src/HOL/Multivariate_Analysis/Generalised_Binomial_Theorem.thy
changeset 63627 6ddb43c6b711
parent 63626 44ce6b524ff3
child 63631 2edc8da89edc
child 63633 2accfb71e33b
--- a/src/HOL/Multivariate_Analysis/Generalised_Binomial_Theorem.thy	Fri Aug 05 18:34:57 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,256 +0,0 @@
-(*  Title:    HOL/Multivariate_Analysis/Generalised_Binomial_Theorem.thy
-    Author:   Manuel Eberl, TU München
-*)
-
-section \<open>Generalised Binomial Theorem\<close>
-
-text \<open>
-  The proof of the Generalised Binomial Theorem and related results.
-  We prove the generalised binomial theorem for complex numbers, following the proof at:
-  \url{https://proofwiki.org/wiki/Binomial_Theorem/General_Binomial_Theorem}
-\<close>
-
-theory Generalised_Binomial_Theorem
-imports
-  Complex_Main
-  Complex_Transcendental
-  Summation_Tests
-begin
-
-lemma gbinomial_ratio_limit:
-  fixes a :: "'a :: real_normed_field"
-  assumes "a \<notin> \<nat>"
-  shows "(\<lambda>n. (a gchoose n) / (a gchoose Suc n)) \<longlonglongrightarrow> -1"
-proof (rule Lim_transform_eventually)
-  let ?f = "\<lambda>n. inverse (a / of_nat (Suc n) - of_nat n / of_nat (Suc n))"
-  from eventually_gt_at_top[of "0::nat"]
-    show "eventually (\<lambda>n. ?f n = (a gchoose n) /(a gchoose Suc n)) sequentially"
-  proof eventually_elim
-    fix n :: nat assume n: "n > 0"
-    then obtain q where q: "n = Suc q" by (cases n) blast
-    let ?P = "\<Prod>i=0..<n. a - of_nat i"
-    from n have "(a gchoose n) / (a gchoose Suc n) = (of_nat (Suc n) :: 'a) *
-                   (?P / (\<Prod>i=0..n. a - of_nat i))"
-      by (simp add: gbinomial_setprod_rev atLeastLessThanSuc_atLeastAtMost)
-    also from q have "(\<Prod>i=0..n. a - of_nat i) = ?P * (a - of_nat n)"
-      by (simp add: setprod.atLeast0_atMost_Suc atLeastLessThanSuc_atLeastAtMost)
-    also have "?P / \<dots> = (?P / ?P) / (a - of_nat n)" by (rule divide_divide_eq_left[symmetric])
-    also from assms have "?P / ?P = 1" by auto
-    also have "of_nat (Suc n) * (1 / (a - of_nat n)) =
-                   inverse (inverse (of_nat (Suc n)) * (a - of_nat n))" by (simp add: field_simps)
-    also have "inverse (of_nat (Suc n)) * (a - of_nat n) = a / of_nat (Suc n) - of_nat n / of_nat (Suc n)"
-      by (simp add: field_simps del: of_nat_Suc)
-    finally show "?f n = (a gchoose n) / (a gchoose Suc n)" by simp
-  qed
-
-  have "(\<lambda>n. norm a / (of_nat (Suc n))) \<longlonglongrightarrow> 0"
-    unfolding divide_inverse
-    by (intro tendsto_mult_right_zero LIMSEQ_inverse_real_of_nat)
-  hence "(\<lambda>n. a / of_nat (Suc n)) \<longlonglongrightarrow> 0"
-    by (subst tendsto_norm_zero_iff[symmetric]) (simp add: norm_divide del: of_nat_Suc)
-  hence "?f \<longlonglongrightarrow> inverse (0 - 1)"
-    by (intro tendsto_inverse tendsto_diff LIMSEQ_n_over_Suc_n) simp_all
-  thus "?f \<longlonglongrightarrow> -1" by simp
-qed
-
-lemma conv_radius_gchoose:
-  fixes a :: "'a :: {real_normed_field,banach}"
-  shows "conv_radius (\<lambda>n. a gchoose n) = (if a \<in> \<nat> then \<infinity> else 1)"
-proof (cases "a \<in> \<nat>")
-  assume a: "a \<in> \<nat>"
-  have "eventually (\<lambda>n. (a gchoose n) = 0) sequentially"
-    using eventually_gt_at_top[of "nat \<lfloor>norm a\<rfloor>"]
-    by eventually_elim (insert a, auto elim!: Nats_cases simp: binomial_gbinomial[symmetric])
-  from conv_radius_cong[OF this] a show ?thesis by simp
-next
-  assume a: "a \<notin> \<nat>"
-  from tendsto_norm[OF gbinomial_ratio_limit[OF this]]
-    have "conv_radius (\<lambda>n. a gchoose n) = 1"
-    by (intro conv_radius_ratio_limit_nonzero[of _ 1]) (simp_all add: norm_divide)
-  with a show ?thesis by simp
-qed
-
-lemma gen_binomial_complex:
-  fixes z :: complex
-  assumes "norm z < 1"
-  shows   "(\<lambda>n. (a gchoose n) * z^n) sums (1 + z) powr a"
-proof -
-  define K where "K = 1 - (1 - norm z) / 2"
-  from assms have K: "K > 0" "K < 1" "norm z < K"
-     unfolding K_def by (auto simp: field_simps intro!: add_pos_nonneg)
-  let ?f = "\<lambda>n. a gchoose n" and ?f' = "diffs (\<lambda>n. a gchoose n)"
-  have summable_strong: "summable (\<lambda>n. ?f n * z ^ n)" if "norm z < 1" for z using that
-    by (intro summable_in_conv_radius) (simp_all add: conv_radius_gchoose)
-  with K have summable: "summable (\<lambda>n. ?f n * z ^ n)" if "norm z < K" for z using that by auto
-  hence summable': "summable (\<lambda>n. ?f' n * z ^ n)" if "norm z < K" for z using that
-    by (intro termdiff_converges[of _ K]) simp_all
-
-  define f f' where [abs_def]: "f z = (\<Sum>n. ?f n * z ^ n)" "f' z = (\<Sum>n. ?f' n * z ^ n)" for z
-  {
-    fix z :: complex assume z: "norm z < K"
-    from summable_mult2[OF summable'[OF z], of z]
-      have summable1: "summable (\<lambda>n. ?f' n * z ^ Suc n)" by (simp add: mult_ac)
-    hence summable2: "summable (\<lambda>n. of_nat n * ?f n * z^n)"
-      unfolding diffs_def by (subst (asm) summable_Suc_iff)
-
-    have "(1 + z) * f' z = (\<Sum>n. ?f' n * z^n) + (\<Sum>n. ?f' n * z^Suc n)"
-      unfolding f_f'_def using summable' z by (simp add: algebra_simps suminf_mult)
-    also have "(\<Sum>n. ?f' n * z^n) = (\<Sum>n. of_nat (Suc n) * ?f (Suc n) * z^n)"
-      by (intro suminf_cong) (simp add: diffs_def)
-    also have "(\<Sum>n. ?f' n * z^Suc n) = (\<Sum>n. of_nat n * ?f n * z ^ n)"
-      using summable1 suminf_split_initial_segment[OF summable1] unfolding diffs_def
-      by (subst suminf_split_head, subst (asm) summable_Suc_iff) simp_all
-    also have "(\<Sum>n. of_nat (Suc n) * ?f (Suc n) * z^n) + (\<Sum>n. of_nat n * ?f n * z^n) =
-                 (\<Sum>n. a * ?f n * z^n)"
-      by (subst gbinomial_mult_1, subst suminf_add)
-         (insert summable'[OF z] summable2,
-          simp_all add: summable_powser_split_head algebra_simps diffs_def)
-    also have "\<dots> = a * f z" unfolding f_f'_def
-      by (subst suminf_mult[symmetric]) (simp_all add: summable[OF z] mult_ac)
-    finally have "a * f z = (1 + z) * f' z" by simp
-  } note deriv = this
-
-  have [derivative_intros]: "(f has_field_derivative f' z) (at z)" if "norm z < of_real K" for z
-    unfolding f_f'_def using K that
-    by (intro termdiffs_strong[of "?f" K z] summable_strong) simp_all
-  have "f 0 = (\<Sum>n. if n = 0 then 1 else 0)" unfolding f_f'_def by (intro suminf_cong) simp
-  also have "\<dots> = 1" using sums_single[of 0 "\<lambda>_. 1::complex"] unfolding sums_iff by simp
-  finally have [simp]: "f 0 = 1" .
-
-  have "\<exists>c. \<forall>z\<in>ball 0 K. f z * (1 + z) powr (-a) = c"
-  proof (rule has_field_derivative_zero_constant)
-    fix z :: complex assume z': "z \<in> ball 0 K"
-    hence z: "norm z < K" by simp
-    with K have nz: "1 + z \<noteq> 0" by (auto dest!: minus_unique)
-    from z K have "norm z < 1" by simp
-    hence "(1 + z) \<notin> \<real>\<^sub>\<le>\<^sub>0" by (cases z) (auto simp: complex_nonpos_Reals_iff)
-    hence "((\<lambda>z. f z * (1 + z) powr (-a)) has_field_derivative
-              f' z * (1 + z) powr (-a) - a * f z * (1 + z) powr (-a-1)) (at z)" using z
-      by (auto intro!: derivative_eq_intros)
-    also from z have "a * f z = (1 + z) * f' z" by (rule deriv)
-    finally show "((\<lambda>z. f z * (1 + z) powr (-a)) has_field_derivative 0) (at z within ball 0 K)"
-      using nz by (simp add: field_simps powr_diff_complex at_within_open[OF z'])
-  qed simp_all
-  then obtain c where c: "\<And>z. z \<in> ball 0 K \<Longrightarrow> f z * (1 + z) powr (-a) = c" by blast
-  from c[of 0] and K have "c = 1" by simp
-  with c[of z] have "f z = (1 + z) powr a" using K
-    by (simp add: powr_minus_complex field_simps dist_complex_def)
-  with summable K show ?thesis unfolding f_f'_def by (simp add: sums_iff)
-qed
-
-lemma gen_binomial_complex':
-  fixes x y :: real and a :: complex
-  assumes "\<bar>x\<bar> < \<bar>y\<bar>"
-  shows   "(\<lambda>n. (a gchoose n) * of_real x^n * of_real y powr (a - of_nat n)) sums
-               of_real (x + y) powr a" (is "?P x y")
-proof -
-  {
-    fix x y :: real assume xy: "\<bar>x\<bar> < \<bar>y\<bar>" "y \<ge> 0"
-    hence "y > 0" by simp
-    note xy = xy this
-    from xy have "(\<lambda>n. (a gchoose n) * of_real (x / y) ^ n) sums (1 + of_real (x / y)) powr a"
-        by (intro gen_binomial_complex) (simp add: norm_divide)
-    hence "(\<lambda>n. (a gchoose n) * of_real (x / y) ^ n * y powr a) sums
-               ((1 + of_real (x / y)) powr a * y powr a)"
-      by (rule sums_mult2)
-    also have "(1 + complex_of_real (x / y)) = complex_of_real (1 + x/y)" by simp
-    also from xy have "\<dots> powr a * of_real y powr a = (\<dots> * y) powr a"
-      by (subst powr_times_real[symmetric]) (simp_all add: field_simps)
-    also from xy have "complex_of_real (1 + x / y) * complex_of_real y = of_real (x + y)"
-      by (simp add: field_simps)
-    finally have "?P x y" using xy by (simp add: field_simps powr_diff_complex powr_nat)
-  } note A = this
-
-  show ?thesis
-  proof (cases "y < 0")
-    assume y: "y < 0"
-    with assms have xy: "x + y < 0" by simp
-    with assms have "\<bar>-x\<bar> < \<bar>-y\<bar>" "-y \<ge> 0" by simp_all
-    note A[OF this]
-    also have "complex_of_real (-x + -y) = - complex_of_real (x + y)" by simp
-    also from xy assms have "... powr a = (-1) powr -a * of_real (x + y) powr a"
-      by (subst powr_neg_real_complex) (simp add: abs_real_def split: if_split_asm)
-    also {
-      fix n :: nat
-      from y have "(a gchoose n) * of_real (-x) ^ n * of_real (-y) powr (a - of_nat n) =
-                       (a gchoose n) * (-of_real x / -of_real y) ^ n * (- of_real y) powr a"
-        by (subst power_divide) (simp add: powr_diff_complex powr_nat)
-      also from y have "(- of_real y) powr a = (-1) powr -a * of_real y powr a"
-        by (subst powr_neg_real_complex) simp
-      also have "-complex_of_real x / -complex_of_real y = complex_of_real x / complex_of_real y"
-        by simp
-      also have "... ^ n = of_real x ^ n / of_real y ^ n" by (simp add: power_divide)
-      also have "(a gchoose n) * ... * ((-1) powr -a * of_real y powr a) =
-                   (-1) powr -a * ((a gchoose n) * of_real x ^ n * of_real y powr (a - n))"
-        by (simp add: algebra_simps powr_diff_complex powr_nat)
-      finally have "(a gchoose n) * of_real (- x) ^ n * of_real (- y) powr (a - of_nat n) =
-                      (-1) powr -a * ((a gchoose n) * of_real x ^ n * of_real y powr (a - of_nat n))" .
-    }
-    note sums_cong[OF this]
-    finally show ?thesis by (simp add: sums_mult_iff)
-  qed (insert A[of x y] assms, simp_all add: not_less)
-qed
-
-lemma gen_binomial_complex'':
-  fixes x y :: real and a :: complex
-  assumes "\<bar>y\<bar> < \<bar>x\<bar>"
-  shows   "(\<lambda>n. (a gchoose n) * of_real x powr (a - of_nat n) * of_real y ^ n) sums
-               of_real (x + y) powr a"
-  using gen_binomial_complex'[OF assms] by (simp add: mult_ac add.commute)
-
-lemma gen_binomial_real:
-  fixes z :: real
-  assumes "\<bar>z\<bar> < 1"
-  shows   "(\<lambda>n. (a gchoose n) * z^n) sums (1 + z) powr a"
-proof -
-  from assms have "norm (of_real z :: complex) < 1" by simp
-  from gen_binomial_complex[OF this]
-    have "(\<lambda>n. (of_real a gchoose n :: complex) * of_real z ^ n) sums
-              (of_real (1 + z)) powr (of_real a)" by simp
-  also have "(of_real (1 + z) :: complex) powr (of_real a) = of_real ((1 + z) powr a)"
-    using assms by (subst powr_of_real) simp_all
-  also have "(of_real a gchoose n :: complex) = of_real (a gchoose n)" for n
-    by (simp add: gbinomial_setprod_rev)
-  hence "(\<lambda>n. (of_real a gchoose n :: complex) * of_real z ^ n) =
-           (\<lambda>n. of_real ((a gchoose n) * z ^ n))" by (intro ext) simp
-  finally show ?thesis by (simp only: sums_of_real_iff)
-qed
-
-lemma gen_binomial_real':
-  fixes x y a :: real
-  assumes "\<bar>x\<bar> < y"
-  shows   "(\<lambda>n. (a gchoose n) * x^n * y powr (a - of_nat n)) sums (x + y) powr a"
-proof -
-  from assms have "y > 0" by simp
-  note xy = this assms
-  from assms have "\<bar>x / y\<bar> < 1" by simp
-  hence "(\<lambda>n. (a gchoose n) * (x / y) ^ n) sums (1 + x / y) powr a"
-    by (rule gen_binomial_real)
-  hence "(\<lambda>n. (a gchoose n) * (x / y) ^ n * y powr a) sums ((1 + x / y) powr a * y powr a)"
-    by (rule sums_mult2)
-  with xy show ?thesis
-    by (simp add: field_simps powr_divide powr_divide2[symmetric] powr_realpow)
-qed
-
-lemma one_plus_neg_powr_powser:
-  fixes z s :: complex
-  assumes "norm (z :: complex) < 1"
-  shows "(\<lambda>n. (-1)^n * ((s + n - 1) gchoose n) * z^n) sums (1 + z) powr (-s)"
-    using gen_binomial_complex[OF assms, of "-s"] by (simp add: gbinomial_minus)
-
-lemma gen_binomial_real'':
-  fixes x y a :: real
-  assumes "\<bar>y\<bar> < x"
-  shows   "(\<lambda>n. (a gchoose n) * x powr (a - of_nat n) * y^n) sums (x + y) powr a"
-  using gen_binomial_real'[OF assms] by (simp add: mult_ac add.commute)
-
-lemma sqrt_series':
-  "\<bar>z\<bar> < a \<Longrightarrow> (\<lambda>n. ((1/2) gchoose n) * a powr (1/2 - real_of_nat n) * z ^ n) sums
-                  sqrt (a + z :: real)"
-  using gen_binomial_real''[of z a "1/2"] by (simp add: powr_half_sqrt)
-
-lemma sqrt_series:
-  "\<bar>z\<bar> < 1 \<Longrightarrow> (\<lambda>n. ((1/2) gchoose n) * z ^ n) sums sqrt (1 + z)"
-  using gen_binomial_real[of z "1/2"] by (simp add: powr_half_sqrt)
-
-end