarsen[OF ln_approx_abs[OF x, of n]], goal_cases)
+  case 1
+  from A have "\<bar>2 * y * (\<Sum>k<n. inverse (real (2 * k + 1)) * y\<^sup>2 ^ k) + d - x'\<bar> \<le> e - d"
+    by (simp only: ln_approx_aux3_def ln_approx_aux2_def ln_approx_aux1_def
+                   y_def [symmetric] d_def [symmetric])
+  also have "2 * y * (\<Sum>k<n. inverse (real (2 * k + 1)) * y\<^sup>2 ^ k) = 
+               (\<Sum>k<n. 2 * y^(2*k+1) / (real (2 * k + 1)))"
+    by (subst setsum_right_distrib, simp, subst power_mult) 
+       (simp_all add: divide_simps mult_ac power_mult)
+  finally show ?case by (simp only: d_def y_def approx_def) 
+qed
+
+text \<open>
+  We unfold the above three constants successively and then compute the 
+  sum using a Horner scheme.
+\<close>
+lemma ln_2_40_decimals: 
+  "\<bar>ln 2 - 0.6931471805599453094172321214581765680755\<bar> 
+      \<le> inverse (10^40 :: real)"
+  apply (rule ln_approx_abs''[where n = 40], simp)
+  apply (simp, simp add: ln_approx_aux1_def)
+  apply (simp add: ln_approx_aux2_def power2_eq_square power_divide)
+  apply (simp add: ln_approx_aux3_def power2_eq_square)
+  apply (simp add: setsum_poly_horner_expand)
+  done
+     
+lemma ln_2_128: 
+  "\<bar>ln 2 - 235865763225513294137944142764154484399 / 2 ^ 128\<bar> \<le> inverse (2 ^ 128 :: real)"
+  by (rule approx_coarsen[OF ln_2_40_decimals]) simp_all
+     
+lemma ln_2_64: 
+  "\<bar>ln 2 - 12786308645202655660 / 2 ^ 64\<bar> \<le> inverse (2 ^ 64 :: real)"
+  by (rule approx_coarsen[OF ln_2_128]) simp_all  
+
+
+
+subsection \<open>Approximation of the Euler--Mascheroni constant\<close>
+
+text \<open>
+  Unfortunatly, the best approximation we have formalised for the Euler--Mascheroni 
+  constant converges only quadratically. This is too slow to compute more than a 
+  few decimals, but we can get almost 4 decimals / 14 binary digits this way, 
+  which is not too bad. 
+\<close>
+lemma euler_mascheroni_approx:
+  defines "approx \<equiv> 0.577257 :: real" and "e \<equiv> 0.000063 :: real"
+  shows   "abs (euler_mascheroni - approx :: real) < e"
+  (is "abs (_ - ?approx) < ?e")
+proof -
+  define l :: real
+    where "l = 47388813395531028639296492901910937/82101866951584879688289000000000000"
+  define u :: real
+    where "u = 142196984054132045946501548559032969 / 246305600854754639064867000000000000"
+  have impI: "P \<longrightarrow> Q" if Q for P Q using that by blast
+  have hsum_63: "harm 63 = (310559566510213034489743057 / 65681493561267903750631200 :: real)"
+    by (simp add: harm_expand)
+  from harm_Suc[of 63] have hsum_64: "harm 64 =
+          623171679694215690971693339 / (131362987122535807501262400::real)"
+    by (subst (asm) hsum_63) simp
+  have "ln (64::real) = real (6::nat) * ln 2" by (subst ln_realpow[symmetric]) simp_all
+  hence "ln (real_of_nat (Suc 63)) \<in> {4.158883083293<..<4.158883083367}" using ln_2_64
+    by (simp add: abs_real_def split: if_split_asm)
+  from euler_mascheroni_bounds'[OF _ this]
+    have "(euler_mascheroni :: real) \<in> {l<..<u}"
+    by (simp add: hsum_63 del: greaterThanLessThan_iff) (simp only: l_def u_def)
+  also have "\<dots> \<subseteq> {approx - e<..<approx + e}"
+    by (subst greaterThanLessThan_subseteq_greaterThanLessThan, rule impI)
+       (simp add: approx_def e_def u_def l_def)
+  finally show ?thesis by (simp add: abs_real_def)
+qed
+
+
+
+subsection \<open>Approximation of pi\<close>
+
+
+subsubsection \<open>Approximating the arctangent\<close>
+
+text\<open>
+  The arctangent can be used to approximate pi. Fortunately, its Taylor series expansion
+  converges exponentially for small values, so we can get $\Theta(n)$ digits of precision
+  with $n$ summands of the expansion.
+\<close>
+
+definition arctan_approx where
+  "arctan_approx n x = x * (\<Sum>k<n. (-(x^2))^k / real (2*k+1))"
+
+lemma arctan_series':
+  assumes "\<bar>x\<bar> \<le> 1"
+  shows "(\<lambda>k. (-1)^k * (1 / real (k*2+1) * x ^ (k*2+1))) sums arctan x"
+  using summable_arctan_series[OF assms] arctan_series[OF assms] by (simp add: sums_iff)
+
+lemma arctan_approx:
+  assumes x: "0 \<le> x" "x < 1" and n: "even n"
+  shows   "arctan x - arctan_approx n x \<in> {0..x^(2*n+1) / (1-x^4)}"
+proof -
+  define c where "c k = 1 / (1+(4*real k + 2*real n)) - x\<^sup>2 / (3+(4*real k + 2*real n))" for k
+  from assms have "(\<lambda>k. (-1) ^ k * (1 / real (k * 2 + 1) * x^(k*2+1))) sums arctan x"
+    using arctan_series' by simp
+  also have "(\<lambda>k. (-1) ^ k * (1 / real (k * 2 + 1) * x^(k*2+1))) =
+                 (\<lambda>k. x * ((- (x^2))^k / real (2*k+1)))"
+    by (simp add: power2_eq_square power_mult power_mult_distrib mult_ac power_minus')
+  finally have "(\<lambda>k. x * ((- x\<^sup>2) ^ k / real (2 * k + 1))) sums arctan x" .
+  from sums_split_initial_segment[OF this, of n]
+    have "(\<lambda>i. x * ((- x\<^sup>2) ^ (i + n) / real (2 * (i + n) + 1))) sums
+            (arctan x - arctan_approx n x)"
+    by (simp add: arctan_approx_def setsum_right_distrib)
+  from sums_group[OF this, of 2] assms
+    have sums: "(\<lambda>k. x * (x\<^sup>2)^n * (x^4)^k * c k) sums (arctan x - arctan_approx n x)"
+    by (simp add: algebra_simps power_add power_mult [symmetric] c_def)
+
+  from assms have "0 \<le> arctan x - arctan_approx n x"
+    by (intro sums_le[OF _ sums_zero sums] allI mult_nonneg_nonneg)
+       (auto intro!: frac_le power_le_one simp: c_def)
+  moreover {
+    from assms have "c k \<le> 1 - 0" for k unfolding c_def
+      by (intro diff_mono divide_nonneg_nonneg add_nonneg_nonneg) auto
+    with assms have "x * x\<^sup>2 ^ n * (x ^ 4) ^ k * c k \<le> x * x\<^sup>2 ^ n * (x ^ 4) ^ k * 1" for k
+      by (intro mult_left_mono mult_right_mono mult_nonneg_nonneg) simp_all
+    with assms have "arctan x - arctan_approx n x \<le> x * (x\<^sup>2)^n * (1 / (1 - x^4))"
+      by (intro sums_le[OF _ sums sums_mult[OF geometric_sums]] allI mult_left_mono)
+         (auto simp: power_less_one)
+    also have "x * (x^2)^n = x^(2*n+1)" by (simp add: power_mult power_add)
+    finally have "arctan x - arctan_approx n x \<le> x^(2*n+1) / (1 - x^4)" by simp
+  }
+  ultimately show ?thesis by simp
+qed
+
+lemma arctan_approx_def': "arctan_approx n (1/x) =
+  (\<Sum>k<n. inverse (real (2 * k + 1) * (- x\<^sup>2) ^ k)) / x"
+proof -
+  have "(-1)^k / b = 1 / ((-1)^k * b)" for k :: nat and b :: real
+    by (cases "even k") auto
+  thus ?thesis by (simp add: arctan_approx_def  field_simps power_minus')
+qed
+
+lemma expand_arctan_approx:
+  "(\<Sum>k<(numeral n::nat). inverse (f k) * inverse (x ^ k)) =
+     inverse (f 0) + (\<Sum>k<pred_numeral n. inverse (f (k+1)) * inverse (x^k)) / x"
+  "(\<Sum>k<Suc 0. inverse (f k) * inverse (x^k)) = inverse (f 0 :: 'a :: field)"
+  "(\<Sum>k<(0::nat). inverse (f k) * inverse (x^k)) = 0"
+proof -
+  {
+    fix m :: nat
+    have "(\<Sum>k<Suc m. inverse (f k * x^k)) =
+             inverse (f 0) + (\<Sum>k=Suc 0..<Suc m. inverse (f k * x^k))"
+      by (subst atLeast0LessThan [symmetric], subst setsum_head_upt_Suc) simp_all
+    also have "(\<Sum>k=Suc 0..<Suc m. inverse (f k * x^k)) = (\<Sum>k<m. inverse (f (k+1) * x^k)) / x"
+      by (subst setsum_shift_bounds_Suc_ivl)
+         (simp add: setsum_right_distrib divide_inverse algebra_simps
+                    atLeast0LessThan power_commutes)
+    finally have "(\<Sum>k<Suc m. inverse (f k) * inverse (x ^ k)) =
+                      inverse (f 0) + (\<Sum>k<m. inverse (f (k + 1)) * inverse (x ^ k)) / x" by simp
+  }
+  from this[of "pred_numeral n"]
+    show "(\<Sum>k<numeral n. inverse (f k) * inverse (x^k)) =
+            inverse (f 0) + (\<Sum>k<pred_numeral n. inverse (f (k+1)) * inverse (x^k)) / x"
+    by (simp add: numeral_eq_Suc)
+qed simp_all
+
+lemma arctan_diff_small:
+  assumes "\<bar>x*y::real\<bar> < 1"
+  shows   "arctan x - arctan y = arctan ((x - y) / (1 + x * y))"
+proof -
+  have "arctan x - arctan y = arctan x + arctan (-y)" by (simp add: arctan_minus)
+  also from assms have "\<dots> = arctan ((x - y) / (1 + x * y))" by (subst arctan_add_small) simp_all
+  finally show ?thesis .
+qed
+
+
+subsubsection \<open>Machin-like formulae for pi\<close>
+
+text \<open>
+  We first define a small proof method that can prove Machin-like formulae for @{term "pi"}
+  automatically. Unfortunately, this takes far too much time for larger formulae because
+  the numbers involved become too large.
+\<close>
+
+definition "MACHIN_TAG a b \<equiv> a * (b::real)"
+
+lemma numeral_horner_MACHIN_TAG:
+  "MACHIN_TAG Numeral1 x = x"
+  "MACHIN_TAG (numeral (Num.Bit0 (Num.Bit0 n))) x =
+     MACHIN_TAG 2 (MACHIN_TAG (numeral (Num.Bit0 n)) x)"
+  "MACHIN_TAG (numeral (Num.Bit0 (Num.Bit1 n))) x =
+     MACHIN_TAG 2 (MACHIN_TAG (numeral (Num.Bit1 n)) x)"
+  "MACHIN_TAG (numeral (Num.Bit1 n)) x =
+     MACHIN_TAG 2 (MACHIN_TAG (numeral n) x) + x"
+  unfolding numeral_Bit0 numeral_Bit1 ring_distribs one_add_one[symmetric] MACHIN_TAG_def
+     by (simp_all add: algebra_simps)
+
+lemma tag_machin: "a * arctan b = MACHIN_TAG a (arctan b)" by (simp add: MACHIN_TAG_def)
+
+lemma arctan_double': "\<bar>a::real\<bar> < 1 \<Longrightarrow> MACHIN_TAG 2 (arctan a) = arctan (2 * a / (1 - a*a))"
+  unfolding MACHIN_TAG_def by (simp add: arctan_double power2_eq_square)
+
+ML \<open>
+  fun machin_term_conv ctxt ct =
+    let
+      val ctxt' = ctxt addsimps @{thms arctan_double' arctan_add_small}
+    in
+      case Thm.term_of ct of
+        Const (@{const_name MACHIN_TAG}, _) $ _ $
+          (Const (@{const_name "Transcendental.arctan"}, _) $ _) =>
+          Simplifier.rewrite ctxt' ct
+      |
+        Const (@{const_name MACHIN_TAG}, _) $ _ $
+          (Const (@{const_name "Groups.plus"}, _) $
+            (Const (@{const_name "Transcendental.arctan"}, _) $ _) $
+            (Const (@{const_name "Transcendental.arctan"}, _) $ _)) =>
+          Simplifier.rewrite ctxt' ct
+      | _ => raise CTERM ("machin_conv", [ct])
+    end
+
+  fun machin_tac ctxt =
+    let val conv = Conv.top_conv (Conv.try_conv o machin_term_conv) ctxt
+    in
+      SELECT_GOAL (
+        Local_Defs.unfold_tac ctxt
+          @{thms tag_machin[THEN eq_reflection] numeral_horner_MACHIN_TAG[THEN eq_reflection]}
+        THEN REPEAT (CHANGED (HEADGOAL (CONVERSION conv))))
+      THEN' Simplifier.simp_tac (ctxt addsimps @{thms arctan_add_small arctan_diff_small})
+    end
+\<close>
+
+method_setup machin = \<open>Scan.succeed (SIMPLE_METHOD' o machin_tac)\<close>
+
+text \<open>
+  We can now prove the ``standard'' Machin formula, which was already proven manually
+  in Isabelle, automatically.
+}\<close>
+lemma "pi / 4 = (4::real) * arctan (1 / 5) - arctan (1 / 239)"
+  by machin
+
+text \<open>
+  We can also prove the following more complicated formula:
+\<close>
+lemma machin': "pi/4 = (12::real) * arctan (1/18) + 8 * arctan (1/57) - 5 * arctan (1/239)"
+  by machin
+
+
+
+subsubsection \<open>Simple approximation of pi\<close>
+
+text \<open>
+  We can use the simple Machin formula and the Taylor series expansion of the arctangent
+  to approximate pi. For a given even natural number $n$, we expand @{term "arctan (1/5)"}
+  to $3n$ summands and @{term "arctan (1/239)"} to $n$ summands. This gives us at least
+  $13n-2$ bits of precision.
+\<close>
+
+definition "pi_approx n = 16 * arctan_approx (3*n) (1/5) - 4 * arctan_approx n (1/239)"
+
+lemma pi_approx:
+  fixes n :: nat assumes n: "even n" and "n > 0"
+  shows   "\<bar>pi - pi_approx n\<bar> \<le> inverse (2^(13*n - 2))"
+proof -
+  from n have n': "even (3*n)" by simp
+  \<comment> \<open>We apply the Machin formula\<close>
+  from machin have "pi = 16 * arctan (1/5) - 4 * arctan (1/239::real)" by simp
+  \<comment> \<open>Taylor series expansion of the arctangent\<close>
+  also from arctan_approx[OF _ _ n', of "1/5"] arctan_approx[OF _ _ n, of "1/239"]
+    have "\<dots> - pi_approx n \<in> {-4*((1/239)^(2*n+1) / (1-(1/239)^4))..16*(1/5)^(6*n+1) / (1-(1/5)^4)}"
+    by (simp add: pi_approx_def)
+  \<comment> \<open>Coarsening the bounds to make them a bit nicer\<close>
+  also have "-4*((1/239::real)^(2*n+1) / (1-(1/239)^4)) = -((13651919 / 815702160) / 57121^n)"
+    by (simp add: power_mult power2_eq_square) (simp add: field_simps)
+  also have "16*(1/5)^(6*n+1) / (1-(1/5::real)^4) = (125/39) / 15625^n"
+    by (simp add: power_mult power2_eq_square) (simp add: field_simps)
+  also have "{-((13651919 / 815702160) / 57121^n) .. (125 / 39) / 15625^n} \<subseteq>
+               {- (4 / 2^(13*n)) .. 4 / (2^(13*n)::real)}"
+    by (subst atLeastatMost_subset_iff, intro disjI2 conjI le_imp_neg_le)
+       (rule frac_le; simp add: power_mult power_mono)+
+  finally have "abs (pi - pi_approx n) \<le> 4 / 2^(13*n)" by auto
+  also from \<open>n > 0\<close> have "4 / 2^(13*n) = 1 / (2^(13*n - 2) :: real)"
+    by (cases n) (simp_all add: power_add)
+  finally show ?thesis by (simp add: divide_inverse)
+qed
+
+lemma pi_approx':
+  fixes n :: nat assumes n: "even n" and "n > 0" and "k \<le> 13*n - 2"
+  shows   "\<bar>pi - pi_approx n\<bar> \<le> inverse (2^k)"
+  using assms(3) by (intro order.trans[OF pi_approx[OF assms(1,2)]]) (simp_all add: field_simps)
+
+text \<open>We can now approximate pi to 22 decimals within a fraction of a second.\<close>
+lemma pi_approx_75: "abs (pi - 3.1415926535897932384626 :: real) \<le> inverse (10^22)"
+proof -
+  define a :: real
+    where "a = 8295936325956147794769600190539918304 / 2626685325478320010006427764892578125"
+  define b :: real
+    where "b = 8428294561696506782041394632 / 503593538783547230635598424135"
+  \<comment> \<open>The introduction of this constant prevents the simplifier from applying solvers that
+      we don't want. We want it to simply evaluate the terms to rational constants.}\<close>
+  define eq :: "real \<Rightarrow> real \<Rightarrow> bool" where "eq = op ="
+
+  \<comment> \<open>Splitting the computation into several steps has the advantage that simplification can
+      be done in parallel\<close>
+  have "abs (pi - pi_approx 6) \<le> inverse (2^76)" by (rule pi_approx') simp_all
+  also have "pi_approx 6 = 16 * arctan_approx (3 * 6) (1 / 5) - 4 * arctan_approx 6 (1 / 239)"
+    unfolding pi_approx_def by simp
+  also have [unfolded eq_def]: "eq (16 * arctan_approx (3 * 6) (1 / 5)) a"
+    by (simp add: arctan_approx_def' power2_eq_square,
+        simp add: expand_arctan_approx, unfold a_def eq_def, rule refl)
+  also have [unfolded eq_def]: "eq (4 * arctan_approx 6 (1 / 239::real)) b"
+    by (simp add: arctan_approx_def' power2_eq_square,
+        simp add: expand_arctan_approx, unfold b_def eq_def, rule refl)
+  also have [unfolded eq_def]:
+    "eq (a - b) (171331331860120333586637094112743033554946184594977368554649608 /
+                 54536456744112171868276045488779391002026386559009552001953125)"
+    by (unfold a_def b_def, simp, unfold eq_def, rule refl)
+  finally show ?thesis by (rule approx_coarsen) simp
+qed
+
+text \<open>
+  The previous estimate of pi in this file was based on approximating the root of the
+  $\sin(\pi/6)$ in the interval $[0;4]$ using the Taylor series expansion of the sine to
+  verify that it is between two given bounds.
+  This was much slower and much less precise. We can easily recover this coarser estimate from
+  the newer, precise estimate:
+\<close>
+lemma pi_approx_32: "\<bar>pi - 13493037705/4294967296 :: real\<bar> \<le> inverse(2 ^ 32)"
+  by (rule approx_coarsen[OF pi_approx_75]) simp
+
+
+subsection \<open>A more complicated approximation of pi\<close>
+
+text \<open>
+  There are more complicated Machin-like formulae that have more terms with larger
+  denominators. Although they have more terms, each term requires fewer summands of the
+  Taylor series for the same precision, since it is evaluated closer to $0$.
+
+  Using a good formula, one can therefore obtain the same precision with fewer operations.
+  The big formulae used for computations of pi in practice are too complicated for us to
+  prove here, but we can use the three-term Machin-like formula @{thm machin'}.
+\<close>
+
+definition "pi_approx2 n = 48 * arctan_approx (6*n) (1/18::real) +
+                             32 * arctan_approx (4*n) (1/57) - 20 * arctan_approx (3*n) (1/239)"
+
+lemma pi_approx2:
+  fixes n :: nat assumes n: "even n" and "n > 0"
+  shows   "\<bar>pi - pi_approx2 n\<bar> \<le> inverse (2^(46*n - 1))"
+proof -
+  from n have n': "even (6*n)" "even (4*n)" "even (3*n)" by simp_all
+  from machin' have "pi = 48 * arctan (1/18) + 32 * arctan (1/57) - 20 * arctan (1/239::real)"
+    by simp
+  hence "pi - pi_approx2 n = 48 * (arctan (1/18) - arctan_approx (6*n) (1/18)) +
+                                 32 * (arctan (1/57) - arctan_approx (4*n) (1/57)) -
+                                 20 * (arctan (1/239) - arctan_approx (3*n) (1/239))"
+    by (simp add: pi_approx2_def)
+  also have "\<dots> \<in> {-((20/239/(1-(1/239)^4)) * (1/239)^(6*n))..
+              (48/18 / (1-(1/18)^4))*(1/18)^(12*n) + (32/57/(1-(1/57)^4)) * (1/57)^(8*n)}"
+    (is "_ \<in> {-?l..?u1 + ?u2}")
+    apply ((rule combine_bounds(1,2))+; (rule combine_bounds(3); (rule arctan_approx)?)?)
+    apply (simp_all add: n)
+    apply (simp_all add: divide_simps)?
+    done
+  also {
+    have "?l \<le> (1/8) * (1/2)^(46*n)"
+      unfolding power_mult by (intro mult_mono power_mono) (simp_all add: divide_simps)
+    also have "\<dots> \<le> (1/2) ^ (46 * n - 1)"
+      by (cases n; simp_all add: power_add divide_simps)
+    finally have "?l \<le> (1/2) ^ (46 * n - 1)" .
+    moreover {
+      have "?u1 + ?u2 \<le> 4 * (1/2)^(48*n) + 1 * (1/2)^(46*n)"
+        unfolding power_mult by (intro add_mono mult_mono power_mono) (simp_all add: divide_simps)
+      also from \<open>n > 0\<close> have "4 * (1/2::real)^(48*n) \<le> (1/2)^(46*n)"
+        by (cases n) (simp_all add: field_simps power_add)
+      also from \<open>n > 0\<close> have "(1/2::real) ^ (46 * n) + 1 * (1 / 2) ^ (46 * n) = (1/2) ^ (46 * n - 1)"
+        by (cases n; simp_all add: power_add power_divide)
+      finally have "?u1 + ?u2 \<le> (1/2) ^ (46 * n - 1)" by - simp
+    }
+    ultimately have "{-?l..?u1 + ?u2} \<subseteq> {-((1/2)^(46*n-1))..(1/2)^(46*n-1)}"
+      by (subst atLeastatMost_subset_iff) simp_all
+  }
+  finally have "\<bar>pi - pi_approx2 n\<bar> \<le> ((1/2) ^ (46 * n - 1))" by auto
+  thus ?thesis by (simp add: divide_simps)
+qed
+
+lemma pi_approx2':
+  fixes n :: nat assumes n: "even n" and "n > 0" and "k \<le> 46*n - 1"
+  shows   "\<bar>pi - pi_approx2 n\<bar> \<le> inverse (2^k)"
+  using assms(3) by (intro order.trans[OF pi_approx2[OF assms(1,2)]]) (simp_all add: field_simps)
+
+text \<open>
+  We can now approximate pi to 54 decimals using this formula. The computations are much
+  slower now; this is mostly because we use arbitrary-precision rational numbers, whose
+  numerators and demoninators get very large. Using dyadic floating point numbers would be
+  much more economical.
+\<close>
+lemma pi_approx_54_decimals:
+  "abs (pi - 3.141592653589793238462643383279502884197169399375105821 :: real) \<le> inverse (10^54)"
+  (is "abs (pi - ?pi') \<le> _")
+proof -
+  define a :: real
+    where "a = 2829469759662002867886529831139137601191652261996513014734415222704732791803 /
+           1062141879292765061960538947347721564047051545995266466660439319087625011200"
+  define b :: real
+    where "b = 13355545553549848714922837267299490903143206628621657811747118592 /
+           23792006023392488526789546722992491355941103837356113731091180925"
+  define c :: real
+    where "c = 28274063397213534906669125255762067746830085389618481175335056 /
+           337877029279505250241149903214554249587517250716358486542628059"
+  let ?pi'' = "3882327391761098513316067116522233897127356523627918964967729040413954225768920394233198626889767468122598417405434625348404038165437924058179155035564590497837027530349 /
+               1235783190199688165469648572769847552336447197542738425378629633275352407743112409829873464564018488572820294102599160968781449606552922108667790799771278860366957772800"
+  define eq :: "real \<Rightarrow> real \<Rightarrow> bool" where "eq = op ="
+
+  have "abs (pi - pi_approx2 4) \<le> inverse (2^183)" by (rule pi_approx2') simp_all
+  also have "pi_approx2 4 = 48 * arctan_approx 24 (1 / 18) +
+                            32 * arctan_approx 16 (1 / 57) -
+                            20 * arctan_approx 12 (1 / 239)"
+    unfolding pi_approx2_def by simp
+  also have [unfolded eq_def]: "eq (48 * arctan_approx 24 (1 / 18)) a"
+    by (simp add: arctan_approx_def' power2_eq_square,
+        simp add: expand_arctan_approx, unfold a_def eq_def, rule refl)
+  also have [unfolded eq_def]: "eq (32 * arctan_approx 16 (1 / 57::real)) b"
+    by (simp add: arctan_approx_def' power2_eq_square,
+        simp add: expand_arctan_approx, unfold b_def eq_def, rule refl)
+  also have [unfolded eq_def]: "eq (20 * arctan_approx 12 (1 / 239::real)) c"
+    by (simp add: arctan_approx_def' power2_eq_square,
+        simp add: expand_arctan_approx, unfold c_def eq_def, rule refl)
+  also have [unfolded eq_def]:
+    "eq (a + b) (34326487387865555303797183505809267914709125998469664969258315922216638779011304447624792548723974104030355722677 /
+                 10642967245546718617684989689985787964158885991018703366677373121531695267093031090059801733340658960857196134400)"
+    by (unfold a_def b_def c_def, simp, unfold eq_def, rule refl)
+  also have [unfolded eq_def]: "eq (\<dots> - c) ?pi''"
+    by (unfold a_def b_def c_def, simp, unfold eq_def, rule refl)
+  \<comment> \<open>This is incredibly slow because the numerators and denominators are huge.\<close>
+  finally show ?thesis by (rule approx_coarsen) simp
+qed
+
+text \<open>A 128 bit approximation of pi:\<close>
+lemma pi_approx_128:
+  "abs (pi - 1069028584064966747859680373161870783301 / 2^128) \<le> inverse (2^128)"
+  by (rule approx_coarsen[OF pi_approx_54_decimals]) simp
+
+text \<open>A 64 bit approximation of pi:\<close>
+lemma pi_approx_64:
+  "abs (pi - 57952155664616982739 / 2^64 :: real) \<le> inverse (2^64)"
+  by (rule approx_coarsen[OF pi_approx_54_decimals]) simp
+  
+text \<open>
+  Again, going much farther with the simplifier takes a long time, but the code generator
+  can handle even two thousand decimal digits in under 20 seconds.
+\<close>
+
+end