src/HOL/Analysis/measurable.ML
changeset 63627 6ddb43c6b711
parent 63626 44ce6b524ff3
child 69597 ff784d5a5bfb
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Analysis/measurable.ML	Mon Aug 08 14:13:14 2016 +0200
@@ -0,0 +1,280 @@
+(*  Title:      HOL/Analysis/measurable.ML
+    Author:     Johannes Hölzl <hoelzl@in.tum.de>
+
+Measurability prover.
+*)
+
+signature MEASURABLE = 
+sig
+  type preprocessor = thm -> Proof.context -> (thm list * Proof.context)
+
+  datatype level = Concrete | Generic
+
+  val dest_thm_attr : attribute context_parser
+  val cong_thm_attr : attribute context_parser
+  val measurable_thm_attr : bool * (bool * level) -> attribute
+
+  val add_del_cong_thm : bool -> thm -> Context.generic -> Context.generic ;
+
+  val get_all : Context.generic -> thm list
+  val get_dest : Context.generic -> thm list
+  val get_cong : Context.generic -> thm list
+
+  val measurable_tac : Proof.context -> thm list -> tactic
+
+  val simproc : Proof.context -> cterm -> thm option
+
+  val add_preprocessor : string -> preprocessor -> Context.generic -> Context.generic
+  val del_preprocessor : string -> Context.generic -> Context.generic
+  val add_local_cong : thm -> Proof.context -> Proof.context
+
+  val prepare_facts : Proof.context -> thm list -> (thm list * Proof.context)
+end ;
+
+structure Measurable : MEASURABLE =
+struct
+
+type preprocessor = thm -> Proof.context -> (thm list * Proof.context)
+
+datatype level = Concrete | Generic;
+
+fun eq_measurable_thms ((th1, d1), (th2, d2)) = 
+  d1 = d2 andalso Thm.eq_thm_prop (th1, th2) ;
+
+fun merge_dups (xs:(string * preprocessor) list) ys =
+  xs @ (filter (fn (name, _) => is_none (find_first (fn (name', _) => name' = name) xs)) ys) 
+
+structure Data = Generic_Data
+(
+  type T = {
+    measurable_thms : (thm * (bool * level)) Item_Net.T,
+    dest_thms : thm Item_Net.T,
+    cong_thms : thm Item_Net.T,
+    preprocessors : (string * preprocessor) list }
+  val empty: T = {
+    measurable_thms = Item_Net.init eq_measurable_thms (single o Thm.prop_of o fst),
+    dest_thms = Thm.full_rules,
+    cong_thms = Thm.full_rules,
+    preprocessors = [] };
+  val extend = I;
+  fun merge ({measurable_thms = t1, dest_thms = dt1, cong_thms = ct1, preprocessors = i1 },
+      {measurable_thms = t2, dest_thms = dt2, cong_thms = ct2, preprocessors = i2 }) : T = {
+    measurable_thms = Item_Net.merge (t1, t2),
+    dest_thms = Item_Net.merge (dt1, dt2),
+    cong_thms = Item_Net.merge (ct1, ct2),
+    preprocessors = merge_dups i1 i2 
+    };
+);
+
+val debug =
+  Attrib.setup_config_bool @{binding measurable_debug} (K false)
+
+val split =
+  Attrib.setup_config_bool @{binding measurable_split} (K true)
+
+fun map_data f1 f2 f3 f4
+  {measurable_thms = t1,    dest_thms = t2,    cong_thms = t3,    preprocessors = t4 } =
+  {measurable_thms = f1 t1, dest_thms = f2 t2, cong_thms = f3 t3, preprocessors = f4 t4}
+
+fun map_measurable_thms f = map_data f I I I
+fun map_dest_thms f = map_data I f I I
+fun map_cong_thms f = map_data I I f I
+fun map_preprocessors f = map_data I I I f
+
+fun generic_add_del map : attribute context_parser =
+  Scan.lift
+    (Args.add >> K Item_Net.update || Args.del >> K Item_Net.remove || Scan.succeed Item_Net.update) >>
+    (fn f => Thm.declaration_attribute (Data.map o map o f))
+
+val dest_thm_attr = generic_add_del map_dest_thms
+
+val cong_thm_attr = generic_add_del map_cong_thms
+
+fun del_thm th net =
+  let
+    val thms = net |> Item_Net.content |> filter (fn (th', _) => Thm.eq_thm (th, th'))
+  in fold Item_Net.remove thms net end ;
+
+fun measurable_thm_attr (do_add, d) = Thm.declaration_attribute
+  (Data.map o map_measurable_thms o (if do_add then Item_Net.update o rpair d else del_thm))
+
+val get_dest = Item_Net.content o #dest_thms o Data.get;
+
+val get_cong = Item_Net.content o #cong_thms o Data.get;
+val add_cong = Data.map o map_cong_thms o Item_Net.update;
+val del_cong = Data.map o map_cong_thms o Item_Net.remove;
+fun add_del_cong_thm true = add_cong
+  | add_del_cong_thm false = del_cong
+
+fun add_preprocessor name f = Data.map (map_preprocessors (fn xs => xs @ [(name, f)]))
+fun del_preprocessor name = Data.map (map_preprocessors (filter (fn (n, _) => n <> name)))
+val add_local_cong = Context.proof_map o add_cong
+
+val get_preprocessors = Context.Proof #> Data.get #> #preprocessors ;
+
+fun is_too_generic thm =
+  let 
+    val concl = Thm.concl_of thm
+    val concl' = HOLogic.dest_Trueprop concl handle TERM _ => concl
+  in is_Var (head_of concl') end
+
+val get_thms = Data.get #> #measurable_thms #> Item_Net.content ;
+
+val get_all = get_thms #> map fst ;
+
+fun debug_tac ctxt msg f =
+  if Config.get ctxt debug then print_tac ctxt (msg ()) THEN f else f
+
+fun nth_hol_goal thm i =
+  HOLogic.dest_Trueprop (Logic.strip_imp_concl (strip_all_body (nth (Thm.prems_of thm) (i - 1))))
+
+fun dest_measurable_fun t =
+  (case t of
+    (Const (@{const_name "Set.member"}, _) $ f $ (Const (@{const_name "measurable"}, _) $ _ $ _)) => f
+  | _ => raise (TERM ("not a measurability predicate", [t])))
+
+fun not_measurable_prop n thm =
+  if length (Thm.prems_of thm) < n then false
+  else
+    (case nth_hol_goal thm n of
+      (Const (@{const_name "Set.member"}, _) $ _ $ (Const (@{const_name "sets"}, _) $ _)) => false
+    | (Const (@{const_name "Set.member"}, _) $ _ $ (Const (@{const_name "measurable"}, _) $ _ $ _)) => false
+    | _ => true)
+    handle TERM _ => true;
+
+fun indep (Bound i) t b = i < b orelse t <= i
+  | indep (f $ t) top bot = indep f top bot andalso indep t top bot
+  | indep (Abs (_,_,t)) top bot = indep t (top + 1) (bot + 1)
+  | indep _ _ _ = true;
+
+fun cnt_prefixes ctxt (Abs (n, T, t)) =
+    let
+      fun is_countable ty = Sign.of_sort (Proof_Context.theory_of ctxt) (ty, @{sort countable})
+      fun cnt_walk (Abs (ns, T, t)) Ts =
+          map (fn (t', t'') => (Abs (ns, T, t'), t'')) (cnt_walk t (T::Ts))
+        | cnt_walk (f $ g) Ts = let
+            val n = length Ts - 1
+          in
+            map (fn (f', t) => (f' $ g, t)) (cnt_walk f Ts) @
+            map (fn (g', t) => (f $ g', t)) (cnt_walk g Ts) @
+            (if is_countable (type_of1 (Ts, g)) andalso loose_bvar1 (g, n)
+                andalso indep g n 0 andalso g <> Bound n
+              then [(f $ Bound (n + 1), incr_boundvars (~ n) g)]
+              else [])
+          end
+        | cnt_walk _ _ = []
+    in map (fn (t1, t2) => let
+        val T1 = type_of1 ([T], t2)
+        val T2 = type_of1 ([T], t)
+      in ([SOME (Abs (n, T1, Abs (n, T, t1))), NONE, NONE, SOME (Abs (n, T, t2))],
+        [SOME T1, SOME T, SOME T2])
+      end) (cnt_walk t [T])
+    end
+  | cnt_prefixes _ _ = []
+
+fun apply_dests thm dests =
+  let
+    fun apply thm th' =
+      let
+        val th'' = thm RS th'
+      in [th''] @ loop th'' end
+      handle (THM _) => []
+    and loop thm =
+      flat (map (apply thm) dests)
+  in
+    [thm] @ ([thm RS @{thm measurable_compose_rev}] handle (THM _) => []) @ loop thm
+  end
+
+fun prepare_facts ctxt facts = 
+  let
+    val dests = get_dest (Context.Proof ctxt)
+    fun prep_dest thm =
+      (if is_too_generic thm then [] else apply_dests thm dests) ;
+    val preprocessors = (("std", prep_dest #> pair) :: get_preprocessors ctxt) ;
+    fun preprocess_thm (thm, raw) =
+      if raw then pair [thm] else fold_map (fn (_, proc) => proc thm) preprocessors #>> flat
+    
+    fun sel lv (th, (raw, lv')) = if lv = lv' then SOME (th, raw) else NONE ;
+    fun get lv = ctxt |> Context.Proof |> get_thms |> rev |> map_filter (sel lv) ;
+    val pre_thms = map (Simplifier.norm_hhf ctxt #> rpair false) facts @ get Concrete @ get Generic
+
+    val (thms, ctxt) = fold_map preprocess_thm pre_thms ctxt |>> flat
+  in (thms, ctxt) end
+
+fun measurable_tac ctxt facts =
+  let
+    fun debug_fact msg thm () =
+      msg ^ " " ^ Pretty.unformatted_string_of (Syntax.pretty_term ctxt (Thm.prop_of thm))
+
+    fun IF' c t i = COND (c i) (t i) no_tac
+
+    fun r_tac msg =
+      if Config.get ctxt debug
+      then FIRST' o
+        map (fn thm => resolve_tac ctxt [thm]
+          THEN' K (debug_tac ctxt (debug_fact (msg ^ " resolved using") thm) all_tac))
+      else resolve_tac ctxt
+
+    val elem_congI = @{lemma "A = B \<Longrightarrow> x \<in> B \<Longrightarrow> x \<in> A" by simp}
+
+    val (thms, ctxt) = prepare_facts ctxt facts
+
+    fun is_sets_eq (Const (@{const_name "HOL.eq"}, _) $
+          (Const (@{const_name "sets"}, _) $ _) $
+          (Const (@{const_name "sets"}, _) $ _)) = true
+      | is_sets_eq (Const (@{const_name "HOL.eq"}, _) $
+          (Const (@{const_name "measurable"}, _) $ _ $ _) $
+          (Const (@{const_name "measurable"}, _) $ _ $ _)) = true
+      | is_sets_eq _ = false
+
+    val cong_thms = get_cong (Context.Proof ctxt) @
+      filter (fn thm => Thm.concl_of thm |> HOLogic.dest_Trueprop |> is_sets_eq handle TERM _ => false) facts
+
+    fun sets_cong_tac i =
+      Subgoal.FOCUS (fn {context = ctxt', prems = prems, ...} => (
+        let
+          val ctxt'' = Simplifier.add_prems prems ctxt'
+        in
+          r_tac "cong intro" [elem_congI]
+          THEN' SOLVED' (fn i => REPEAT_DETERM (
+              ((r_tac "cong solve" (cong_thms @ [@{thm refl}])
+                ORELSE' IF' (fn i => fn thm => Thm.nprems_of thm > i)
+                  (SOLVED' (asm_full_simp_tac ctxt''))) i)))
+        end) 1) ctxt i
+        THEN flexflex_tac ctxt
+
+    val simp_solver_tac = 
+      IF' not_measurable_prop (debug_tac ctxt (K "simp ") o SOLVED' (asm_full_simp_tac ctxt))
+
+    val split_countable_tac =
+      Subgoal.FOCUS (fn {context = ctxt, ...} => SUBGOAL (fn (t, i) =>
+        let
+          val f = dest_measurable_fun (HOLogic.dest_Trueprop t)
+          fun inst (ts, Ts) =
+            Thm.instantiate'
+              (map (Option.map (Thm.ctyp_of ctxt)) Ts)
+              (map (Option.map (Thm.cterm_of ctxt)) ts)
+              @{thm measurable_compose_countable}
+        in r_tac "case_prod countable" (cnt_prefixes ctxt f |> map inst) i end
+        handle TERM _ => no_tac) 1)
+
+    val splitter = if Config.get ctxt split then split_countable_tac ctxt else K no_tac
+
+    val single_step_tac =
+      simp_solver_tac
+      ORELSE' r_tac "step" thms
+      ORELSE' splitter
+      ORELSE' (CHANGED o sets_cong_tac)
+      ORELSE' (K (debug_tac ctxt (K "backtrack") no_tac))
+
+  in debug_tac ctxt (K "start") (REPEAT (single_step_tac 1)) end;
+
+fun simproc ctxt redex =
+  let
+    val t = HOLogic.mk_Trueprop (Thm.term_of redex);
+    fun tac {context = ctxt, prems = _ } =
+      SOLVE (measurable_tac ctxt (Simplifier.prems_of ctxt));
+  in try (fn () => Goal.prove ctxt [] [] t tac RS @{thm Eq_TrueI}) () end;
+
+end
+