src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy
changeset 63627 6ddb43c6b711
parent 63626 44ce6b524ff3
child 63631 2edc8da89edc
child 63633 2accfb71e33b
--- a/src/HOL/Multivariate_Analysis/Topology_Euclidean_Space.thy	Fri Aug 05 18:34:57 2016 +0200
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,9650 +0,0 @@
-(*  title:      HOL/Library/Topology_Euclidian_Space.thy
-    Author:     Amine Chaieb, University of Cambridge
-    Author:     Robert Himmelmann, TU Muenchen
-    Author:     Brian Huffman, Portland State University
-*)
-
-section \<open>Elementary topology in Euclidean space.\<close>
-
-theory Topology_Euclidean_Space
-imports
-  "~~/src/HOL/Library/Indicator_Function"
-  "~~/src/HOL/Library/Countable_Set"
-  "~~/src/HOL/Library/FuncSet"
-  Linear_Algebra
-  Norm_Arith
-begin
-
-
-(* FIXME: move elsewhere *)
-definition (in monoid_add) support_on :: "'b set \<Rightarrow> ('b \<Rightarrow> 'a) \<Rightarrow> 'b set"
-where
-  "support_on s f = {x\<in>s. f x \<noteq> 0}"
-
-lemma in_support_on: "x \<in> support_on s f \<longleftrightarrow> x \<in> s \<and> f x \<noteq> 0"
-  by (simp add: support_on_def)
-
-lemma support_on_simps[simp]:
-  "support_on {} f = {}"
-  "support_on (insert x s) f =
-    (if f x = 0 then support_on s f else insert x (support_on s f))"
-  "support_on (s \<union> t) f = support_on s f \<union> support_on t f"
-  "support_on (s \<inter> t) f = support_on s f \<inter> support_on t f"
-  "support_on (s - t) f = support_on s f - support_on t f"
-  "support_on (f ` s) g = f ` (support_on s (g \<circ> f))"
-  unfolding support_on_def by auto
-
-lemma support_on_cong:
-  "(\<And>x. x \<in> s \<Longrightarrow> f x = 0 \<longleftrightarrow> g x = 0) \<Longrightarrow> support_on s f = support_on s g"
-  by (auto simp: support_on_def)
-
-lemma support_on_if: "a \<noteq> 0 \<Longrightarrow> support_on A (\<lambda>x. if P x then a else 0) = {x\<in>A. P x}"
-  by (auto simp: support_on_def)
-
-lemma support_on_if_subset: "support_on A (\<lambda>x. if P x then a else 0) \<subseteq> {x \<in> A. P x}"
-  by (auto simp: support_on_def)
-
-lemma finite_support[intro]: "finite s \<Longrightarrow> finite (support_on s f)"
-  unfolding support_on_def by auto
-
-(* TODO: is supp_setsum really needed? TODO: Generalize to Finite_Set.fold *)
-definition (in comm_monoid_add) supp_setsum :: "('b \<Rightarrow> 'a) \<Rightarrow> 'b set \<Rightarrow> 'a"
-where
-  "supp_setsum f s = (\<Sum>x\<in>support_on s f. f x)"
-
-lemma supp_setsum_empty[simp]: "supp_setsum f {} = 0"
-  unfolding supp_setsum_def by auto
-
-lemma supp_setsum_insert[simp]:
-  "finite (support_on s f) \<Longrightarrow>
-    supp_setsum f (insert x s) = (if x \<in> s then supp_setsum f s else f x + supp_setsum f s)"
-  by (simp add: supp_setsum_def in_support_on insert_absorb)
-
-lemma supp_setsum_divide_distrib: "supp_setsum f A / (r::'a::field) = supp_setsum (\<lambda>n. f n / r) A"
-  by (cases "r = 0")
-     (auto simp: supp_setsum_def setsum_divide_distrib intro!: setsum.cong support_on_cong)
-
-(*END OF SUPPORT, ETC.*)
-
-lemma image_affinity_interval:
-  fixes c :: "'a::ordered_real_vector"
-  shows "((\<lambda>x. m *\<^sub>R x + c) ` {a..b}) = (if {a..b}={} then {}
-            else if 0 <= m then {m *\<^sub>R a + c .. m  *\<^sub>R b + c}
-            else {m *\<^sub>R b + c .. m *\<^sub>R a + c})"
-  apply (case_tac "m=0", force)
-  apply (auto simp: scaleR_left_mono)
-  apply (rule_tac x="inverse m *\<^sub>R (x-c)" in rev_image_eqI, auto simp: pos_le_divideR_eq le_diff_eq scaleR_left_mono_neg)
-  apply (metis diff_le_eq inverse_inverse_eq order.not_eq_order_implies_strict pos_le_divideR_eq positive_imp_inverse_positive)
-  apply (rule_tac x="inverse m *\<^sub>R (x-c)" in rev_image_eqI, auto simp: not_le neg_le_divideR_eq diff_le_eq)
-  using le_diff_eq scaleR_le_cancel_left_neg
-  apply fastforce
-  done
-
-lemma countable_PiE:
-  "finite I \<Longrightarrow> (\<And>i. i \<in> I \<Longrightarrow> countable (F i)) \<Longrightarrow> countable (PiE I F)"
-  by (induct I arbitrary: F rule: finite_induct) (auto simp: PiE_insert_eq)
-
-lemma continuous_on_cases:
-  "closed s \<Longrightarrow> closed t \<Longrightarrow> continuous_on s f \<Longrightarrow> continuous_on t g \<Longrightarrow>
-    \<forall>x. (x\<in>s \<and> \<not> P x) \<or> (x \<in> t \<and> P x) \<longrightarrow> f x = g x \<Longrightarrow>
-    continuous_on (s \<union> t) (\<lambda>x. if P x then f x else g x)"
-  by (rule continuous_on_If) auto
-
-
-subsection \<open>Topological Basis\<close>
-
-context topological_space
-begin
-
-definition "topological_basis B \<longleftrightarrow>
-  (\<forall>b\<in>B. open b) \<and> (\<forall>x. open x \<longrightarrow> (\<exists>B'. B' \<subseteq> B \<and> \<Union>B' = x))"
-
-lemma topological_basis:
-  "topological_basis B \<longleftrightarrow> (\<forall>x. open x \<longleftrightarrow> (\<exists>B'. B' \<subseteq> B \<and> \<Union>B' = x))"
-  unfolding topological_basis_def
-  apply safe
-     apply fastforce
-    apply fastforce
-   apply (erule_tac x="x" in allE)
-   apply simp
-   apply (rule_tac x="{x}" in exI)
-  apply auto
-  done
-
-lemma topological_basis_iff:
-  assumes "\<And>B'. B' \<in> B \<Longrightarrow> open B'"
-  shows "topological_basis B \<longleftrightarrow> (\<forall>O'. open O' \<longrightarrow> (\<forall>x\<in>O'. \<exists>B'\<in>B. x \<in> B' \<and> B' \<subseteq> O'))"
-    (is "_ \<longleftrightarrow> ?rhs")
-proof safe
-  fix O' and x::'a
-  assume H: "topological_basis B" "open O'" "x \<in> O'"
-  then have "(\<exists>B'\<subseteq>B. \<Union>B' = O')" by (simp add: topological_basis_def)
-  then obtain B' where "B' \<subseteq> B" "O' = \<Union>B'" by auto
-  then show "\<exists>B'\<in>B. x \<in> B' \<and> B' \<subseteq> O'" using H by auto
-next
-  assume H: ?rhs
-  show "topological_basis B"
-    using assms unfolding topological_basis_def
-  proof safe
-    fix O' :: "'a set"
-    assume "open O'"
-    with H obtain f where "\<forall>x\<in>O'. f x \<in> B \<and> x \<in> f x \<and> f x \<subseteq> O'"
-      by (force intro: bchoice simp: Bex_def)
-    then show "\<exists>B'\<subseteq>B. \<Union>B' = O'"
-      by (auto intro: exI[where x="{f x |x. x \<in> O'}"])
-  qed
-qed
-
-lemma topological_basisI:
-  assumes "\<And>B'. B' \<in> B \<Longrightarrow> open B'"
-    and "\<And>O' x. open O' \<Longrightarrow> x \<in> O' \<Longrightarrow> \<exists>B'\<in>B. x \<in> B' \<and> B' \<subseteq> O'"
-  shows "topological_basis B"
-  using assms by (subst topological_basis_iff) auto
-
-lemma topological_basisE:
-  fixes O'
-  assumes "topological_basis B"
-    and "open O'"
-    and "x \<in> O'"
-  obtains B' where "B' \<in> B" "x \<in> B'" "B' \<subseteq> O'"
-proof atomize_elim
-  from assms have "\<And>B'. B'\<in>B \<Longrightarrow> open B'"
-    by (simp add: topological_basis_def)
-  with topological_basis_iff assms
-  show  "\<exists>B'. B' \<in> B \<and> x \<in> B' \<and> B' \<subseteq> O'"
-    using assms by (simp add: Bex_def)
-qed
-
-lemma topological_basis_open:
-  assumes "topological_basis B"
-    and "X \<in> B"
-  shows "open X"
-  using assms by (simp add: topological_basis_def)
-
-lemma topological_basis_imp_subbasis:
-  assumes B: "topological_basis B"
-  shows "open = generate_topology B"
-proof (intro ext iffI)
-  fix S :: "'a set"
-  assume "open S"
-  with B obtain B' where "B' \<subseteq> B" "S = \<Union>B'"
-    unfolding topological_basis_def by blast
-  then show "generate_topology B S"
-    by (auto intro: generate_topology.intros dest: topological_basis_open)
-next
-  fix S :: "'a set"
-  assume "generate_topology B S"
-  then show "open S"
-    by induct (auto dest: topological_basis_open[OF B])
-qed
-
-lemma basis_dense:
-  fixes B :: "'a set set"
-    and f :: "'a set \<Rightarrow> 'a"
-  assumes "topological_basis B"
-    and choosefrom_basis: "\<And>B'. B' \<noteq> {} \<Longrightarrow> f B' \<in> B'"
-  shows "\<forall>X. open X \<longrightarrow> X \<noteq> {} \<longrightarrow> (\<exists>B' \<in> B. f B' \<in> X)"
-proof (intro allI impI)
-  fix X :: "'a set"
-  assume "open X" and "X \<noteq> {}"
-  from topological_basisE[OF \<open>topological_basis B\<close> \<open>open X\<close> choosefrom_basis[OF \<open>X \<noteq> {}\<close>]]
-  obtain B' where "B' \<in> B" "f X \<in> B'" "B' \<subseteq> X" .
-  then show "\<exists>B'\<in>B. f B' \<in> X"
-    by (auto intro!: choosefrom_basis)
-qed
-
-end
-
-lemma topological_basis_prod:
-  assumes A: "topological_basis A"
-    and B: "topological_basis B"
-  shows "topological_basis ((\<lambda>(a, b). a \<times> b) ` (A \<times> B))"
-  unfolding topological_basis_def
-proof (safe, simp_all del: ex_simps add: subset_image_iff ex_simps(1)[symmetric])
-  fix S :: "('a \<times> 'b) set"
-  assume "open S"
-  then show "\<exists>X\<subseteq>A \<times> B. (\<Union>(a,b)\<in>X. a \<times> b) = S"
-  proof (safe intro!: exI[of _ "{x\<in>A \<times> B. fst x \<times> snd x \<subseteq> S}"])
-    fix x y
-    assume "(x, y) \<in> S"
-    from open_prod_elim[OF \<open>open S\<close> this]
-    obtain a b where a: "open a""x \<in> a" and b: "open b" "y \<in> b" and "a \<times> b \<subseteq> S"
-      by (metis mem_Sigma_iff)
-    moreover
-    from A a obtain A0 where "A0 \<in> A" "x \<in> A0" "A0 \<subseteq> a"
-      by (rule topological_basisE)
-    moreover
-    from B b obtain B0 where "B0 \<in> B" "y \<in> B0" "B0 \<subseteq> b"
-      by (rule topological_basisE)
-    ultimately show "(x, y) \<in> (\<Union>(a, b)\<in>{X \<in> A \<times> B. fst X \<times> snd X \<subseteq> S}. a \<times> b)"
-      by (intro UN_I[of "(A0, B0)"]) auto
-  qed auto
-qed (metis A B topological_basis_open open_Times)
-
-
-subsection \<open>Countable Basis\<close>
-
-locale countable_basis =
-  fixes B :: "'a::topological_space set set"
-  assumes is_basis: "topological_basis B"
-    and countable_basis: "countable B"
-begin
-
-lemma open_countable_basis_ex:
-  assumes "open X"
-  shows "\<exists>B' \<subseteq> B. X = \<Union>B'"
-  using assms countable_basis is_basis
-  unfolding topological_basis_def by blast
-
-lemma open_countable_basisE:
-  assumes "open X"
-  obtains B' where "B' \<subseteq> B" "X = \<Union>B'"
-  using assms open_countable_basis_ex
-  by (atomize_elim) simp
-
-lemma countable_dense_exists:
-  "\<exists>D::'a set. countable D \<and> (\<forall>X. open X \<longrightarrow> X \<noteq> {} \<longrightarrow> (\<exists>d \<in> D. d \<in> X))"
-proof -
-  let ?f = "(\<lambda>B'. SOME x. x \<in> B')"
-  have "countable (?f ` B)" using countable_basis by simp
-  with basis_dense[OF is_basis, of ?f] show ?thesis
-    by (intro exI[where x="?f ` B"]) (metis (mono_tags) all_not_in_conv imageI someI)
-qed
-
-lemma countable_dense_setE:
-  obtains D :: "'a set"
-  where "countable D" "\<And>X. open X \<Longrightarrow> X \<noteq> {} \<Longrightarrow> \<exists>d \<in> D. d \<in> X"
-  using countable_dense_exists by blast
-
-end
-
-lemma (in first_countable_topology) first_countable_basisE:
-  obtains A where "countable A" "\<And>a. a \<in> A \<Longrightarrow> x \<in> a" "\<And>a. a \<in> A \<Longrightarrow> open a"
-    "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> (\<exists>a\<in>A. a \<subseteq> S)"
-  using first_countable_basis[of x]
-  apply atomize_elim
-  apply (elim exE)
-  apply (rule_tac x="range A" in exI)
-  apply auto
-  done
-
-lemma (in first_countable_topology) first_countable_basis_Int_stableE:
-  obtains A where "countable A" "\<And>a. a \<in> A \<Longrightarrow> x \<in> a" "\<And>a. a \<in> A \<Longrightarrow> open a"
-    "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> (\<exists>a\<in>A. a \<subseteq> S)"
-    "\<And>a b. a \<in> A \<Longrightarrow> b \<in> A \<Longrightarrow> a \<inter> b \<in> A"
-proof atomize_elim
-  obtain A' where A':
-    "countable A'"
-    "\<And>a. a \<in> A' \<Longrightarrow> x \<in> a"
-    "\<And>a. a \<in> A' \<Longrightarrow> open a"
-    "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> \<exists>a\<in>A'. a \<subseteq> S"
-    by (rule first_countable_basisE) blast
-  define A where [abs_def]:
-    "A = (\<lambda>N. \<Inter>((\<lambda>n. from_nat_into A' n) ` N)) ` (Collect finite::nat set set)"
-  then show "\<exists>A. countable A \<and> (\<forall>a. a \<in> A \<longrightarrow> x \<in> a) \<and> (\<forall>a. a \<in> A \<longrightarrow> open a) \<and>
-        (\<forall>S. open S \<longrightarrow> x \<in> S \<longrightarrow> (\<exists>a\<in>A. a \<subseteq> S)) \<and> (\<forall>a b. a \<in> A \<longrightarrow> b \<in> A \<longrightarrow> a \<inter> b \<in> A)"
-  proof (safe intro!: exI[where x=A])
-    show "countable A"
-      unfolding A_def by (intro countable_image countable_Collect_finite)
-    fix a
-    assume "a \<in> A"
-    then show "x \<in> a" "open a"
-      using A'(4)[OF open_UNIV] by (auto simp: A_def intro: A' from_nat_into)
-  next
-    let ?int = "\<lambda>N. \<Inter>(from_nat_into A' ` N)"
-    fix a b
-    assume "a \<in> A" "b \<in> A"
-    then obtain N M where "a = ?int N" "b = ?int M" "finite (N \<union> M)"
-      by (auto simp: A_def)
-    then show "a \<inter> b \<in> A"
-      by (auto simp: A_def intro!: image_eqI[where x="N \<union> M"])
-  next
-    fix S
-    assume "open S" "x \<in> S"
-    then obtain a where a: "a\<in>A'" "a \<subseteq> S" using A' by blast
-    then show "\<exists>a\<in>A. a \<subseteq> S" using a A'
-      by (intro bexI[where x=a]) (auto simp: A_def intro: image_eqI[where x="{to_nat_on A' a}"])
-  qed
-qed
-
-lemma (in topological_space) first_countableI:
-  assumes "countable A"
-    and 1: "\<And>a. a \<in> A \<Longrightarrow> x \<in> a" "\<And>a. a \<in> A \<Longrightarrow> open a"
-    and 2: "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> \<exists>a\<in>A. a \<subseteq> S"
-  shows "\<exists>A::nat \<Rightarrow> 'a set. (\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))"
-proof (safe intro!: exI[of _ "from_nat_into A"])
-  fix i
-  have "A \<noteq> {}" using 2[of UNIV] by auto
-  show "x \<in> from_nat_into A i" "open (from_nat_into A i)"
-    using range_from_nat_into_subset[OF \<open>A \<noteq> {}\<close>] 1 by auto
-next
-  fix S
-  assume "open S" "x\<in>S" from 2[OF this]
-  show "\<exists>i. from_nat_into A i \<subseteq> S"
-    using subset_range_from_nat_into[OF \<open>countable A\<close>] by auto
-qed
-
-instance prod :: (first_countable_topology, first_countable_topology) first_countable_topology
-proof
-  fix x :: "'a \<times> 'b"
-  obtain A where A:
-      "countable A"
-      "\<And>a. a \<in> A \<Longrightarrow> fst x \<in> a"
-      "\<And>a. a \<in> A \<Longrightarrow> open a"
-      "\<And>S. open S \<Longrightarrow> fst x \<in> S \<Longrightarrow> \<exists>a\<in>A. a \<subseteq> S"
-    by (rule first_countable_basisE[of "fst x"]) blast
-  obtain B where B:
-      "countable B"
-      "\<And>a. a \<in> B \<Longrightarrow> snd x \<in> a"
-      "\<And>a. a \<in> B \<Longrightarrow> open a"
-      "\<And>S. open S \<Longrightarrow> snd x \<in> S \<Longrightarrow> \<exists>a\<in>B. a \<subseteq> S"
-    by (rule first_countable_basisE[of "snd x"]) blast
-  show "\<exists>A::nat \<Rightarrow> ('a \<times> 'b) set.
-    (\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))"
-  proof (rule first_countableI[of "(\<lambda>(a, b). a \<times> b) ` (A \<times> B)"], safe)
-    fix a b
-    assume x: "a \<in> A" "b \<in> B"
-    with A(2, 3)[of a] B(2, 3)[of b] show "x \<in> a \<times> b" and "open (a \<times> b)"
-      unfolding mem_Times_iff
-      by (auto intro: open_Times)
-  next
-    fix S
-    assume "open S" "x \<in> S"
-    then obtain a' b' where a'b': "open a'" "open b'" "x \<in> a' \<times> b'" "a' \<times> b' \<subseteq> S"
-      by (rule open_prod_elim)
-    moreover
-    from a'b' A(4)[of a'] B(4)[of b']
-    obtain a b where "a \<in> A" "a \<subseteq> a'" "b \<in> B" "b \<subseteq> b'"
-      by auto
-    ultimately
-    show "\<exists>a\<in>(\<lambda>(a, b). a \<times> b) ` (A \<times> B). a \<subseteq> S"
-      by (auto intro!: bexI[of _ "a \<times> b"] bexI[of _ a] bexI[of _ b])
-  qed (simp add: A B)
-qed
-
-class second_countable_topology = topological_space +
-  assumes ex_countable_subbasis:
-    "\<exists>B::'a::topological_space set set. countable B \<and> open = generate_topology B"
-begin
-
-lemma ex_countable_basis: "\<exists>B::'a set set. countable B \<and> topological_basis B"
-proof -
-  from ex_countable_subbasis obtain B where B: "countable B" "open = generate_topology B"
-    by blast
-  let ?B = "Inter ` {b. finite b \<and> b \<subseteq> B }"
-
-  show ?thesis
-  proof (intro exI conjI)
-    show "countable ?B"
-      by (intro countable_image countable_Collect_finite_subset B)
-    {
-      fix S
-      assume "open S"
-      then have "\<exists>B'\<subseteq>{b. finite b \<and> b \<subseteq> B}. (\<Union>b\<in>B'. \<Inter>b) = S"
-        unfolding B
-      proof induct
-        case UNIV
-        show ?case by (intro exI[of _ "{{}}"]) simp
-      next
-        case (Int a b)
-        then obtain x y where x: "a = UNION x Inter" "\<And>i. i \<in> x \<Longrightarrow> finite i \<and> i \<subseteq> B"
-          and y: "b = UNION y Inter" "\<And>i. i \<in> y \<Longrightarrow> finite i \<and> i \<subseteq> B"
-          by blast
-        show ?case
-          unfolding x y Int_UN_distrib2
-          by (intro exI[of _ "{i \<union> j| i j.  i \<in> x \<and> j \<in> y}"]) (auto dest: x(2) y(2))
-      next
-        case (UN K)
-        then have "\<forall>k\<in>K. \<exists>B'\<subseteq>{b. finite b \<and> b \<subseteq> B}. UNION B' Inter = k" by auto
-        then obtain k where
-            "\<forall>ka\<in>K. k ka \<subseteq> {b. finite b \<and> b \<subseteq> B} \<and> UNION (k ka) Inter = ka"
-          unfolding bchoice_iff ..
-        then show "\<exists>B'\<subseteq>{b. finite b \<and> b \<subseteq> B}. UNION B' Inter = \<Union>K"
-          by (intro exI[of _ "UNION K k"]) auto
-      next
-        case (Basis S)
-        then show ?case
-          by (intro exI[of _ "{{S}}"]) auto
-      qed
-      then have "(\<exists>B'\<subseteq>Inter ` {b. finite b \<and> b \<subseteq> B}. \<Union>B' = S)"
-        unfolding subset_image_iff by blast }
-    then show "topological_basis ?B"
-      unfolding topological_space_class.topological_basis_def
-      by (safe intro!: topological_space_class.open_Inter)
-         (simp_all add: B generate_topology.Basis subset_eq)
-  qed
-qed
-
-end
-
-sublocale second_countable_topology <
-  countable_basis "SOME B. countable B \<and> topological_basis B"
-  using someI_ex[OF ex_countable_basis]
-  by unfold_locales safe
-
-instance prod :: (second_countable_topology, second_countable_topology) second_countable_topology
-proof
-  obtain A :: "'a set set" where "countable A" "topological_basis A"
-    using ex_countable_basis by auto
-  moreover
-  obtain B :: "'b set set" where "countable B" "topological_basis B"
-    using ex_countable_basis by auto
-  ultimately show "\<exists>B::('a \<times> 'b) set set. countable B \<and> open = generate_topology B"
-    by (auto intro!: exI[of _ "(\<lambda>(a, b). a \<times> b) ` (A \<times> B)"] topological_basis_prod
-      topological_basis_imp_subbasis)
-qed
-
-instance second_countable_topology \<subseteq> first_countable_topology
-proof
-  fix x :: 'a
-  define B :: "'a set set" where "B = (SOME B. countable B \<and> topological_basis B)"
-  then have B: "countable B" "topological_basis B"
-    using countable_basis is_basis
-    by (auto simp: countable_basis is_basis)
-  then show "\<exists>A::nat \<Rightarrow> 'a set.
-    (\<forall>i. x \<in> A i \<and> open (A i)) \<and> (\<forall>S. open S \<and> x \<in> S \<longrightarrow> (\<exists>i. A i \<subseteq> S))"
-    by (intro first_countableI[of "{b\<in>B. x \<in> b}"])
-       (fastforce simp: topological_space_class.topological_basis_def)+
-qed
-
-
-subsection \<open>Polish spaces\<close>
-
-text \<open>Textbooks define Polish spaces as completely metrizable.
-  We assume the topology to be complete for a given metric.\<close>
-
-class polish_space = complete_space + second_countable_topology
-
-subsection \<open>General notion of a topology as a value\<close>
-
-definition "istopology L \<longleftrightarrow>
-  L {} \<and> (\<forall>S T. L S \<longrightarrow> L T \<longrightarrow> L (S \<inter> T)) \<and> (\<forall>K. Ball K L \<longrightarrow> L (\<Union>K))"
-
-typedef 'a topology = "{L::('a set) \<Rightarrow> bool. istopology L}"
-  morphisms "openin" "topology"
-  unfolding istopology_def by blast
-
-lemma istopology_openin[intro]: "istopology(openin U)"
-  using openin[of U] by blast
-
-lemma topology_inverse': "istopology U \<Longrightarrow> openin (topology U) = U"
-  using topology_inverse[unfolded mem_Collect_eq] .
-
-lemma topology_inverse_iff: "istopology U \<longleftrightarrow> openin (topology U) = U"
-  using topology_inverse[of U] istopology_openin[of "topology U"] by auto
-
-lemma topology_eq: "T1 = T2 \<longleftrightarrow> (\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S)"
-proof
-  assume "T1 = T2"
-  then show "\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S" by simp
-next
-  assume H: "\<forall>S. openin T1 S \<longleftrightarrow> openin T2 S"
-  then have "openin T1 = openin T2" by (simp add: fun_eq_iff)
-  then have "topology (openin T1) = topology (openin T2)" by simp
-  then show "T1 = T2" unfolding openin_inverse .
-qed
-
-text\<open>Infer the "universe" from union of all sets in the topology.\<close>
-
-definition "topspace T = \<Union>{S. openin T S}"
-
-subsubsection \<open>Main properties of open sets\<close>
-
-lemma openin_clauses:
-  fixes U :: "'a topology"
-  shows
-    "openin U {}"
-    "\<And>S T. openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S\<inter>T)"
-    "\<And>K. (\<forall>S \<in> K. openin U S) \<Longrightarrow> openin U (\<Union>K)"
-  using openin[of U] unfolding istopology_def mem_Collect_eq by fast+
-
-lemma openin_subset[intro]: "openin U S \<Longrightarrow> S \<subseteq> topspace U"
-  unfolding topspace_def by blast
-
-lemma openin_empty[simp]: "openin U {}"
-  by (rule openin_clauses)
-
-lemma openin_Int[intro]: "openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S \<inter> T)"
-  by (rule openin_clauses)
-
-lemma openin_Union[intro]: "(\<And>S. S \<in> K \<Longrightarrow> openin U S) \<Longrightarrow> openin U (\<Union>K)"
-  using openin_clauses by blast
-
-lemma openin_Un[intro]: "openin U S \<Longrightarrow> openin U T \<Longrightarrow> openin U (S \<union> T)"
-  using openin_Union[of "{S,T}" U] by auto
-
-lemma openin_topspace[intro, simp]: "openin U (topspace U)"
-  by (force simp add: openin_Union topspace_def)
-
-lemma openin_subopen: "openin U S \<longleftrightarrow> (\<forall>x \<in> S. \<exists>T. openin U T \<and> x \<in> T \<and> T \<subseteq> S)"
-  (is "?lhs \<longleftrightarrow> ?rhs")
-proof
-  assume ?lhs
-  then show ?rhs by auto
-next
-  assume H: ?rhs
-  let ?t = "\<Union>{T. openin U T \<and> T \<subseteq> S}"
-  have "openin U ?t" by (force simp add: openin_Union)
-  also have "?t = S" using H by auto
-  finally show "openin U S" .
-qed
-
-
-subsubsection \<open>Closed sets\<close>
-
-definition "closedin U S \<longleftrightarrow> S \<subseteq> topspace U \<and> openin U (topspace U - S)"
-
-lemma closedin_subset: "closedin U S \<Longrightarrow> S \<subseteq> topspace U"
-  by (metis closedin_def)
-
-lemma closedin_empty[simp]: "closedin U {}"
-  by (simp add: closedin_def)
-
-lemma closedin_topspace[intro, simp]: "closedin U (topspace U)"
-  by (simp add: closedin_def)
-
-lemma closedin_Un[intro]: "closedin U S \<Longrightarrow> closedin U T \<Longrightarrow> closedin U (S \<union> T)"
-  by (auto simp add: Diff_Un closedin_def)
-
-lemma Diff_Inter[intro]: "A - \<Inter>S = \<Union>{A - s|s. s\<in>S}"
-  by auto
-
-lemma closedin_Inter[intro]:
-  assumes Ke: "K \<noteq> {}"
-    and Kc: "\<And>S. S \<in>K \<Longrightarrow> closedin U S"
-  shows "closedin U (\<Inter>K)"
-  using Ke Kc unfolding closedin_def Diff_Inter by auto
-
-lemma closedin_INT[intro]:
-  assumes "A \<noteq> {}" "\<And>x. x \<in> A \<Longrightarrow> closedin U (B x)"
-  shows "closedin U (\<Inter>x\<in>A. B x)"
-  apply (rule closedin_Inter)
-  using assms
-  apply auto
-  done
-
-lemma closedin_Int[intro]: "closedin U S \<Longrightarrow> closedin U T \<Longrightarrow> closedin U (S \<inter> T)"
-  using closedin_Inter[of "{S,T}" U] by auto
-
-lemma openin_closedin_eq: "openin U S \<longleftrightarrow> S \<subseteq> topspace U \<and> closedin U (topspace U - S)"
-  apply (auto simp add: closedin_def Diff_Diff_Int inf_absorb2)
-  apply (metis openin_subset subset_eq)
-  done
-
-lemma openin_closedin: "S \<subseteq> topspace U \<Longrightarrow> (openin U S \<longleftrightarrow> closedin U (topspace U - S))"
-  by (simp add: openin_closedin_eq)
-
-lemma openin_diff[intro]:
-  assumes oS: "openin U S"
-    and cT: "closedin U T"
-  shows "openin U (S - T)"
-proof -
-  have "S - T = S \<inter> (topspace U - T)" using openin_subset[of U S]  oS cT
-    by (auto simp add: topspace_def openin_subset)
-  then show ?thesis using oS cT
-    by (auto simp add: closedin_def)
-qed
-
-lemma closedin_diff[intro]:
-  assumes oS: "closedin U S"
-    and cT: "openin U T"
-  shows "closedin U (S - T)"
-proof -
-  have "S - T = S \<inter> (topspace U - T)"
-    using closedin_subset[of U S] oS cT by (auto simp add: topspace_def)
-  then show ?thesis
-    using oS cT by (auto simp add: openin_closedin_eq)
-qed
-
-
-subsubsection \<open>Subspace topology\<close>
-
-definition "subtopology U V = topology (\<lambda>T. \<exists>S. T = S \<inter> V \<and> openin U S)"
-
-lemma istopology_subtopology: "istopology (\<lambda>T. \<exists>S. T = S \<inter> V \<and> openin U S)"
-  (is "istopology ?L")
-proof -
-  have "?L {}" by blast
-  {
-    fix A B
-    assume A: "?L A" and B: "?L B"
-    from A B obtain Sa and Sb where Sa: "openin U Sa" "A = Sa \<inter> V" and Sb: "openin U Sb" "B = Sb \<inter> V"
-      by blast
-    have "A \<inter> B = (Sa \<inter> Sb) \<inter> V" "openin U (Sa \<inter> Sb)"
-      using Sa Sb by blast+
-    then have "?L (A \<inter> B)" by blast
-  }
-  moreover
-  {
-    fix K
-    assume K: "K \<subseteq> Collect ?L"
-    have th0: "Collect ?L = (\<lambda>S. S \<inter> V) ` Collect (openin U)"
-      by blast
-    from K[unfolded th0 subset_image_iff]
-    obtain Sk where Sk: "Sk \<subseteq> Collect (openin U)" "K = (\<lambda>S. S \<inter> V) ` Sk"
-      by blast
-    have "\<Union>K = (\<Union>Sk) \<inter> V"
-      using Sk by auto
-    moreover have "openin U (\<Union>Sk)"
-      using Sk by (auto simp add: subset_eq)
-    ultimately have "?L (\<Union>K)" by blast
-  }
-  ultimately show ?thesis
-    unfolding subset_eq mem_Collect_eq istopology_def by auto
-qed
-
-lemma openin_subtopology: "openin (subtopology U V) S \<longleftrightarrow> (\<exists>T. openin U T \<and> S = T \<inter> V)"
-  unfolding subtopology_def topology_inverse'[OF istopology_subtopology]
-  by auto
-
-lemma topspace_subtopology: "topspace (subtopology U V) = topspace U \<inter> V"
-  by (auto simp add: topspace_def openin_subtopology)
-
-lemma closedin_subtopology: "closedin (subtopology U V) S \<longleftrightarrow> (\<exists>T. closedin U T \<and> S = T \<inter> V)"
-  unfolding closedin_def topspace_subtopology
-  by (auto simp add: openin_subtopology)
-
-lemma openin_subtopology_refl: "openin (subtopology U V) V \<longleftrightarrow> V \<subseteq> topspace U"
-  unfolding openin_subtopology
-  by auto (metis IntD1 in_mono openin_subset)
-
-lemma subtopology_superset:
-  assumes UV: "topspace U \<subseteq> V"
-  shows "subtopology U V = U"
-proof -
-  {
-    fix S
-    {
-      fix T
-      assume T: "openin U T" "S = T \<inter> V"
-      from T openin_subset[OF T(1)] UV have eq: "S = T"
-        by blast
-      have "openin U S"
-        unfolding eq using T by blast
-    }
-    moreover
-    {
-      assume S: "openin U S"
-      then have "\<exists>T. openin U T \<and> S = T \<inter> V"
-        using openin_subset[OF S] UV by auto
-    }
-    ultimately have "(\<exists>T. openin U T \<and> S = T \<inter> V) \<longleftrightarrow> openin U S"
-      by blast
-  }
-  then show ?thesis
-    unfolding topology_eq openin_subtopology by blast
-qed
-
-lemma subtopology_topspace[simp]: "subtopology U (topspace U) = U"
-  by (simp add: subtopology_superset)
-
-lemma subtopology_UNIV[simp]: "subtopology U UNIV = U"
-  by (simp add: subtopology_superset)
-
-lemma openin_subtopology_empty:
-   "openin (subtopology U {}) s \<longleftrightarrow> s = {}"
-by (metis Int_empty_right openin_empty openin_subtopology)
-
-lemma closedin_subtopology_empty:
-   "closedin (subtopology U {}) s \<longleftrightarrow> s = {}"
-by (metis Int_empty_right closedin_empty closedin_subtopology)
-
-lemma closedin_subtopology_refl:
-   "closedin (subtopology U u) u \<longleftrightarrow> u \<subseteq> topspace U"
-by (metis closedin_def closedin_topspace inf.absorb_iff2 le_inf_iff topspace_subtopology)
-
-lemma openin_imp_subset:
-   "openin (subtopology U s) t \<Longrightarrow> t \<subseteq> s"
-by (metis Int_iff openin_subtopology subsetI)
-
-lemma closedin_imp_subset:
-   "closedin (subtopology U s) t \<Longrightarrow> t \<subseteq> s"
-by (simp add: closedin_def topspace_subtopology)
-
-lemma openin_subtopology_Un:
-    "openin (subtopology U t) s \<and> openin (subtopology U u) s
-     \<Longrightarrow> openin (subtopology U (t \<union> u)) s"
-by (simp add: openin_subtopology) blast
-
-
-subsubsection \<open>The standard Euclidean topology\<close>
-
-definition euclidean :: "'a::topological_space topology"
-  where "euclidean = topology open"
-
-lemma open_openin: "open S \<longleftrightarrow> openin euclidean S"
-  unfolding euclidean_def
-  apply (rule cong[where x=S and y=S])
-  apply (rule topology_inverse[symmetric])
-  apply (auto simp add: istopology_def)
-  done
-
-lemma topspace_euclidean [simp]: "topspace euclidean = UNIV"
-  apply (simp add: topspace_def)
-  apply (rule set_eqI)
-  apply (auto simp add: open_openin[symmetric])
-  done
-
-lemma topspace_euclidean_subtopology[simp]: "topspace (subtopology euclidean S) = S"
-  by (simp add: topspace_euclidean topspace_subtopology)
-
-lemma closed_closedin: "closed S \<longleftrightarrow> closedin euclidean S"
-  by (simp add: closed_def closedin_def topspace_euclidean open_openin Compl_eq_Diff_UNIV)
-
-lemma open_subopen: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>T. open T \<and> x \<in> T \<and> T \<subseteq> S)"
-  by (simp add: open_openin openin_subopen[symmetric])
-
-lemma openin_subtopology_self [simp]: "openin (subtopology euclidean S) S"
-  by (metis openin_topspace topspace_euclidean_subtopology)
-
-text \<open>Basic "localization" results are handy for connectedness.\<close>
-
-lemma openin_open: "openin (subtopology euclidean U) S \<longleftrightarrow> (\<exists>T. open T \<and> (S = U \<inter> T))"
-  by (auto simp add: openin_subtopology open_openin[symmetric])
-
-lemma openin_Int_open:
-   "\<lbrakk>openin (subtopology euclidean U) S; open T\<rbrakk>
-        \<Longrightarrow> openin (subtopology euclidean U) (S \<inter> T)"
-by (metis open_Int Int_assoc openin_open)
-
-lemma openin_open_Int[intro]: "open S \<Longrightarrow> openin (subtopology euclidean U) (U \<inter> S)"
-  by (auto simp add: openin_open)
-
-lemma open_openin_trans[trans]:
-  "open S \<Longrightarrow> open T \<Longrightarrow> T \<subseteq> S \<Longrightarrow> openin (subtopology euclidean S) T"
-  by (metis Int_absorb1  openin_open_Int)
-
-lemma open_subset: "S \<subseteq> T \<Longrightarrow> open S \<Longrightarrow> openin (subtopology euclidean T) S"
-  by (auto simp add: openin_open)
-
-lemma closedin_closed: "closedin (subtopology euclidean U) S \<longleftrightarrow> (\<exists>T. closed T \<and> S = U \<inter> T)"
-  by (simp add: closedin_subtopology closed_closedin Int_ac)
-
-lemma closedin_closed_Int: "closed S \<Longrightarrow> closedin (subtopology euclidean U) (U \<inter> S)"
-  by (metis closedin_closed)
-
-lemma closed_closedin_trans:
-  "closed S \<Longrightarrow> closed T \<Longrightarrow> T \<subseteq> S \<Longrightarrow> closedin (subtopology euclidean S) T"
-  by (metis closedin_closed inf.absorb2)
-
-lemma closed_subset: "S \<subseteq> T \<Longrightarrow> closed S \<Longrightarrow> closedin (subtopology euclidean T) S"
-  by (auto simp add: closedin_closed)
-
-lemma closedin_singleton [simp]:
-  fixes a :: "'a::t1_space"
-  shows "closedin (subtopology euclidean U) {a} \<longleftrightarrow> a \<in> U"
-using closedin_subset  by (force intro: closed_subset)
-
-lemma openin_euclidean_subtopology_iff:
-  fixes S U :: "'a::metric_space set"
-  shows "openin (subtopology euclidean U) S \<longleftrightarrow>
-    S \<subseteq> U \<and> (\<forall>x\<in>S. \<exists>e>0. \<forall>x'\<in>U. dist x' x < e \<longrightarrow> x'\<in> S)"
-  (is "?lhs \<longleftrightarrow> ?rhs")
-proof
-  assume ?lhs
-  then show ?rhs
-    unfolding openin_open open_dist by blast
-next
-  define T where "T = {x. \<exists>a\<in>S. \<exists>d>0. (\<forall>y\<in>U. dist y a < d \<longrightarrow> y \<in> S) \<and> dist x a < d}"
-  have 1: "\<forall>x\<in>T. \<exists>e>0. \<forall>y. dist y x < e \<longrightarrow> y \<in> T"
-    unfolding T_def
-    apply clarsimp
-    apply (rule_tac x="d - dist x a" in exI)
-    apply (clarsimp simp add: less_diff_eq)
-    by (metis dist_commute dist_triangle_lt)
-  assume ?rhs then have 2: "S = U \<inter> T"
-    unfolding T_def
-    by auto (metis dist_self)
-  from 1 2 show ?lhs
-    unfolding openin_open open_dist by fast
-qed
-
-lemma connected_openin:
-      "connected s \<longleftrightarrow>
-       ~(\<exists>e1 e2. openin (subtopology euclidean s) e1 \<and>
-                 openin (subtopology euclidean s) e2 \<and>
-                 s \<subseteq> e1 \<union> e2 \<and> e1 \<inter> e2 = {} \<and> e1 \<noteq> {} \<and> e2 \<noteq> {})"
-  apply (simp add: connected_def openin_open, safe)
-  apply (simp_all, blast+)  \<comment>\<open>slow\<close>
-  done
-
-lemma connected_openin_eq:
-      "connected s \<longleftrightarrow>
-       ~(\<exists>e1 e2. openin (subtopology euclidean s) e1 \<and>
-                 openin (subtopology euclidean s) e2 \<and>
-                 e1 \<union> e2 = s \<and> e1 \<inter> e2 = {} \<and>
-                 e1 \<noteq> {} \<and> e2 \<noteq> {})"
-  apply (simp add: connected_openin, safe)
-  apply blast
-  by (metis Int_lower1 Un_subset_iff openin_open subset_antisym)
-
-lemma connected_closedin:
-      "connected s \<longleftrightarrow>
-       ~(\<exists>e1 e2.
-             closedin (subtopology euclidean s) e1 \<and>
-             closedin (subtopology euclidean s) e2 \<and>
-             s \<subseteq> e1 \<union> e2 \<and> e1 \<inter> e2 = {} \<and>
-             e1 \<noteq> {} \<and> e2 \<noteq> {})"
-proof -
-  { fix A B x x'
-    assume s_sub: "s \<subseteq> A \<union> B"
-       and disj: "A \<inter> B \<inter> s = {}"
-       and x: "x \<in> s" "x \<in> B" and x': "x' \<in> s" "x' \<in> A"
-       and cl: "closed A" "closed B"
-    assume "\<forall>e1. (\<forall>T. closed T \<longrightarrow> e1 \<noteq> s \<inter> T) \<or> (\<forall>e2. e1 \<inter> e2 = {} \<longrightarrow> s \<subseteq> e1 \<union> e2 \<longrightarrow> (\<forall>T. closed T \<longrightarrow> e2 \<noteq> s \<inter> T) \<or> e1 = {} \<or> e2 = {})"
-    then have "\<And>C D. s \<inter> C = {} \<or> s \<inter> D = {} \<or> s \<inter> (C \<inter> (s \<inter> D)) \<noteq> {} \<or> \<not> s \<subseteq> s \<inter> (C \<union> D) \<or> \<not> closed C \<or> \<not> closed D"
-      by (metis (no_types) Int_Un_distrib Int_assoc)
-    moreover have "s \<inter> (A \<inter> B) = {}" "s \<inter> (A \<union> B) = s" "s \<inter> B \<noteq> {}"
-      using disj s_sub x by blast+
-    ultimately have "s \<inter> A = {}"
-      using cl by (metis inf.left_commute inf_bot_right order_refl)
-    then have False
-      using x' by blast
-  } note * = this
-  show ?thesis
-    apply (simp add: connected_closed closedin_closed)
-    apply (safe; simp)
-    apply blast
-    apply (blast intro: *)
-    done
-qed
-
-lemma connected_closedin_eq:
-      "connected s \<longleftrightarrow>
-           ~(\<exists>e1 e2.
-                 closedin (subtopology euclidean s) e1 \<and>
-                 closedin (subtopology euclidean s) e2 \<and>
-                 e1 \<union> e2 = s \<and> e1 \<inter> e2 = {} \<and>
-                 e1 \<noteq> {} \<and> e2 \<noteq> {})"
-  apply (simp add: connected_closedin, safe)
-  apply blast
-  by (metis Int_lower1 Un_subset_iff closedin_closed subset_antisym)
-
-text \<open>These "transitivity" results are handy too\<close>
-
-lemma openin_trans[trans]:
-  "openin (subtopology euclidean T) S \<Longrightarrow> openin (subtopology euclidean U) T \<Longrightarrow>
-    openin (subtopology euclidean U) S"
-  unfolding open_openin openin_open by blast
-
-lemma openin_open_trans: "openin (subtopology euclidean T) S \<Longrightarrow> open T \<Longrightarrow> open S"
-  by (auto simp add: openin_open intro: openin_trans)
-
-lemma closedin_trans[trans]:
-  "closedin (subtopology euclidean T) S \<Longrightarrow> closedin (subtopology euclidean U) T \<Longrightarrow>
-    closedin (subtopology euclidean U) S"
-  by (auto simp add: closedin_closed closed_closedin closed_Inter Int_assoc)
-
-lemma closedin_closed_trans: "closedin (subtopology euclidean T) S \<Longrightarrow> closed T \<Longrightarrow> closed S"
-  by (auto simp add: closedin_closed intro: closedin_trans)
-
-lemma openin_subtopology_Int_subset:
-   "\<lbrakk>openin (subtopology euclidean u) (u \<inter> S); v \<subseteq> u\<rbrakk> \<Longrightarrow> openin (subtopology euclidean v) (v \<inter> S)"
-  by (auto simp: openin_subtopology)
-
-lemma openin_open_eq: "open s \<Longrightarrow> (openin (subtopology euclidean s) t \<longleftrightarrow> open t \<and> t \<subseteq> s)"
-  using open_subset openin_open_trans openin_subset by fastforce
-
-
-subsection \<open>Open and closed balls\<close>
-
-definition ball :: "'a::metric_space \<Rightarrow> real \<Rightarrow> 'a set"
-  where "ball x e = {y. dist x y < e}"
-
-definition cball :: "'a::metric_space \<Rightarrow> real \<Rightarrow> 'a set"
-  where "cball x e = {y. dist x y \<le> e}"
-
-definition sphere :: "'a::metric_space \<Rightarrow> real \<Rightarrow> 'a set"
-  where "sphere x e = {y. dist x y = e}"
-
-lemma mem_ball [simp]: "y \<in> ball x e \<longleftrightarrow> dist x y < e"
-  by (simp add: ball_def)
-
-lemma mem_cball [simp]: "y \<in> cball x e \<longleftrightarrow> dist x y \<le> e"
-  by (simp add: cball_def)
-
-lemma mem_sphere [simp]: "y \<in> sphere x e \<longleftrightarrow> dist x y = e"
-  by (simp add: sphere_def)
-
-lemma ball_trivial [simp]: "ball x 0 = {}"
-  by (simp add: ball_def)
-
-lemma cball_trivial [simp]: "cball x 0 = {x}"
-  by (simp add: cball_def)
-
-lemma sphere_trivial [simp]: "sphere x 0 = {x}"
-  by (simp add: sphere_def)
-
-lemma mem_ball_0 [simp]:
-  fixes x :: "'a::real_normed_vector"
-  shows "x \<in> ball 0 e \<longleftrightarrow> norm x < e"
-  by (simp add: dist_norm)
-
-lemma mem_cball_0 [simp]:
-  fixes x :: "'a::real_normed_vector"
-  shows "x \<in> cball 0 e \<longleftrightarrow> norm x \<le> e"
-  by (simp add: dist_norm)
-
-lemma mem_sphere_0 [simp]:
-  fixes x :: "'a::real_normed_vector"
-  shows "x \<in> sphere 0 e \<longleftrightarrow> norm x = e"
-  by (simp add: dist_norm)
-
-lemma centre_in_ball [simp]: "x \<in> ball x e \<longleftrightarrow> 0 < e"
-  by simp
-
-lemma centre_in_cball [simp]: "x \<in> cball x e \<longleftrightarrow> 0 \<le> e"
-  by simp
-
-lemma ball_subset_cball [simp,intro]: "ball x e \<subseteq> cball x e"
-  by (simp add: subset_eq)
-
-lemma sphere_cball [simp,intro]: "sphere z r \<subseteq> cball z r"
-  by force
-
-lemma subset_ball[intro]: "d \<le> e \<Longrightarrow> ball x d \<subseteq> ball x e"
-  by (simp add: subset_eq)
-
-lemma subset_cball[intro]: "d \<le> e \<Longrightarrow> cball x d \<subseteq> cball x e"
-  by (simp add: subset_eq)
-
-lemma ball_max_Un: "ball a (max r s) = ball a r \<union> ball a s"
-  by (simp add: set_eq_iff) arith
-
-lemma ball_min_Int: "ball a (min r s) = ball a r \<inter> ball a s"
-  by (simp add: set_eq_iff)
-
-lemma cball_diff_eq_sphere: "cball a r - ball a r =  {x. dist x a = r}"
-  by (auto simp: cball_def ball_def dist_commute)
-
-lemma image_add_ball [simp]:
-  fixes a :: "'a::real_normed_vector"
-  shows "op + b ` ball a r = ball (a+b) r"
-apply (intro equalityI subsetI)
-apply (force simp: dist_norm)
-apply (rule_tac x="x-b" in image_eqI)
-apply (auto simp: dist_norm algebra_simps)
-done
-
-lemma image_add_cball [simp]:
-  fixes a :: "'a::real_normed_vector"
-  shows "op + b ` cball a r = cball (a+b) r"
-apply (intro equalityI subsetI)
-apply (force simp: dist_norm)
-apply (rule_tac x="x-b" in image_eqI)
-apply (auto simp: dist_norm algebra_simps)
-done
-
-lemma open_ball [intro, simp]: "open (ball x e)"
-proof -
-  have "open (dist x -` {..<e})"
-    by (intro open_vimage open_lessThan continuous_intros)
-  also have "dist x -` {..<e} = ball x e"
-    by auto
-  finally show ?thesis .
-qed
-
-lemma open_contains_ball: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0. ball x e \<subseteq> S)"
-  by (simp add: open_dist subset_eq mem_ball Ball_def dist_commute)
-
-lemma openI [intro?]: "(\<And>x. x\<in>S \<Longrightarrow> \<exists>e>0. ball x e \<subseteq> S) \<Longrightarrow> open S"
-  by (auto simp: open_contains_ball)
-
-lemma openE[elim?]:
-  assumes "open S" "x\<in>S"
-  obtains e where "e>0" "ball x e \<subseteq> S"
-  using assms unfolding open_contains_ball by auto
-
-lemma open_contains_ball_eq: "open S \<Longrightarrow> x\<in>S \<longleftrightarrow> (\<exists>e>0. ball x e \<subseteq> S)"
-  by (metis open_contains_ball subset_eq centre_in_ball)
-
-lemma openin_contains_ball:
-    "openin (subtopology euclidean t) s \<longleftrightarrow>
-     s \<subseteq> t \<and> (\<forall>x \<in> s. \<exists>e. 0 < e \<and> ball x e \<inter> t \<subseteq> s)"
-    (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then show ?rhs
-    apply (simp add: openin_open)
-    apply (metis Int_commute Int_mono inf.cobounded2 open_contains_ball order_refl subsetCE)
-    done
-next
-  assume ?rhs
-  then show ?lhs
-    apply (simp add: openin_euclidean_subtopology_iff)
-    by (metis (no_types) Int_iff dist_commute inf.absorb_iff2 mem_ball)
-qed
-
-lemma openin_contains_cball:
-   "openin (subtopology euclidean t) s \<longleftrightarrow>
-        s \<subseteq> t \<and>
-        (\<forall>x \<in> s. \<exists>e. 0 < e \<and> cball x e \<inter> t \<subseteq> s)"
-apply (simp add: openin_contains_ball)
-apply (rule iffI)
-apply (auto dest!: bspec)
-apply (rule_tac x="e/2" in exI)
-apply force+
-done
-
-lemma ball_eq_empty[simp]: "ball x e = {} \<longleftrightarrow> e \<le> 0"
-  unfolding mem_ball set_eq_iff
-  apply (simp add: not_less)
-  apply (metis zero_le_dist order_trans dist_self)
-  done
-
-lemma ball_empty: "e \<le> 0 \<Longrightarrow> ball x e = {}" by simp
-
-lemma euclidean_dist_l2:
-  fixes x y :: "'a :: euclidean_space"
-  shows "dist x y = setL2 (\<lambda>i. dist (x \<bullet> i) (y \<bullet> i)) Basis"
-  unfolding dist_norm norm_eq_sqrt_inner setL2_def
-  by (subst euclidean_inner) (simp add: power2_eq_square inner_diff_left)
-
-lemma eventually_nhds_ball: "d > 0 \<Longrightarrow> eventually (\<lambda>x. x \<in> ball z d) (nhds z)"
-  by (rule eventually_nhds_in_open) simp_all
-
-lemma eventually_at_ball: "d > 0 \<Longrightarrow> eventually (\<lambda>t. t \<in> ball z d \<and> t \<in> A) (at z within A)"
-  unfolding eventually_at by (intro exI[of _ d]) (simp_all add: dist_commute)
-
-lemma eventually_at_ball': "d > 0 \<Longrightarrow> eventually (\<lambda>t. t \<in> ball z d \<and> t \<noteq> z \<and> t \<in> A) (at z within A)"
-  unfolding eventually_at by (intro exI[of _ d]) (simp_all add: dist_commute)
-
-
-subsection \<open>Boxes\<close>
-
-abbreviation One :: "'a::euclidean_space"
-  where "One \<equiv> \<Sum>Basis"
-
-lemma One_non_0: assumes "One = (0::'a::euclidean_space)" shows False
-proof -
-  have "dependent (Basis :: 'a set)"
-    apply (simp add: dependent_finite)
-    apply (rule_tac x="\<lambda>i. 1" in exI)
-    using SOME_Basis apply (auto simp: assms)
-    done
-  with independent_Basis show False by force
-qed
-
-corollary One_neq_0[iff]: "One \<noteq> 0"
-  by (metis One_non_0)
-
-corollary Zero_neq_One[iff]: "0 \<noteq> One"
-  by (metis One_non_0)
-
-definition (in euclidean_space) eucl_less (infix "<e" 50)
-  where "eucl_less a b \<longleftrightarrow> (\<forall>i\<in>Basis. a \<bullet> i < b \<bullet> i)"
-
-definition box_eucl_less: "box a b = {x. a <e x \<and> x <e b}"
-definition "cbox a b = {x. \<forall>i\<in>Basis. a \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> b \<bullet> i}"
-
-lemma box_def: "box a b = {x. \<forall>i\<in>Basis. a \<bullet> i < x \<bullet> i \<and> x \<bullet> i < b \<bullet> i}"
-  and in_box_eucl_less: "x \<in> box a b \<longleftrightarrow> a <e x \<and> x <e b"
-  and mem_box: "x \<in> box a b \<longleftrightarrow> (\<forall>i\<in>Basis. a \<bullet> i < x \<bullet> i \<and> x \<bullet> i < b \<bullet> i)"
-    "x \<in> cbox a b \<longleftrightarrow> (\<forall>i\<in>Basis. a \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> b \<bullet> i)"
-  by (auto simp: box_eucl_less eucl_less_def cbox_def)
-
-lemma cbox_Pair_eq: "cbox (a, c) (b, d) = cbox a b \<times> cbox c d"
-  by (force simp: cbox_def Basis_prod_def)
-
-lemma cbox_Pair_iff [iff]: "(x, y) \<in> cbox (a, c) (b, d) \<longleftrightarrow> x \<in> cbox a b \<and> y \<in> cbox c d"
-  by (force simp: cbox_Pair_eq)
-
-lemma cbox_Pair_eq_0: "cbox (a, c) (b, d) = {} \<longleftrightarrow> cbox a b = {} \<or> cbox c d = {}"
-  by (force simp: cbox_Pair_eq)
-
-lemma swap_cbox_Pair [simp]: "prod.swap ` cbox (c, a) (d, b) = cbox (a,c) (b,d)"
-  by auto
-
-lemma mem_box_real[simp]:
-  "(x::real) \<in> box a b \<longleftrightarrow> a < x \<and> x < b"
-  "(x::real) \<in> cbox a b \<longleftrightarrow> a \<le> x \<and> x \<le> b"
-  by (auto simp: mem_box)
-
-lemma box_real[simp]:
-  fixes a b:: real
-  shows "box a b = {a <..< b}" "cbox a b = {a .. b}"
-  by auto
-
-lemma box_Int_box:
-  fixes a :: "'a::euclidean_space"
-  shows "box a b \<inter> box c d =
-    box (\<Sum>i\<in>Basis. max (a\<bullet>i) (c\<bullet>i) *\<^sub>R i) (\<Sum>i\<in>Basis. min (b\<bullet>i) (d\<bullet>i) *\<^sub>R i)"
-  unfolding set_eq_iff and Int_iff and mem_box by auto
-
-lemma rational_boxes:
-  fixes x :: "'a::euclidean_space"
-  assumes "e > 0"
-  shows "\<exists>a b. (\<forall>i\<in>Basis. a \<bullet> i \<in> \<rat> \<and> b \<bullet> i \<in> \<rat> ) \<and> x \<in> box a b \<and> box a b \<subseteq> ball x e"
-proof -
-  define e' where "e' = e / (2 * sqrt (real (DIM ('a))))"
-  then have e: "e' > 0"
-    using assms by (auto simp: DIM_positive)
-  have "\<forall>i. \<exists>y. y \<in> \<rat> \<and> y < x \<bullet> i \<and> x \<bullet> i - y < e'" (is "\<forall>i. ?th i")
-  proof
-    fix i
-    from Rats_dense_in_real[of "x \<bullet> i - e'" "x \<bullet> i"] e
-    show "?th i" by auto
-  qed
-  from choice[OF this] obtain a where
-    a: "\<forall>xa. a xa \<in> \<rat> \<and> a xa < x \<bullet> xa \<and> x \<bullet> xa - a xa < e'" ..
-  have "\<forall>i. \<exists>y. y \<in> \<rat> \<and> x \<bullet> i < y \<and> y - x \<bullet> i < e'" (is "\<forall>i. ?th i")
-  proof
-    fix i
-    from Rats_dense_in_real[of "x \<bullet> i" "x \<bullet> i + e'"] e
-    show "?th i" by auto
-  qed
-  from choice[OF this] obtain b where
-    b: "\<forall>xa. b xa \<in> \<rat> \<and> x \<bullet> xa < b xa \<and> b xa - x \<bullet> xa < e'" ..
-  let ?a = "\<Sum>i\<in>Basis. a i *\<^sub>R i" and ?b = "\<Sum>i\<in>Basis. b i *\<^sub>R i"
-  show ?thesis
-  proof (rule exI[of _ ?a], rule exI[of _ ?b], safe)
-    fix y :: 'a
-    assume *: "y \<in> box ?a ?b"
-    have "dist x y = sqrt (\<Sum>i\<in>Basis. (dist (x \<bullet> i) (y \<bullet> i))\<^sup>2)"
-      unfolding setL2_def[symmetric] by (rule euclidean_dist_l2)
-    also have "\<dots> < sqrt (\<Sum>(i::'a)\<in>Basis. e^2 / real (DIM('a)))"
-    proof (rule real_sqrt_less_mono, rule setsum_strict_mono)
-      fix i :: "'a"
-      assume i: "i \<in> Basis"
-      have "a i < y\<bullet>i \<and> y\<bullet>i < b i"
-        using * i by (auto simp: box_def)
-      moreover have "a i < x\<bullet>i" "x\<bullet>i - a i < e'"
-        using a by auto
-      moreover have "x\<bullet>i < b i" "b i - x\<bullet>i < e'"
-        using b by auto
-      ultimately have "\<bar>x\<bullet>i - y\<bullet>i\<bar> < 2 * e'"
-        by auto
-      then have "dist (x \<bullet> i) (y \<bullet> i) < e/sqrt (real (DIM('a)))"
-        unfolding e'_def by (auto simp: dist_real_def)
-      then have "(dist (x \<bullet> i) (y \<bullet> i))\<^sup>2 < (e/sqrt (real (DIM('a))))\<^sup>2"
-        by (rule power_strict_mono) auto
-      then show "(dist (x \<bullet> i) (y \<bullet> i))\<^sup>2 < e\<^sup>2 / real DIM('a)"
-        by (simp add: power_divide)
-    qed auto
-    also have "\<dots> = e"
-      using \<open>0 < e\<close> by simp
-    finally show "y \<in> ball x e"
-      by (auto simp: ball_def)
-  qed (insert a b, auto simp: box_def)
-qed
-
-lemma open_UNION_box:
-  fixes M :: "'a::euclidean_space set"
-  assumes "open M"
-  defines "a' \<equiv> \<lambda>f :: 'a \<Rightarrow> real \<times> real. (\<Sum>(i::'a)\<in>Basis. fst (f i) *\<^sub>R i)"
-  defines "b' \<equiv> \<lambda>f :: 'a \<Rightarrow> real \<times> real. (\<Sum>(i::'a)\<in>Basis. snd (f i) *\<^sub>R i)"
-  defines "I \<equiv> {f\<in>Basis \<rightarrow>\<^sub>E \<rat> \<times> \<rat>. box (a' f) (b' f) \<subseteq> M}"
-  shows "M = (\<Union>f\<in>I. box (a' f) (b' f))"
-proof -
-  have "x \<in> (\<Union>f\<in>I. box (a' f) (b' f))" if "x \<in> M" for x
-  proof -
-    obtain e where e: "e > 0" "ball x e \<subseteq> M"
-      using openE[OF \<open>open M\<close> \<open>x \<in> M\<close>] by auto
-    moreover obtain a b where ab:
-      "x \<in> box a b"
-      "\<forall>i \<in> Basis. a \<bullet> i \<in> \<rat>"
-      "\<forall>i\<in>Basis. b \<bullet> i \<in> \<rat>"
-      "box a b \<subseteq> ball x e"
-      using rational_boxes[OF e(1)] by metis
-    ultimately show ?thesis
-       by (intro UN_I[of "\<lambda>i\<in>Basis. (a \<bullet> i, b \<bullet> i)"])
-          (auto simp: euclidean_representation I_def a'_def b'_def)
-  qed
-  then show ?thesis by (auto simp: I_def)
-qed
-
-lemma box_eq_empty:
-  fixes a :: "'a::euclidean_space"
-  shows "(box a b = {} \<longleftrightarrow> (\<exists>i\<in>Basis. b\<bullet>i \<le> a\<bullet>i))" (is ?th1)
-    and "(cbox a b = {} \<longleftrightarrow> (\<exists>i\<in>Basis. b\<bullet>i < a\<bullet>i))" (is ?th2)
-proof -
-  {
-    fix i x
-    assume i: "i\<in>Basis" and as:"b\<bullet>i \<le> a\<bullet>i" and x:"x\<in>box a b"
-    then have "a \<bullet> i < x \<bullet> i \<and> x \<bullet> i < b \<bullet> i"
-      unfolding mem_box by (auto simp: box_def)
-    then have "a\<bullet>i < b\<bullet>i" by auto
-    then have False using as by auto
-  }
-  moreover
-  {
-    assume as: "\<forall>i\<in>Basis. \<not> (b\<bullet>i \<le> a\<bullet>i)"
-    let ?x = "(1/2) *\<^sub>R (a + b)"
-    {
-      fix i :: 'a
-      assume i: "i \<in> Basis"
-      have "a\<bullet>i < b\<bullet>i"
-        using as[THEN bspec[where x=i]] i by auto
-      then have "a\<bullet>i < ((1/2) *\<^sub>R (a+b)) \<bullet> i" "((1/2) *\<^sub>R (a+b)) \<bullet> i < b\<bullet>i"
-        by (auto simp: inner_add_left)
-    }
-    then have "box a b \<noteq> {}"
-      using mem_box(1)[of "?x" a b] by auto
-  }
-  ultimately show ?th1 by blast
-
-  {
-    fix i x
-    assume i: "i \<in> Basis" and as:"b\<bullet>i < a\<bullet>i" and x:"x\<in>cbox a b"
-    then have "a \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> b \<bullet> i"
-      unfolding mem_box by auto
-    then have "a\<bullet>i \<le> b\<bullet>i" by auto
-    then have False using as by auto
-  }
-  moreover
-  {
-    assume as:"\<forall>i\<in>Basis. \<not> (b\<bullet>i < a\<bullet>i)"
-    let ?x = "(1/2) *\<^sub>R (a + b)"
-    {
-      fix i :: 'a
-      assume i:"i \<in> Basis"
-      have "a\<bullet>i \<le> b\<bullet>i"
-        using as[THEN bspec[where x=i]] i by auto
-      then have "a\<bullet>i \<le> ((1/2) *\<^sub>R (a+b)) \<bullet> i" "((1/2) *\<^sub>R (a+b)) \<bullet> i \<le> b\<bullet>i"
-        by (auto simp: inner_add_left)
-    }
-    then have "cbox a b \<noteq> {}"
-      using mem_box(2)[of "?x" a b] by auto
-  }
-  ultimately show ?th2 by blast
-qed
-
-lemma box_ne_empty:
-  fixes a :: "'a::euclidean_space"
-  shows "cbox a b \<noteq> {} \<longleftrightarrow> (\<forall>i\<in>Basis. a\<bullet>i \<le> b\<bullet>i)"
-  and "box a b \<noteq> {} \<longleftrightarrow> (\<forall>i\<in>Basis. a\<bullet>i < b\<bullet>i)"
-  unfolding box_eq_empty[of a b] by fastforce+
-
-lemma
-  fixes a :: "'a::euclidean_space"
-  shows cbox_sing: "cbox a a = {a}"
-    and box_sing: "box a a = {}"
-  unfolding set_eq_iff mem_box eq_iff [symmetric]
-  by (auto intro!: euclidean_eqI[where 'a='a])
-     (metis all_not_in_conv nonempty_Basis)
-
-lemma subset_box_imp:
-  fixes a :: "'a::euclidean_space"
-  shows "(\<forall>i\<in>Basis. a\<bullet>i \<le> c\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i) \<Longrightarrow> cbox c d \<subseteq> cbox a b"
-    and "(\<forall>i\<in>Basis. a\<bullet>i < c\<bullet>i \<and> d\<bullet>i < b\<bullet>i) \<Longrightarrow> cbox c d \<subseteq> box a b"
-    and "(\<forall>i\<in>Basis. a\<bullet>i \<le> c\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i) \<Longrightarrow> box c d \<subseteq> cbox a b"
-     and "(\<forall>i\<in>Basis. a\<bullet>i \<le> c\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i) \<Longrightarrow> box c d \<subseteq> box a b"
-  unfolding subset_eq[unfolded Ball_def] unfolding mem_box
-  by (best intro: order_trans less_le_trans le_less_trans less_imp_le)+
-
-lemma box_subset_cbox:
-  fixes a :: "'a::euclidean_space"
-  shows "box a b \<subseteq> cbox a b"
-  unfolding subset_eq [unfolded Ball_def] mem_box
-  by (fast intro: less_imp_le)
-
-lemma subset_box:
-  fixes a :: "'a::euclidean_space"
-  shows "cbox c d \<subseteq> cbox a b \<longleftrightarrow> (\<forall>i\<in>Basis. c\<bullet>i \<le> d\<bullet>i) --> (\<forall>i\<in>Basis. a\<bullet>i \<le> c\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i)" (is ?th1)
-    and "cbox c d \<subseteq> box a b \<longleftrightarrow> (\<forall>i\<in>Basis. c\<bullet>i \<le> d\<bullet>i) --> (\<forall>i\<in>Basis. a\<bullet>i < c\<bullet>i \<and> d\<bullet>i < b\<bullet>i)" (is ?th2)
-    and "box c d \<subseteq> cbox a b \<longleftrightarrow> (\<forall>i\<in>Basis. c\<bullet>i < d\<bullet>i) --> (\<forall>i\<in>Basis. a\<bullet>i \<le> c\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i)" (is ?th3)
-    and "box c d \<subseteq> box a b \<longleftrightarrow> (\<forall>i\<in>Basis. c\<bullet>i < d\<bullet>i) --> (\<forall>i\<in>Basis. a\<bullet>i \<le> c\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i)" (is ?th4)
-proof -
-  show ?th1
-    unfolding subset_eq and Ball_def and mem_box
-    by (auto intro: order_trans)
-  show ?th2
-    unfolding subset_eq and Ball_def and mem_box
-    by (auto intro: le_less_trans less_le_trans order_trans less_imp_le)
-  {
-    assume as: "box c d \<subseteq> cbox a b" "\<forall>i\<in>Basis. c\<bullet>i < d\<bullet>i"
-    then have "box c d \<noteq> {}"
-      unfolding box_eq_empty by auto
-    fix i :: 'a
-    assume i: "i \<in> Basis"
-    (** TODO combine the following two parts as done in the HOL_light version. **)
-    {
-      let ?x = "(\<Sum>j\<in>Basis. (if j=i then ((min (a\<bullet>j) (d\<bullet>j))+c\<bullet>j)/2 else (c\<bullet>j+d\<bullet>j)/2) *\<^sub>R j)::'a"
-      assume as2: "a\<bullet>i > c\<bullet>i"
-      {
-        fix j :: 'a
-        assume j: "j \<in> Basis"
-        then have "c \<bullet> j < ?x \<bullet> j \<and> ?x \<bullet> j < d \<bullet> j"
-          apply (cases "j = i")
-          using as(2)[THEN bspec[where x=j]] i
-          apply (auto simp add: as2)
-          done
-      }
-      then have "?x\<in>box c d"
-        using i unfolding mem_box by auto
-      moreover
-      have "?x \<notin> cbox a b"
-        unfolding mem_box
-        apply auto
-        apply (rule_tac x=i in bexI)
-        using as(2)[THEN bspec[where x=i]] and as2 i
-        apply auto
-        done
-      ultimately have False using as by auto
-    }
-    then have "a\<bullet>i \<le> c\<bullet>i" by (rule ccontr) auto
-    moreover
-    {
-      let ?x = "(\<Sum>j\<in>Basis. (if j=i then ((max (b\<bullet>j) (c\<bullet>j))+d\<bullet>j)/2 else (c\<bullet>j+d\<bullet>j)/2) *\<^sub>R j)::'a"
-      assume as2: "b\<bullet>i < d\<bullet>i"
-      {
-        fix j :: 'a
-        assume "j\<in>Basis"
-        then have "d \<bullet> j > ?x \<bullet> j \<and> ?x \<bullet> j > c \<bullet> j"
-          apply (cases "j = i")
-          using as(2)[THEN bspec[where x=j]]
-          apply (auto simp add: as2)
-          done
-      }
-      then have "?x\<in>box c d"
-        unfolding mem_box by auto
-      moreover
-      have "?x\<notin>cbox a b"
-        unfolding mem_box
-        apply auto
-        apply (rule_tac x=i in bexI)
-        using as(2)[THEN bspec[where x=i]] and as2 using i
-        apply auto
-        done
-      ultimately have False using as by auto
-    }
-    then have "b\<bullet>i \<ge> d\<bullet>i" by (rule ccontr) auto
-    ultimately
-    have "a\<bullet>i \<le> c\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i" by auto
-  } note part1 = this
-  show ?th3
-    unfolding subset_eq and Ball_def and mem_box
-    apply (rule, rule, rule, rule)
-    apply (rule part1)
-    unfolding subset_eq and Ball_def and mem_box
-    prefer 4
-    apply auto
-    apply (erule_tac x=xa in allE, erule_tac x=xa in allE, fastforce)+
-    done
-  {
-    assume as: "box c d \<subseteq> box a b" "\<forall>i\<in>Basis. c\<bullet>i < d\<bullet>i"
-    fix i :: 'a
-    assume i:"i\<in>Basis"
-    from as(1) have "box c d \<subseteq> cbox a b"
-      using box_subset_cbox[of a b] by auto
-    then have "a\<bullet>i \<le> c\<bullet>i \<and> d\<bullet>i \<le> b\<bullet>i"
-      using part1 and as(2) using i by auto
-  } note * = this
-  show ?th4
-    unfolding subset_eq and Ball_def and mem_box
-    apply (rule, rule, rule, rule)
-    apply (rule *)
-    unfolding subset_eq and Ball_def and mem_box
-    prefer 4
-    apply auto
-    apply (erule_tac x=xa in allE, simp)+
-    done
-qed
-
-lemma inter_interval:
-  fixes a :: "'a::euclidean_space"
-  shows "cbox a b \<inter> cbox c d =
-    cbox (\<Sum>i\<in>Basis. max (a\<bullet>i) (c\<bullet>i) *\<^sub>R i) (\<Sum>i\<in>Basis. min (b\<bullet>i) (d\<bullet>i) *\<^sub>R i)"
-  unfolding set_eq_iff and Int_iff and mem_box
-  by auto
-
-lemma disjoint_interval:
-  fixes a::"'a::euclidean_space"
-  shows "cbox a b \<inter> cbox c d = {} \<longleftrightarrow> (\<exists>i\<in>Basis. (b\<bullet>i < a\<bullet>i \<or> d\<bullet>i < c\<bullet>i \<or> b\<bullet>i < c\<bullet>i \<or> d\<bullet>i < a\<bullet>i))" (is ?th1)
-    and "cbox a b \<inter> box c d = {} \<longleftrightarrow> (\<exists>i\<in>Basis. (b\<bullet>i < a\<bullet>i \<or> d\<bullet>i \<le> c\<bullet>i \<or> b\<bullet>i \<le> c\<bullet>i \<or> d\<bullet>i \<le> a\<bullet>i))" (is ?th2)
-    and "box a b \<inter> cbox c d = {} \<longleftrightarrow> (\<exists>i\<in>Basis. (b\<bullet>i \<le> a\<bullet>i \<or> d\<bullet>i < c\<bullet>i \<or> b\<bullet>i \<le> c\<bullet>i \<or> d\<bullet>i \<le> a\<bullet>i))" (is ?th3)
-    and "box a b \<inter> box c d = {} \<longleftrightarrow> (\<exists>i\<in>Basis. (b\<bullet>i \<le> a\<bullet>i \<or> d\<bullet>i \<le> c\<bullet>i \<or> b\<bullet>i \<le> c\<bullet>i \<or> d\<bullet>i \<le> a\<bullet>i))" (is ?th4)
-proof -
-  let ?z = "(\<Sum>i\<in>Basis. (((max (a\<bullet>i) (c\<bullet>i)) + (min (b\<bullet>i) (d\<bullet>i))) / 2) *\<^sub>R i)::'a"
-  have **: "\<And>P Q. (\<And>i :: 'a. i \<in> Basis \<Longrightarrow> Q ?z i \<Longrightarrow> P i) \<Longrightarrow>
-      (\<And>i x :: 'a. i \<in> Basis \<Longrightarrow> P i \<Longrightarrow> Q x i) \<Longrightarrow> (\<forall>x. \<exists>i\<in>Basis. Q x i) \<longleftrightarrow> (\<exists>i\<in>Basis. P i)"
-    by blast
-  note * = set_eq_iff Int_iff empty_iff mem_box ball_conj_distrib[symmetric] eq_False ball_simps(10)
-  show ?th1 unfolding * by (intro **) auto
-  show ?th2 unfolding * by (intro **) auto
-  show ?th3 unfolding * by (intro **) auto
-  show ?th4 unfolding * by (intro **) auto
-qed
-
-lemma UN_box_eq_UNIV: "(\<Union>i::nat. box (- (real i *\<^sub>R One)) (real i *\<^sub>R One)) = UNIV"
-proof -
-  have "\<bar>x \<bullet> b\<bar> < real_of_int (\<lceil>Max ((\<lambda>b. \<bar>x \<bullet> b\<bar>)`Basis)\<rceil> + 1)"
-    if [simp]: "b \<in> Basis" for x b :: 'a
-  proof -
-    have "\<bar>x \<bullet> b\<bar> \<le> real_of_int \<lceil>\<bar>x \<bullet> b\<bar>\<rceil>"
-      by (rule le_of_int_ceiling)
-    also have "\<dots> \<le> real_of_int \<lceil>Max ((\<lambda>b. \<bar>x \<bullet> b\<bar>)`Basis)\<rceil>"
-      by (auto intro!: ceiling_mono)
-    also have "\<dots> < real_of_int (\<lceil>Max ((\<lambda>b. \<bar>x \<bullet> b\<bar>)`Basis)\<rceil> + 1)"
-      by simp
-    finally show ?thesis .
-  qed
-  then have "\<exists>n::nat. \<forall>b\<in>Basis. \<bar>x \<bullet> b\<bar> < real n" for x :: 'a
-    by (metis order.strict_trans reals_Archimedean2)
-  moreover have "\<And>x b::'a. \<And>n::nat.  \<bar>x \<bullet> b\<bar> < real n \<longleftrightarrow> - real n < x \<bullet> b \<and> x \<bullet> b < real n"
-    by auto
-  ultimately show ?thesis
-    by (auto simp: box_def inner_setsum_left inner_Basis setsum.If_cases)
-qed
-
-text \<open>Intervals in general, including infinite and mixtures of open and closed.\<close>
-
-definition "is_interval (s::('a::euclidean_space) set) \<longleftrightarrow>
-  (\<forall>a\<in>s. \<forall>b\<in>s. \<forall>x. (\<forall>i\<in>Basis. ((a\<bullet>i \<le> x\<bullet>i \<and> x\<bullet>i \<le> b\<bullet>i) \<or> (b\<bullet>i \<le> x\<bullet>i \<and> x\<bullet>i \<le> a\<bullet>i))) \<longrightarrow> x \<in> s)"
-
-lemma is_interval_cbox: "is_interval (cbox a (b::'a::euclidean_space))" (is ?th1)
-  and is_interval_box: "is_interval (box a b)" (is ?th2)
-  unfolding is_interval_def mem_box Ball_def atLeastAtMost_iff
-  by (meson order_trans le_less_trans less_le_trans less_trans)+
-
-lemma is_interval_empty [iff]: "is_interval {}"
-  unfolding is_interval_def  by simp
-
-lemma is_interval_univ [iff]: "is_interval UNIV"
-  unfolding is_interval_def  by simp
-
-lemma mem_is_intervalI:
-  assumes "is_interval s"
-  assumes "a \<in> s" "b \<in> s"
-  assumes "\<And>i. i \<in> Basis \<Longrightarrow> a \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> b \<bullet> i \<or> b \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> a \<bullet> i"
-  shows "x \<in> s"
-  by (rule assms(1)[simplified is_interval_def, rule_format, OF assms(2,3,4)])
-
-lemma interval_subst:
-  fixes S::"'a::euclidean_space set"
-  assumes "is_interval S"
-  assumes "x \<in> S" "y j \<in> S"
-  assumes "j \<in> Basis"
-  shows "(\<Sum>i\<in>Basis. (if i = j then y i \<bullet> i else x \<bullet> i) *\<^sub>R i) \<in> S"
-  by (rule mem_is_intervalI[OF assms(1,2)]) (auto simp: assms)
-
-lemma mem_box_componentwiseI:
-  fixes S::"'a::euclidean_space set"
-  assumes "is_interval S"
-  assumes "\<And>i. i \<in> Basis \<Longrightarrow> x \<bullet> i \<in> ((\<lambda>x. x \<bullet> i) ` S)"
-  shows "x \<in> S"
-proof -
-  from assms have "\<forall>i \<in> Basis. \<exists>s \<in> S. x \<bullet> i = s \<bullet> i"
-    by auto
-  with finite_Basis obtain s and bs::"'a list" where
-    s: "\<And>i. i \<in> Basis \<Longrightarrow> x \<bullet> i = s i \<bullet> i" "\<And>i. i \<in> Basis \<Longrightarrow> s i \<in> S" and
-    bs: "set bs = Basis" "distinct bs"
-    by (metis finite_distinct_list)
-  from nonempty_Basis s obtain j where j: "j \<in> Basis" "s j \<in> S" by blast
-  define y where
-    "y = rec_list (s j) (\<lambda>j _ Y. (\<Sum>i\<in>Basis. (if i = j then s i \<bullet> i else Y \<bullet> i) *\<^sub>R i))"
-  have "x = (\<Sum>i\<in>Basis. (if i \<in> set bs then s i \<bullet> i else s j \<bullet> i) *\<^sub>R i)"
-    using bs by (auto simp add: s(1)[symmetric] euclidean_representation)
-  also have [symmetric]: "y bs = \<dots>"
-    using bs(2) bs(1)[THEN equalityD1]
-    by (induct bs) (auto simp: y_def euclidean_representation intro!: euclidean_eqI[where 'a='a])
-  also have "y bs \<in> S"
-    using bs(1)[THEN equalityD1]
-    apply (induct bs)
-    apply (auto simp: y_def j)
-    apply (rule interval_subst[OF assms(1)])
-    apply (auto simp: s)
-    done
-  finally show ?thesis .
-qed
-
-lemma cbox01_nonempty [simp]: "cbox 0 One \<noteq> {}"
-  by (simp add: box_ne_empty inner_Basis inner_setsum_left setsum_nonneg)
-
-lemma box01_nonempty [simp]: "box 0 One \<noteq> {}"
-  by (simp add: box_ne_empty inner_Basis inner_setsum_left) (simp add: setsum.remove)
-
-
-subsection\<open>Connectedness\<close>
-
-lemma connected_local:
- "connected S \<longleftrightarrow>
-  \<not> (\<exists>e1 e2.
-      openin (subtopology euclidean S) e1 \<and>
-      openin (subtopology euclidean S) e2 \<and>
-      S \<subseteq> e1 \<union> e2 \<and>
-      e1 \<inter> e2 = {} \<and>
-      e1 \<noteq> {} \<and>
-      e2 \<noteq> {})"
-  unfolding connected_def openin_open
-  by safe blast+
-
-lemma exists_diff:
-  fixes P :: "'a set \<Rightarrow> bool"
-  shows "(\<exists>S. P (- S)) \<longleftrightarrow> (\<exists>S. P S)" (is "?lhs \<longleftrightarrow> ?rhs")
-proof -
-  {
-    assume "?lhs"
-    then have ?rhs by blast
-  }
-  moreover
-  {
-    fix S
-    assume H: "P S"
-    have "S = - (- S)" by auto
-    with H have "P (- (- S))" by metis
-  }
-  ultimately show ?thesis by metis
-qed
-
-lemma connected_clopen: "connected S \<longleftrightarrow>
-  (\<forall>T. openin (subtopology euclidean S) T \<and>
-     closedin (subtopology euclidean S) T \<longrightarrow> T = {} \<or> T = S)" (is "?lhs \<longleftrightarrow> ?rhs")
-proof -
-  have "\<not> connected S \<longleftrightarrow>
-    (\<exists>e1 e2. open e1 \<and> open (- e2) \<and> S \<subseteq> e1 \<union> (- e2) \<and> e1 \<inter> (- e2) \<inter> S = {} \<and> e1 \<inter> S \<noteq> {} \<and> (- e2) \<inter> S \<noteq> {})"
-    unfolding connected_def openin_open closedin_closed
-    by (metis double_complement)
-  then have th0: "connected S \<longleftrightarrow>
-    \<not> (\<exists>e2 e1. closed e2 \<and> open e1 \<and> S \<subseteq> e1 \<union> (- e2) \<and> e1 \<inter> (- e2) \<inter> S = {} \<and> e1 \<inter> S \<noteq> {} \<and> (- e2) \<inter> S \<noteq> {})"
-    (is " _ \<longleftrightarrow> \<not> (\<exists>e2 e1. ?P e2 e1)")
-    apply (simp add: closed_def)
-    apply metis
-    done
-  have th1: "?rhs \<longleftrightarrow> \<not> (\<exists>t' t. closed t'\<and>t = S\<inter>t' \<and> t\<noteq>{} \<and> t\<noteq>S \<and> (\<exists>t'. open t' \<and> t = S \<inter> t'))"
-    (is "_ \<longleftrightarrow> \<not> (\<exists>t' t. ?Q t' t)")
-    unfolding connected_def openin_open closedin_closed by auto
-  {
-    fix e2
-    {
-      fix e1
-      have "?P e2 e1 \<longleftrightarrow> (\<exists>t. closed e2 \<and> t = S\<inter>e2 \<and> open e1 \<and> t = S\<inter>e1 \<and> t\<noteq>{} \<and> t \<noteq> S)"
-        by auto
-    }
-    then have "(\<exists>e1. ?P e2 e1) \<longleftrightarrow> (\<exists>t. ?Q e2 t)"
-      by metis
-  }
-  then have "\<forall>e2. (\<exists>e1. ?P e2 e1) \<longleftrightarrow> (\<exists>t. ?Q e2 t)"
-    by blast
-  then show ?thesis
-    unfolding th0 th1 by simp
-qed
-
-subsection\<open>Limit points\<close>
-
-definition (in topological_space) islimpt:: "'a \<Rightarrow> 'a set \<Rightarrow> bool"  (infixr "islimpt" 60)
-  where "x islimpt S \<longleftrightarrow> (\<forall>T. x\<in>T \<longrightarrow> open T \<longrightarrow> (\<exists>y\<in>S. y\<in>T \<and> y\<noteq>x))"
-
-lemma islimptI:
-  assumes "\<And>T. x \<in> T \<Longrightarrow> open T \<Longrightarrow> \<exists>y\<in>S. y \<in> T \<and> y \<noteq> x"
-  shows "x islimpt S"
-  using assms unfolding islimpt_def by auto
-
-lemma islimptE:
-  assumes "x islimpt S" and "x \<in> T" and "open T"
-  obtains y where "y \<in> S" and "y \<in> T" and "y \<noteq> x"
-  using assms unfolding islimpt_def by auto
-
-lemma islimpt_iff_eventually: "x islimpt S \<longleftrightarrow> \<not> eventually (\<lambda>y. y \<notin> S) (at x)"
-  unfolding islimpt_def eventually_at_topological by auto
-
-lemma islimpt_subset: "x islimpt S \<Longrightarrow> S \<subseteq> T \<Longrightarrow> x islimpt T"
-  unfolding islimpt_def by fast
-
-lemma islimpt_approachable:
-  fixes x :: "'a::metric_space"
-  shows "x islimpt S \<longleftrightarrow> (\<forall>e>0. \<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e)"
-  unfolding islimpt_iff_eventually eventually_at by fast
-
-lemma islimpt_approachable_le:
-  fixes x :: "'a::metric_space"
-  shows "x islimpt S \<longleftrightarrow> (\<forall>e>0. \<exists>x'\<in> S. x' \<noteq> x \<and> dist x' x \<le> e)"
-  unfolding islimpt_approachable
-  using approachable_lt_le [where f="\<lambda>y. dist y x" and P="\<lambda>y. y \<notin> S \<or> y = x",
-    THEN arg_cong [where f=Not]]
-  by (simp add: Bex_def conj_commute conj_left_commute)
-
-lemma islimpt_UNIV_iff: "x islimpt UNIV \<longleftrightarrow> \<not> open {x}"
-  unfolding islimpt_def by (safe, fast, case_tac "T = {x}", fast, fast)
-
-lemma islimpt_punctured: "x islimpt S = x islimpt (S-{x})"
-  unfolding islimpt_def by blast
-
-text \<open>A perfect space has no isolated points.\<close>
-
-lemma islimpt_UNIV [simp, intro]: "(x::'a::perfect_space) islimpt UNIV"
-  unfolding islimpt_UNIV_iff by (rule not_open_singleton)
-
-lemma perfect_choose_dist:
-  fixes x :: "'a::{perfect_space, metric_space}"
-  shows "0 < r \<Longrightarrow> \<exists>a. a \<noteq> x \<and> dist a x < r"
-  using islimpt_UNIV [of x]
-  by (simp add: islimpt_approachable)
-
-lemma closed_limpt: "closed S \<longleftrightarrow> (\<forall>x. x islimpt S \<longrightarrow> x \<in> S)"
-  unfolding closed_def
-  apply (subst open_subopen)
-  apply (simp add: islimpt_def subset_eq)
-  apply (metis ComplE ComplI)
-  done
-
-lemma islimpt_EMPTY[simp]: "\<not> x islimpt {}"
-  unfolding islimpt_def by auto
-
-lemma finite_set_avoid:
-  fixes a :: "'a::metric_space"
-  assumes fS: "finite S"
-  shows  "\<exists>d>0. \<forall>x\<in>S. x \<noteq> a \<longrightarrow> d \<le> dist a x"
-proof (induct rule: finite_induct[OF fS])
-  case 1
-  then show ?case by (auto intro: zero_less_one)
-next
-  case (2 x F)
-  from 2 obtain d where d: "d > 0" "\<forall>x\<in>F. x \<noteq> a \<longrightarrow> d \<le> dist a x"
-    by blast
-  show ?case
-  proof (cases "x = a")
-    case True
-    then show ?thesis using d by auto
-  next
-    case False
-    let ?d = "min d (dist a x)"
-    have dp: "?d > 0"
-      using False d(1) by auto
-    from d have d': "\<forall>x\<in>F. x \<noteq> a \<longrightarrow> ?d \<le> dist a x"
-      by auto
-    with dp False show ?thesis
-      by (auto intro!: exI[where x="?d"])
-  qed
-qed
-
-lemma islimpt_Un: "x islimpt (S \<union> T) \<longleftrightarrow> x islimpt S \<or> x islimpt T"
-  by (simp add: islimpt_iff_eventually eventually_conj_iff)
-
-lemma discrete_imp_closed:
-  fixes S :: "'a::metric_space set"
-  assumes e: "0 < e"
-    and d: "\<forall>x \<in> S. \<forall>y \<in> S. dist y x < e \<longrightarrow> y = x"
-  shows "closed S"
-proof -
-  {
-    fix x
-    assume C: "\<forall>e>0. \<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e"
-    from e have e2: "e/2 > 0" by arith
-    from C[rule_format, OF e2] obtain y where y: "y \<in> S" "y \<noteq> x" "dist y x < e/2"
-      by blast
-    let ?m = "min (e/2) (dist x y) "
-    from e2 y(2) have mp: "?m > 0"
-      by simp
-    from C[rule_format, OF mp] obtain z where z: "z \<in> S" "z \<noteq> x" "dist z x < ?m"
-      by blast
-    have th: "dist z y < e" using z y
-      by (intro dist_triangle_lt [where z=x], simp)
-    from d[rule_format, OF y(1) z(1) th] y z
-    have False by (auto simp add: dist_commute)}
-  then show ?thesis
-    by (metis islimpt_approachable closed_limpt [where 'a='a])
-qed
-
-lemma closed_of_nat_image: "closed (of_nat ` A :: 'a :: real_normed_algebra_1 set)"
-  by (rule discrete_imp_closed[of 1]) (auto simp: dist_of_nat)
-
-lemma closed_of_int_image: "closed (of_int ` A :: 'a :: real_normed_algebra_1 set)"
-  by (rule discrete_imp_closed[of 1]) (auto simp: dist_of_int)
-
-lemma closed_Nats [simp]: "closed (\<nat> :: 'a :: real_normed_algebra_1 set)"
-  unfolding Nats_def by (rule closed_of_nat_image)
-
-lemma closed_Ints [simp]: "closed (\<int> :: 'a :: real_normed_algebra_1 set)"
-  unfolding Ints_def by (rule closed_of_int_image)
-
-
-subsection \<open>Interior of a Set\<close>
-
-definition "interior S = \<Union>{T. open T \<and> T \<subseteq> S}"
-
-lemma interiorI [intro?]:
-  assumes "open T" and "x \<in> T" and "T \<subseteq> S"
-  shows "x \<in> interior S"
-  using assms unfolding interior_def by fast
-
-lemma interiorE [elim?]:
-  assumes "x \<in> interior S"
-  obtains T where "open T" and "x \<in> T" and "T \<subseteq> S"
-  using assms unfolding interior_def by fast
-
-lemma open_interior [simp, intro]: "open (interior S)"
-  by (simp add: interior_def open_Union)
-
-lemma interior_subset: "interior S \<subseteq> S"
-  by (auto simp add: interior_def)
-
-lemma interior_maximal: "T \<subseteq> S \<Longrightarrow> open T \<Longrightarrow> T \<subseteq> interior S"
-  by (auto simp add: interior_def)
-
-lemma interior_open: "open S \<Longrightarrow> interior S = S"
-  by (intro equalityI interior_subset interior_maximal subset_refl)
-
-lemma interior_eq: "interior S = S \<longleftrightarrow> open S"
-  by (metis open_interior interior_open)
-
-lemma open_subset_interior: "open S \<Longrightarrow> S \<subseteq> interior T \<longleftrightarrow> S \<subseteq> T"
-  by (metis interior_maximal interior_subset subset_trans)
-
-lemma interior_empty [simp]: "interior {} = {}"
-  using open_empty by (rule interior_open)
-
-lemma interior_UNIV [simp]: "interior UNIV = UNIV"
-  using open_UNIV by (rule interior_open)
-
-lemma interior_interior [simp]: "interior (interior S) = interior S"
-  using open_interior by (rule interior_open)
-
-lemma interior_mono: "S \<subseteq> T \<Longrightarrow> interior S \<subseteq> interior T"
-  by (auto simp add: interior_def)
-
-lemma interior_unique:
-  assumes "T \<subseteq> S" and "open T"
-  assumes "\<And>T'. T' \<subseteq> S \<Longrightarrow> open T' \<Longrightarrow> T' \<subseteq> T"
-  shows "interior S = T"
-  by (intro equalityI assms interior_subset open_interior interior_maximal)
-
-lemma interior_singleton [simp]:
-      fixes a :: "'a::perfect_space" shows "interior {a} = {}"
-  apply (rule interior_unique, simp_all)
-  using not_open_singleton subset_singletonD by fastforce
-
-lemma interior_Int [simp]: "interior (S \<inter> T) = interior S \<inter> interior T"
-  by (intro equalityI Int_mono Int_greatest interior_mono Int_lower1
-    Int_lower2 interior_maximal interior_subset open_Int open_interior)
-
-lemma mem_interior: "x \<in> interior S \<longleftrightarrow> (\<exists>e>0. ball x e \<subseteq> S)"
-  using open_contains_ball_eq [where S="interior S"]
-  by (simp add: open_subset_interior)
-
-lemma eventually_nhds_in_nhd: "x \<in> interior s \<Longrightarrow> eventually (\<lambda>y. y \<in> s) (nhds x)"
-  using interior_subset[of s] by (subst eventually_nhds) blast
-
-lemma interior_limit_point [intro]:
-  fixes x :: "'a::perfect_space"
-  assumes x: "x \<in> interior S"
-  shows "x islimpt S"
-  using x islimpt_UNIV [of x]
-  unfolding interior_def islimpt_def
-  apply (clarsimp, rename_tac T T')
-  apply (drule_tac x="T \<inter> T'" in spec)
-  apply (auto simp add: open_Int)
-  done
-
-lemma interior_closed_Un_empty_interior:
-  assumes cS: "closed S"
-    and iT: "interior T = {}"
-  shows "interior (S \<union> T) = interior S"
-proof
-  show "interior S \<subseteq> interior (S \<union> T)"
-    by (rule interior_mono) (rule Un_upper1)
-  show "interior (S \<union> T) \<subseteq> interior S"
-  proof
-    fix x
-    assume "x \<in> interior (S \<union> T)"
-    then obtain R where "open R" "x \<in> R" "R \<subseteq> S \<union> T" ..
-    show "x \<in> interior S"
-    proof (rule ccontr)
-      assume "x \<notin> interior S"
-      with \<open>x \<in> R\<close> \<open>open R\<close> obtain y where "y \<in> R - S"
-        unfolding interior_def by fast
-      from \<open>open R\<close> \<open>closed S\<close> have "open (R - S)"
-        by (rule open_Diff)
-      from \<open>R \<subseteq> S \<union> T\<close> have "R - S \<subseteq> T"
-        by fast
-      from \<open>y \<in> R - S\<close> \<open>open (R - S)\<close> \<open>R - S \<subseteq> T\<close> \<open>interior T = {}\<close> show False
-        unfolding interior_def by fast
-    qed
-  qed
-qed
-
-lemma interior_Times: "interior (A \<times> B) = interior A \<times> interior B"
-proof (rule interior_unique)
-  show "interior A \<times> interior B \<subseteq> A \<times> B"
-    by (intro Sigma_mono interior_subset)
-  show "open (interior A \<times> interior B)"
-    by (intro open_Times open_interior)
-  fix T
-  assume "T \<subseteq> A \<times> B" and "open T"
-  then show "T \<subseteq> interior A \<times> interior B"
-  proof safe
-    fix x y
-    assume "(x, y) \<in> T"
-    then obtain C D where "open C" "open D" "C \<times> D \<subseteq> T" "x \<in> C" "y \<in> D"
-      using \<open>open T\<close> unfolding open_prod_def by fast
-    then have "open C" "open D" "C \<subseteq> A" "D \<subseteq> B" "x \<in> C" "y \<in> D"
-      using \<open>T \<subseteq> A \<times> B\<close> by auto
-    then show "x \<in> interior A" and "y \<in> interior B"
-      by (auto intro: interiorI)
-  qed
-qed
-
-lemma interior_Ici:
-  fixes x :: "'a :: {dense_linorder, linorder_topology}"
-  assumes "b < x"
-  shows "interior { x ..} = { x <..}"
-proof (rule interior_unique)
-  fix T assume "T \<subseteq> {x ..}" "open T"
-  moreover have "x \<notin> T"
-  proof
-    assume "x \<in> T"
-    obtain y where "y < x" "{y <.. x} \<subseteq> T"
-      using open_left[OF \<open>open T\<close> \<open>x \<in> T\<close> \<open>b < x\<close>] by auto
-    with dense[OF \<open>y < x\<close>] obtain z where "z \<in> T" "z < x"
-      by (auto simp: subset_eq Ball_def)
-    with \<open>T \<subseteq> {x ..}\<close> show False by auto
-  qed
-  ultimately show "T \<subseteq> {x <..}"
-    by (auto simp: subset_eq less_le)
-qed auto
-
-lemma interior_Iic:
-  fixes x :: "'a :: {dense_linorder, linorder_topology}"
-  assumes "x < b"
-  shows "interior {.. x} = {..< x}"
-proof (rule interior_unique)
-  fix T assume "T \<subseteq> {.. x}" "open T"
-  moreover have "x \<notin> T"
-  proof
-    assume "x \<in> T"
-    obtain y where "x < y" "{x ..< y} \<subseteq> T"
-      using open_right[OF \<open>open T\<close> \<open>x \<in> T\<close> \<open>x < b\<close>] by auto
-    with dense[OF \<open>x < y\<close>] obtain z where "z \<in> T" "x < z"
-      by (auto simp: subset_eq Ball_def less_le)
-    with \<open>T \<subseteq> {.. x}\<close> show False by auto
-  qed
-  ultimately show "T \<subseteq> {..< x}"
-    by (auto simp: subset_eq less_le)
-qed auto
-
-subsection \<open>Closure of a Set\<close>
-
-definition "closure S = S \<union> {x | x. x islimpt S}"
-
-lemma interior_closure: "interior S = - (closure (- S))"
-  unfolding interior_def closure_def islimpt_def by auto
-
-lemma closure_interior: "closure S = - interior (- S)"
-  unfolding interior_closure by simp
-
-lemma closed_closure[simp, intro]: "closed (closure S)"
-  unfolding closure_interior by (simp add: closed_Compl)
-
-lemma closure_subset: "S \<subseteq> closure S"
-  unfolding closure_def by simp
-
-lemma closure_hull: "closure S = closed hull S"
-  unfolding hull_def closure_interior interior_def by auto
-
-lemma closure_eq: "closure S = S \<longleftrightarrow> closed S"
-  unfolding closure_hull using closed_Inter by (rule hull_eq)
-
-lemma closure_closed [simp]: "closed S \<Longrightarrow> closure S = S"
-  unfolding closure_eq .
-
-lemma closure_closure [simp]: "closure (closure S) = closure S"
-  unfolding closure_hull by (rule hull_hull)
-
-lemma closure_mono: "S \<subseteq> T \<Longrightarrow> closure S \<subseteq> closure T"
-  unfolding closure_hull by (rule hull_mono)
-
-lemma closure_minimal: "S \<subseteq> T \<Longrightarrow> closed T \<Longrightarrow> closure S \<subseteq> T"
-  unfolding closure_hull by (rule hull_minimal)
-
-lemma closure_unique:
-  assumes "S \<subseteq> T"
-    and "closed T"
-    and "\<And>T'. S \<subseteq> T' \<Longrightarrow> closed T' \<Longrightarrow> T \<subseteq> T'"
-  shows "closure S = T"
-  using assms unfolding closure_hull by (rule hull_unique)
-
-lemma closure_empty [simp]: "closure {} = {}"
-  using closed_empty by (rule closure_closed)
-
-lemma closure_UNIV [simp]: "closure UNIV = UNIV"
-  using closed_UNIV by (rule closure_closed)
-
-lemma closure_union [simp]: "closure (S \<union> T) = closure S \<union> closure T"
-  unfolding closure_interior by simp
-
-lemma closure_eq_empty [iff]: "closure S = {} \<longleftrightarrow> S = {}"
-  using closure_empty closure_subset[of S]
-  by blast
-
-lemma closure_subset_eq: "closure S \<subseteq> S \<longleftrightarrow> closed S"
-  using closure_eq[of S] closure_subset[of S]
-  by simp
-
-lemma open_Int_closure_eq_empty:
-  "open S \<Longrightarrow> (S \<inter> closure T) = {} \<longleftrightarrow> S \<inter> T = {}"
-  using open_subset_interior[of S "- T"]
-  using interior_subset[of "- T"]
-  unfolding closure_interior
-  by auto
-
-lemma open_Int_closure_subset:
-  "open S \<Longrightarrow> (S \<inter> (closure T)) \<subseteq> closure(S \<inter> T)"
-proof
-  fix x
-  assume as: "open S" "x \<in> S \<inter> closure T"
-  {
-    assume *: "x islimpt T"
-    have "x islimpt (S \<inter> T)"
-    proof (rule islimptI)
-      fix A
-      assume "x \<in> A" "open A"
-      with as have "x \<in> A \<inter> S" "open (A \<inter> S)"
-        by (simp_all add: open_Int)
-      with * obtain y where "y \<in> T" "y \<in> A \<inter> S" "y \<noteq> x"
-        by (rule islimptE)
-      then have "y \<in> S \<inter> T" "y \<in> A \<and> y \<noteq> x"
-        by simp_all
-      then show "\<exists>y\<in>(S \<inter> T). y \<in> A \<and> y \<noteq> x" ..
-    qed
-  }
-  then show "x \<in> closure (S \<inter> T)" using as
-    unfolding closure_def
-    by blast
-qed
-
-lemma closure_complement: "closure (- S) = - interior S"
-  unfolding closure_interior by simp
-
-lemma interior_complement: "interior (- S) = - closure S"
-  unfolding closure_interior by simp
-
-lemma closure_Times: "closure (A \<times> B) = closure A \<times> closure B"
-proof (rule closure_unique)
-  show "A \<times> B \<subseteq> closure A \<times> closure B"
-    by (intro Sigma_mono closure_subset)
-  show "closed (closure A \<times> closure B)"
-    by (intro closed_Times closed_closure)
-  fix T
-  assume "A \<times> B \<subseteq> T" and "closed T"
-  then show "closure A \<times> closure B \<subseteq> T"
-    apply (simp add: closed_def open_prod_def, clarify)
-    apply (rule ccontr)
-    apply (drule_tac x="(a, b)" in bspec, simp, clarify, rename_tac C D)
-    apply (simp add: closure_interior interior_def)
-    apply (drule_tac x=C in spec)
-    apply (drule_tac x=D in spec)
-    apply auto
-    done
-qed
-
-lemma islimpt_in_closure: "(x islimpt S) = (x:closure(S-{x}))"
-  unfolding closure_def using islimpt_punctured by blast
-
-lemma connected_imp_connected_closure: "connected S \<Longrightarrow> connected (closure S)"
-    by (rule connectedI) (meson closure_subset open_Int open_Int_closure_eq_empty subset_trans connectedD)
-
-lemma limpt_of_limpts:
-      fixes x :: "'a::metric_space"
-      shows "x islimpt {y. y islimpt S} \<Longrightarrow> x islimpt S"
-  apply (clarsimp simp add: islimpt_approachable)
-  apply (drule_tac x="e/2" in spec)
-  apply (auto simp: simp del: less_divide_eq_numeral1)
-  apply (drule_tac x="dist x' x" in spec)
-  apply (auto simp: zero_less_dist_iff simp del: less_divide_eq_numeral1)
-  apply (erule rev_bexI)
-  by (metis dist_commute dist_triangle_half_r less_trans less_irrefl)
-
-lemma closed_limpts:  "closed {x::'a::metric_space. x islimpt S}"
-  using closed_limpt limpt_of_limpts by blast
-
-lemma limpt_of_closure:
-      fixes x :: "'a::metric_space"
-      shows "x islimpt closure S \<longleftrightarrow> x islimpt S"
-  by (auto simp: closure_def islimpt_Un dest: limpt_of_limpts)
-
-lemma closedin_limpt:
-   "closedin (subtopology euclidean T) S \<longleftrightarrow> S \<subseteq> T \<and> (\<forall>x. x islimpt S \<and> x \<in> T \<longrightarrow> x \<in> S)"
-  apply (simp add: closedin_closed, safe)
-  apply (simp add: closed_limpt islimpt_subset)
-  apply (rule_tac x="closure S" in exI)
-  apply simp
-  apply (force simp: closure_def)
-  done
-
-lemma closedin_closed_eq:
-    "closed S \<Longrightarrow> (closedin (subtopology euclidean S) T \<longleftrightarrow> closed T \<and> T \<subseteq> S)"
-  by (meson closedin_limpt closed_subset closedin_closed_trans)
-
-lemma closedin_subset_trans:
-   "\<lbrakk>closedin (subtopology euclidean U) S; S \<subseteq> T; T \<subseteq> U\<rbrakk>
-    \<Longrightarrow> closedin (subtopology euclidean T) S"
-by (meson closedin_limpt subset_iff)
-
-lemma openin_subset_trans:
-    "\<lbrakk>openin (subtopology euclidean U) S; S \<subseteq> T; T \<subseteq> U\<rbrakk>
-     \<Longrightarrow> openin (subtopology euclidean T) S"
-  by (auto simp: openin_open)
-
-lemma closedin_Times:
-   "\<lbrakk>closedin (subtopology euclidean S) S'; closedin (subtopology euclidean T) T'\<rbrakk>
-    \<Longrightarrow> closedin (subtopology euclidean (S \<times> T)) (S' \<times> T')"
-unfolding closedin_closed using closed_Times by blast
-
-lemma bdd_below_closure:
-  fixes A :: "real set"
-  assumes "bdd_below A"
-  shows "bdd_below (closure A)"
-proof -
-  from assms obtain m where "\<And>x. x \<in> A \<Longrightarrow> m \<le> x" unfolding bdd_below_def by auto
-  hence "A \<subseteq> {m..}" by auto
-  hence "closure A \<subseteq> {m..}" using closed_real_atLeast by (rule closure_minimal)
-  thus ?thesis unfolding bdd_below_def by auto
-qed
-
-subsection\<open>Connected components, considered as a connectedness relation or a set\<close>
-
-definition
-   "connected_component s x y \<equiv> \<exists>t. connected t \<and> t \<subseteq> s \<and> x \<in> t \<and> y \<in> t"
-
-abbreviation
-   "connected_component_set s x \<equiv> Collect (connected_component s x)"
-
-lemma connected_componentI:
-    "\<lbrakk>connected t; t \<subseteq> s; x \<in> t; y \<in> t\<rbrakk> \<Longrightarrow> connected_component s x y"
-  by (auto simp: connected_component_def)
-
-lemma connected_component_in: "connected_component s x y \<Longrightarrow> x \<in> s \<and> y \<in> s"
-  by (auto simp: connected_component_def)
-
-lemma connected_component_refl: "x \<in> s \<Longrightarrow> connected_component s x x"
-  apply (auto simp: connected_component_def)
-  using connected_sing by blast
-
-lemma connected_component_refl_eq [simp]: "connected_component s x x \<longleftrightarrow> x \<in> s"
-  by (auto simp: connected_component_refl) (auto simp: connected_component_def)
-
-lemma connected_component_sym: "connected_component s x y \<Longrightarrow> connected_component s y x"
-  by (auto simp: connected_component_def)
-
-lemma connected_component_trans:
-    "\<lbrakk>connected_component s x y; connected_component s y z\<rbrakk> \<Longrightarrow> connected_component s x z"
-  unfolding connected_component_def
-  by (metis Int_iff Un_iff Un_subset_iff equals0D connected_Un)
-
-lemma connected_component_of_subset: "\<lbrakk>connected_component s x y; s \<subseteq> t\<rbrakk> \<Longrightarrow> connected_component t x y"
-  by (auto simp: connected_component_def)
-
-lemma connected_component_Union: "connected_component_set s x = \<Union>{t. connected t \<and> x \<in> t \<and> t \<subseteq> s}"
-  by (auto simp: connected_component_def)
-
-lemma connected_connected_component [iff]: "connected (connected_component_set s x)"
-  by (auto simp: connected_component_Union intro: connected_Union)
-
-lemma connected_iff_eq_connected_component_set: "connected s \<longleftrightarrow> (\<forall>x \<in> s. connected_component_set s x = s)"
-proof (cases "s={}")
-  case True then show ?thesis by simp
-next
-  case False
-  then obtain x where "x \<in> s" by auto
-  show ?thesis
-  proof
-    assume "connected s"
-    then show "\<forall>x \<in> s. connected_component_set s x = s"
-      by (force simp: connected_component_def)
-  next
-    assume "\<forall>x \<in> s. connected_component_set s x = s"
-    then show "connected s"
-      by (metis \<open>x \<in> s\<close> connected_connected_component)
-  qed
-qed
-
-lemma connected_component_subset: "connected_component_set s x \<subseteq> s"
-  using connected_component_in by blast
-
-lemma connected_component_eq_self: "\<lbrakk>connected s; x \<in> s\<rbrakk> \<Longrightarrow> connected_component_set s x = s"
-  by (simp add: connected_iff_eq_connected_component_set)
-
-lemma connected_iff_connected_component:
-    "connected s \<longleftrightarrow> (\<forall>x \<in> s. \<forall>y \<in> s. connected_component s x y)"
-  using connected_component_in by (auto simp: connected_iff_eq_connected_component_set)
-
-lemma connected_component_maximal:
-    "\<lbrakk>x \<in> t; connected t; t \<subseteq> s\<rbrakk> \<Longrightarrow> t \<subseteq> (connected_component_set s x)"
-  using connected_component_eq_self connected_component_of_subset by blast
-
-lemma connected_component_mono:
-    "s \<subseteq> t \<Longrightarrow> (connected_component_set s x) \<subseteq> (connected_component_set t x)"
-  by (simp add: Collect_mono connected_component_of_subset)
-
-lemma connected_component_eq_empty [simp]: "connected_component_set s x = {} \<longleftrightarrow> (x \<notin> s)"
-  using connected_component_refl by (fastforce simp: connected_component_in)
-
-lemma connected_component_set_empty [simp]: "connected_component_set {} x = {}"
-  using connected_component_eq_empty by blast
-
-lemma connected_component_eq:
-    "y \<in> connected_component_set s x
-     \<Longrightarrow> (connected_component_set s y = connected_component_set s x)"
-  by (metis (no_types, lifting) Collect_cong connected_component_sym connected_component_trans mem_Collect_eq)
-
-lemma closed_connected_component:
-  assumes s: "closed s" shows "closed (connected_component_set s x)"
-proof (cases "x \<in> s")
-  case False then show ?thesis
-    by (metis connected_component_eq_empty closed_empty)
-next
-  case True
-  show ?thesis
-    unfolding closure_eq [symmetric]
-    proof
-      show "closure (connected_component_set s x) \<subseteq> connected_component_set s x"
-        apply (rule connected_component_maximal)
-        apply (simp add: closure_def True)
-        apply (simp add: connected_imp_connected_closure)
-        apply (simp add: s closure_minimal connected_component_subset)
-        done
-    next
-      show "connected_component_set s x \<subseteq> closure (connected_component_set s x)"
-        by (simp add: closure_subset)
-  qed
-qed
-
-lemma connected_component_disjoint:
-    "(connected_component_set s a) \<inter> (connected_component_set s b) = {} \<longleftrightarrow>
-     a \<notin> connected_component_set s b"
-apply (auto simp: connected_component_eq)
-using connected_component_eq connected_component_sym by blast
-
-lemma connected_component_nonoverlap:
-    "(connected_component_set s a) \<inter> (connected_component_set s b) = {} \<longleftrightarrow>
-     (a \<notin> s \<or> b \<notin> s \<or> connected_component_set s a \<noteq> connected_component_set s b)"
-  apply (auto simp: connected_component_in)
-  using connected_component_refl_eq apply blast
-  apply (metis connected_component_eq mem_Collect_eq)
-  apply (metis connected_component_eq mem_Collect_eq)
-  done
-
-lemma connected_component_overlap:
-    "(connected_component_set s a \<inter> connected_component_set s b \<noteq> {}) =
-     (a \<in> s \<and> b \<in> s \<and> connected_component_set s a = connected_component_set s b)"
-  by (auto simp: connected_component_nonoverlap)
-
-lemma connected_component_sym_eq: "connected_component s x y \<longleftrightarrow> connected_component s y x"
-  using connected_component_sym by blast
-
-lemma connected_component_eq_eq:
-    "connected_component_set s x = connected_component_set s y \<longleftrightarrow>
-     x \<notin> s \<and> y \<notin> s \<or> x \<in> s \<and> y \<in> s \<and> connected_component s x y"
-  apply (case_tac "y \<in> s")
-   apply (simp add:)
-   apply (metis connected_component_eq connected_component_eq_empty connected_component_refl_eq mem_Collect_eq)
-  apply (case_tac "x \<in> s")
-   apply (simp add:)
-   apply (metis connected_component_eq_empty)
-  using connected_component_eq_empty by blast
-
-lemma connected_iff_connected_component_eq:
-    "connected s \<longleftrightarrow>
-       (\<forall>x \<in> s. \<forall>y \<in> s. connected_component_set s x = connected_component_set s y)"
-  by (simp add: connected_component_eq_eq connected_iff_connected_component)
-
-lemma connected_component_idemp:
-    "connected_component_set (connected_component_set s x) x = connected_component_set s x"
-apply (rule subset_antisym)
-apply (simp add: connected_component_subset)
-by (metis connected_component_eq_empty connected_component_maximal connected_component_refl_eq connected_connected_component mem_Collect_eq set_eq_subset)
-
-lemma connected_component_unique:
-  "\<lbrakk>x \<in> c; c \<subseteq> s; connected c;
-    \<And>c'. x \<in> c' \<and> c' \<subseteq> s \<and> connected c'
-              \<Longrightarrow> c' \<subseteq> c\<rbrakk>
-        \<Longrightarrow> connected_component_set s x = c"
-apply (rule subset_antisym)
-apply (meson connected_component_maximal connected_component_subset connected_connected_component contra_subsetD)
-by (simp add: connected_component_maximal)
-
-lemma joinable_connected_component_eq:
-  "\<lbrakk>connected t; t \<subseteq> s;
-    connected_component_set s x \<inter> t \<noteq> {};
-    connected_component_set s y \<inter> t \<noteq> {}\<rbrakk>
-    \<Longrightarrow> connected_component_set s x = connected_component_set s y"
-apply (simp add: ex_in_conv [symmetric])
-apply (rule connected_component_eq)
-by (metis (no_types, hide_lams) connected_component_eq_eq connected_component_in connected_component_maximal subsetD mem_Collect_eq)
-
-
-lemma Union_connected_component: "\<Union>(connected_component_set s ` s) = s"
-  apply (rule subset_antisym)
-  apply (simp add: SUP_least connected_component_subset)
-  using connected_component_refl_eq
-  by force
-
-
-lemma complement_connected_component_unions:
-    "s - connected_component_set s x =
-     \<Union>(connected_component_set s ` s - {connected_component_set s x})"
-  apply (subst Union_connected_component [symmetric], auto)
-  apply (metis connected_component_eq_eq connected_component_in)
-  by (metis connected_component_eq mem_Collect_eq)
-
-lemma connected_component_intermediate_subset:
-        "\<lbrakk>connected_component_set u a \<subseteq> t; t \<subseteq> u\<rbrakk>
-        \<Longrightarrow> connected_component_set t a = connected_component_set u a"
-  apply (case_tac "a \<in> u")
-  apply (simp add: connected_component_maximal connected_component_mono subset_antisym)
-  using connected_component_eq_empty by blast
-
-subsection\<open>The set of connected components of a set\<close>
-
-definition components:: "'a::topological_space set \<Rightarrow> 'a set set" where
-  "components s \<equiv> connected_component_set s ` s"
-
-lemma components_iff: "s \<in> components u \<longleftrightarrow> (\<exists>x. x \<in> u \<and> s = connected_component_set u x)"
-  by (auto simp: components_def)
-
-lemma componentsI: "x \<in> u \<Longrightarrow> connected_component_set u x \<in> components u"
-  by (auto simp: components_def)
-
-lemma componentsE:
-  assumes "s \<in> components u"
-  obtains x where "x \<in> u" "s = connected_component_set u x"
-  using assms by (auto simp: components_def)
-
-lemma Union_components [simp]: "\<Union>(components u) = u"
-  apply (rule subset_antisym)
-  using Union_connected_component components_def apply fastforce
-  apply (metis Union_connected_component components_def set_eq_subset)
-  done
-
-lemma pairwise_disjoint_components: "pairwise (\<lambda>X Y. X \<inter> Y = {}) (components u)"
-  apply (simp add: pairwise_def)
-  apply (auto simp: components_iff)
-  apply (metis connected_component_eq_eq connected_component_in)+
-  done
-
-lemma in_components_nonempty: "c \<in> components s \<Longrightarrow> c \<noteq> {}"
-    by (metis components_iff connected_component_eq_empty)
-
-lemma in_components_subset: "c \<in> components s \<Longrightarrow> c \<subseteq> s"
-  using Union_components by blast
-
-lemma in_components_connected: "c \<in> components s \<Longrightarrow> connected c"
-  by (metis components_iff connected_connected_component)
-
-lemma in_components_maximal:
-     "c \<in> components s \<longleftrightarrow>
-      (c \<noteq> {} \<and> c \<subseteq> s \<and> connected c \<and> (\<forall>d. d \<noteq> {} \<and> c \<subseteq> d \<and> d \<subseteq> s \<and> connected d \<longrightarrow> d = c))"
-  apply (rule iffI)
-  apply (simp add: in_components_nonempty in_components_connected)
-  apply (metis (full_types) components_iff connected_component_eq_self connected_component_intermediate_subset connected_component_refl in_components_subset mem_Collect_eq rev_subsetD)
-  by (metis bot.extremum_uniqueI components_iff connected_component_eq_empty connected_component_maximal connected_component_subset connected_connected_component subset_emptyI)
-
-lemma joinable_components_eq:
-    "connected t \<and> t \<subseteq> s \<and> c1 \<in> components s \<and> c2 \<in> components s \<and> c1 \<inter> t \<noteq> {} \<and> c2 \<inter> t \<noteq> {} \<Longrightarrow> c1 = c2"
-  by (metis (full_types) components_iff joinable_connected_component_eq)
-
-lemma closed_components: "\<lbrakk>closed s; c \<in> components s\<rbrakk> \<Longrightarrow> closed c"
-  by (metis closed_connected_component components_iff)
-
-lemma components_nonoverlap:
-    "\<lbrakk>c \<in> components s; c' \<in> components s\<rbrakk> \<Longrightarrow> (c \<inter> c' = {}) \<longleftrightarrow> (c \<noteq> c')"
-  apply (auto simp: in_components_nonempty components_iff)
-    using connected_component_refl apply blast
-   apply (metis connected_component_eq_eq connected_component_in)
-  by (metis connected_component_eq mem_Collect_eq)
-
-lemma components_eq: "\<lbrakk>c \<in> components s; c' \<in> components s\<rbrakk> \<Longrightarrow> (c = c' \<longleftrightarrow> c \<inter> c' \<noteq> {})"
-  by (metis components_nonoverlap)
-
-lemma components_eq_empty [simp]: "components s = {} \<longleftrightarrow> s = {}"
-  by (simp add: components_def)
-
-lemma components_empty [simp]: "components {} = {}"
-  by simp
-
-lemma connected_eq_connected_components_eq: "connected s \<longleftrightarrow> (\<forall>c \<in> components s. \<forall>c' \<in> components s. c = c')"
-  by (metis (no_types, hide_lams) components_iff connected_component_eq_eq connected_iff_connected_component)
-
-lemma components_eq_sing_iff: "components s = {s} \<longleftrightarrow> connected s \<and> s \<noteq> {}"
-  apply (rule iffI)
-   using in_components_connected apply fastforce
-  apply safe
-    using Union_components apply fastforce
-   apply (metis components_iff connected_component_eq_self)
-  using in_components_maximal by auto
-
-lemma components_eq_sing_exists: "(\<exists>a. components s = {a}) \<longleftrightarrow> connected s \<and> s \<noteq> {}"
-  apply (rule iffI)
-   using connected_eq_connected_components_eq apply fastforce
-  by (metis components_eq_sing_iff)
-
-lemma connected_eq_components_subset_sing: "connected s \<longleftrightarrow> components s \<subseteq> {s}"
-  by (metis Union_components components_empty components_eq_sing_iff connected_empty insert_subset order_refl subset_singletonD)
-
-lemma connected_eq_components_subset_sing_exists: "connected s \<longleftrightarrow> (\<exists>a. components s \<subseteq> {a})"
-  by (metis components_eq_sing_exists connected_eq_components_subset_sing empty_iff subset_iff subset_singletonD)
-
-lemma in_components_self: "s \<in> components s \<longleftrightarrow> connected s \<and> s \<noteq> {}"
-  by (metis components_empty components_eq_sing_iff empty_iff in_components_connected insertI1)
-
-lemma components_maximal: "\<lbrakk>c \<in> components s; connected t; t \<subseteq> s; c \<inter> t \<noteq> {}\<rbrakk> \<Longrightarrow> t \<subseteq> c"
-  apply (simp add: components_def ex_in_conv [symmetric], clarify)
-  by (meson connected_component_def connected_component_trans)
-
-lemma exists_component_superset: "\<lbrakk>t \<subseteq> s; s \<noteq> {}; connected t\<rbrakk> \<Longrightarrow> \<exists>c. c \<in> components s \<and> t \<subseteq> c"
-  apply (case_tac "t = {}")
-   apply force
-  by (metis components_def ex_in_conv connected_component_maximal contra_subsetD image_eqI)
-
-lemma components_intermediate_subset: "\<lbrakk>s \<in> components u; s \<subseteq> t; t \<subseteq> u\<rbrakk> \<Longrightarrow> s \<in> components t"
-  apply (auto simp: components_iff)
-  by (metis connected_component_eq_empty connected_component_intermediate_subset)
-
-lemma in_components_unions_complement: "c \<in> components s \<Longrightarrow> s - c = \<Union>(components s - {c})"
-  by (metis complement_connected_component_unions components_def components_iff)
-
-lemma connected_intermediate_closure:
-  assumes cs: "connected s" and st: "s \<subseteq> t" and ts: "t \<subseteq> closure s"
-    shows "connected t"
-proof (rule connectedI)
-  fix A B
-  assume A: "open A" and B: "open B" and Alap: "A \<inter> t \<noteq> {}" and Blap: "B \<inter> t \<noteq> {}"
-     and disj: "A \<inter> B \<inter> t = {}" and cover: "t \<subseteq> A \<union> B"
-  have disjs: "A \<inter> B \<inter> s = {}"
-    using disj st by auto
-  have "A \<inter> closure s \<noteq> {}"
-    using Alap Int_absorb1 ts by blast
-  then have Alaps: "A \<inter> s \<noteq> {}"
-    by (simp add: A open_Int_closure_eq_empty)
-  have "B \<inter> closure s \<noteq> {}"
-    using Blap Int_absorb1 ts by blast
-  then have Blaps: "B \<inter> s \<noteq> {}"
-    by (simp add: B open_Int_closure_eq_empty)
-  then show False
-    using cs [unfolded connected_def] A B disjs Alaps Blaps cover st
-    by blast
-qed
-
-lemma closedin_connected_component: "closedin (subtopology euclidean s) (connected_component_set s x)"
-proof (cases "connected_component_set s x = {}")
-  case True then show ?thesis
-    by (metis closedin_empty)
-next
-  case False
-  then obtain y where y: "connected_component s x y"
-    by blast
-  have 1: "connected_component_set s x \<subseteq> s \<inter> closure (connected_component_set s x)"
-    by (auto simp: closure_def connected_component_in)
-  have 2: "connected_component s x y \<Longrightarrow> s \<inter> closure (connected_component_set s x) \<subseteq> connected_component_set s x"
-    apply (rule connected_component_maximal)
-    apply (simp add:)
-    using closure_subset connected_component_in apply fastforce
-    using "1" connected_intermediate_closure apply blast+
-    done
-  show ?thesis using y
-    apply (simp add: Topology_Euclidean_Space.closedin_closed)
-    using 1 2 by auto
-qed
-
-subsection \<open>Frontier (aka boundary)\<close>
-
-definition "frontier S = closure S - interior S"
-
-lemma frontier_closed [iff]: "closed (frontier S)"
-  by (simp add: frontier_def closed_Diff)
-
-lemma frontier_closures: "frontier S = (closure S) \<inter> (closure(- S))"
-  by (auto simp add: frontier_def interior_closure)
-
-lemma frontier_straddle:
-  fixes a :: "'a::metric_space"
-  shows "a \<in> frontier S \<longleftrightarrow> (\<forall>e>0. (\<exists>x\<in>S. dist a x < e) \<and> (\<exists>x. x \<notin> S \<and> dist a x < e))"
-  unfolding frontier_def closure_interior
-  by (auto simp add: mem_interior subset_eq ball_def)
-
-lemma frontier_subset_closed: "closed S \<Longrightarrow> frontier S \<subseteq> S"
-  by (metis frontier_def closure_closed Diff_subset)
-
-lemma frontier_empty [simp]: "frontier {} = {}"
-  by (simp add: frontier_def)
-
-lemma frontier_subset_eq: "frontier S \<subseteq> S \<longleftrightarrow> closed S"
-proof -
-  {
-    assume "frontier S \<subseteq> S"
-    then have "closure S \<subseteq> S"
-      using interior_subset unfolding frontier_def by auto
-    then have "closed S"
-      using closure_subset_eq by auto
-  }
-  then show ?thesis using frontier_subset_closed[of S] ..
-qed
-
-lemma frontier_complement [simp]: "frontier (- S) = frontier S"
-  by (auto simp add: frontier_def closure_complement interior_complement)
-
-lemma frontier_disjoint_eq: "frontier S \<inter> S = {} \<longleftrightarrow> open S"
-  using frontier_complement frontier_subset_eq[of "- S"]
-  unfolding open_closed by auto
-
-lemma frontier_UNIV [simp]: "frontier UNIV = {}"
-  using frontier_complement frontier_empty by fastforce
-
-
-subsection \<open>Filters and the ``eventually true'' quantifier\<close>
-
-definition indirection :: "'a::real_normed_vector \<Rightarrow> 'a \<Rightarrow> 'a filter"
-    (infixr "indirection" 70)
-  where "a indirection v = at a within {b. \<exists>c\<ge>0. b - a = scaleR c v}"
-
-text \<open>Identify Trivial limits, where we can't approach arbitrarily closely.\<close>
-
-lemma trivial_limit_within: "trivial_limit (at a within S) \<longleftrightarrow> \<not> a islimpt S"
-proof
-  assume "trivial_limit (at a within S)"
-  then show "\<not> a islimpt S"
-    unfolding trivial_limit_def
-    unfolding eventually_at_topological
-    unfolding islimpt_def
-    apply (clarsimp simp add: set_eq_iff)
-    apply (rename_tac T, rule_tac x=T in exI)
-    apply (clarsimp, drule_tac x=y in bspec, simp_all)
-    done
-next
-  assume "\<not> a islimpt S"
-  then show "trivial_limit (at a within S)"
-    unfolding trivial_limit_def eventually_at_topological islimpt_def
-    by metis
-qed
-
-lemma trivial_limit_at_iff: "trivial_limit (at a) \<longleftrightarrow> \<not> a islimpt UNIV"
-  using trivial_limit_within [of a UNIV] by simp
-
-lemma trivial_limit_at:
-  fixes a :: "'a::perfect_space"
-  shows "\<not> trivial_limit (at a)"
-  by (rule at_neq_bot)
-
-lemma trivial_limit_at_infinity:
-  "\<not> trivial_limit (at_infinity :: ('a::{real_normed_vector,perfect_space}) filter)"
-  unfolding trivial_limit_def eventually_at_infinity
-  apply clarsimp
-  apply (subgoal_tac "\<exists>x::'a. x \<noteq> 0", clarify)
-   apply (rule_tac x="scaleR (b / norm x) x" in exI, simp)
-  apply (cut_tac islimpt_UNIV [of "0::'a", unfolded islimpt_def])
-  apply (drule_tac x=UNIV in spec, simp)
-  done
-
-lemma not_trivial_limit_within: "\<not> trivial_limit (at x within S) = (x \<in> closure (S - {x}))"
-  using islimpt_in_closure
-  by (metis trivial_limit_within)
-
-lemma at_within_eq_bot_iff: "(at c within A = bot) \<longleftrightarrow> (c \<notin> closure (A - {c}))"
-  using not_trivial_limit_within[of c A] by blast
-
-text \<open>Some property holds "sufficiently close" to the limit point.\<close>
-
-lemma trivial_limit_eventually: "trivial_limit net \<Longrightarrow> eventually P net"
-  by simp
-
-lemma trivial_limit_eq: "trivial_limit net \<longleftrightarrow> (\<forall>P. eventually P net)"
-  by (simp add: filter_eq_iff)
-
-
-subsection \<open>Limits\<close>
-
-lemma Lim:
-  "(f \<longlongrightarrow> l) net \<longleftrightarrow>
-        trivial_limit net \<or>
-        (\<forall>e>0. eventually (\<lambda>x. dist (f x) l < e) net)"
-  unfolding tendsto_iff trivial_limit_eq by auto
-
-text\<open>Show that they yield usual definitions in the various cases.\<close>
-
-lemma Lim_within_le: "(f \<longlongrightarrow> l)(at a within S) \<longleftrightarrow>
-    (\<forall>e>0. \<exists>d>0. \<forall>x\<in>S. 0 < dist x a \<and> dist x a \<le> d \<longrightarrow> dist (f x) l < e)"
-  by (auto simp add: tendsto_iff eventually_at_le)
-
-lemma Lim_within: "(f \<longlongrightarrow> l) (at a within S) \<longleftrightarrow>
-    (\<forall>e >0. \<exists>d>0. \<forall>x \<in> S. 0 < dist x a \<and> dist x a  < d \<longrightarrow> dist (f x) l < e)"
-  by (auto simp add: tendsto_iff eventually_at)
-
-corollary Lim_withinI [intro?]:
-  assumes "\<And>e. e > 0 \<Longrightarrow> \<exists>d>0. \<forall>x \<in> S. 0 < dist x a \<and> dist x a < d \<longrightarrow> dist (f x) l \<le> e"
-  shows "(f \<longlongrightarrow> l) (at a within S)"
-apply (simp add: Lim_within, clarify)
-apply (rule ex_forward [OF assms [OF half_gt_zero]], auto)
-done
-
-lemma Lim_at: "(f \<longlongrightarrow> l) (at a) \<longleftrightarrow>
-    (\<forall>e >0. \<exists>d>0. \<forall>x. 0 < dist x a \<and> dist x a < d  \<longrightarrow> dist (f x) l < e)"
-  by (auto simp add: tendsto_iff eventually_at)
-
-lemma Lim_at_infinity:
-  "(f \<longlongrightarrow> l) at_infinity \<longleftrightarrow> (\<forall>e>0. \<exists>b. \<forall>x. norm x \<ge> b \<longrightarrow> dist (f x) l < e)"
-  by (auto simp add: tendsto_iff eventually_at_infinity)
-
-corollary Lim_at_infinityI [intro?]:
-  assumes "\<And>e. e > 0 \<Longrightarrow> \<exists>B. \<forall>x. norm x \<ge> B \<longrightarrow> dist (f x) l \<le> e"
-  shows "(f \<longlongrightarrow> l) at_infinity"
-apply (simp add: Lim_at_infinity, clarify)
-apply (rule ex_forward [OF assms [OF half_gt_zero]], auto)
-done
-
-lemma Lim_eventually: "eventually (\<lambda>x. f x = l) net \<Longrightarrow> (f \<longlongrightarrow> l) net"
-  by (rule topological_tendstoI, auto elim: eventually_mono)
-
-lemma Lim_transform_within_set:
-  fixes a :: "'a::metric_space" and l :: "'b::metric_space"
-  shows "\<lbrakk>(f \<longlongrightarrow> l) (at a within S); eventually (\<lambda>x. x \<in> S \<longleftrightarrow> x \<in> T) (at a)\<rbrakk>
-         \<Longrightarrow> (f \<longlongrightarrow> l) (at a within T)"
-apply (clarsimp simp: eventually_at Lim_within)
-apply (drule_tac x=e in spec, clarify)
-apply (rename_tac k)
-apply (rule_tac x="min d k" in exI, simp)
-done
-
-lemma Lim_transform_within_set_eq:
-  fixes a l :: "'a::real_normed_vector"
-  shows "eventually (\<lambda>x. x \<in> s \<longleftrightarrow> x \<in> t) (at a)
-         \<Longrightarrow> ((f \<longlongrightarrow> l) (at a within s) \<longleftrightarrow> (f \<longlongrightarrow> l) (at a within t))"
-by (force intro: Lim_transform_within_set elim: eventually_mono)
-
-lemma Lim_transform_within_openin:
-  fixes a :: "'a::metric_space"
-  assumes f: "(f \<longlongrightarrow> l) (at a within T)"
-      and "openin (subtopology euclidean T) S" "a \<in> S"
-      and eq: "\<And>x. \<lbrakk>x \<in> S; x \<noteq> a\<rbrakk> \<Longrightarrow> f x = g x"
-  shows "(g \<longlongrightarrow> l) (at a within T)"
-proof -
-  obtain \<epsilon> where "0 < \<epsilon>" and \<epsilon>: "ball a \<epsilon> \<inter> T \<subseteq> S"
-    using assms by (force simp: openin_contains_ball)
-  then have "a \<in> ball a \<epsilon>"
-    by force
-  show ?thesis
-    apply (rule Lim_transform_within [OF f \<open>0 < \<epsilon>\<close> eq])
-    using \<epsilon> apply (auto simp: dist_commute subset_iff)
-    done
-qed
-
-lemma continuous_transform_within_openin:
-  fixes a :: "'a::metric_space"
-  assumes "continuous (at a within T) f"
-      and "openin (subtopology euclidean T) S" "a \<in> S"
-      and eq: "\<And>x. x \<in> S \<Longrightarrow> f x = g x"
-  shows "continuous (at a within T) g"
-using assms by (simp add: Lim_transform_within_openin continuous_within)
-
-text\<open>The expected monotonicity property.\<close>
-
-lemma Lim_Un:
-  assumes "(f \<longlongrightarrow> l) (at x within S)" "(f \<longlongrightarrow> l) (at x within T)"
-  shows "(f \<longlongrightarrow> l) (at x within (S \<union> T))"
-  using assms unfolding at_within_union by (rule filterlim_sup)
-
-lemma Lim_Un_univ:
-  "(f \<longlongrightarrow> l) (at x within S) \<Longrightarrow> (f \<longlongrightarrow> l) (at x within T) \<Longrightarrow>
-    S \<union> T = UNIV \<Longrightarrow> (f \<longlongrightarrow> l) (at x)"
-  by (metis Lim_Un)
-
-text\<open>Interrelations between restricted and unrestricted limits.\<close>
-
-lemma Lim_at_imp_Lim_at_within:
-  "(f \<longlongrightarrow> l) (at x) \<Longrightarrow> (f \<longlongrightarrow> l) (at x within S)"
-  by (metis order_refl filterlim_mono subset_UNIV at_le)
-
-lemma eventually_within_interior:
-  assumes "x \<in> interior S"
-  shows "eventually P (at x within S) \<longleftrightarrow> eventually P (at x)"
-  (is "?lhs = ?rhs")
-proof
-  from assms obtain T where T: "open T" "x \<in> T" "T \<subseteq> S" ..
-  {
-    assume "?lhs"
-    then obtain A where "open A" and "x \<in> A" and "\<forall>y\<in>A. y \<noteq> x \<longrightarrow> y \<in> S \<longrightarrow> P y"
-      unfolding eventually_at_topological
-      by auto
-    with T have "open (A \<inter> T)" and "x \<in> A \<inter> T" and "\<forall>y \<in> A \<inter> T. y \<noteq> x \<longrightarrow> P y"
-      by auto
-    then show "?rhs"
-      unfolding eventually_at_topological by auto
-  next
-    assume "?rhs"
-    then show "?lhs"
-      by (auto elim: eventually_mono simp: eventually_at_filter)
-  }
-qed
-
-lemma at_within_interior:
-  "x \<in> interior S \<Longrightarrow> at x within S = at x"
-  unfolding filter_eq_iff by (intro allI eventually_within_interior)
-
-lemma Lim_within_LIMSEQ:
-  fixes a :: "'a::first_countable_topology"
-  assumes "\<forall>S. (\<forall>n. S n \<noteq> a \<and> S n \<in> T) \<and> S \<longlonglongrightarrow> a \<longrightarrow> (\<lambda>n. X (S n)) \<longlonglongrightarrow> L"
-  shows "(X \<longlongrightarrow> L) (at a within T)"
-  using assms unfolding tendsto_def [where l=L]
-  by (simp add: sequentially_imp_eventually_within)
-
-lemma Lim_right_bound:
-  fixes f :: "'a :: {linorder_topology, conditionally_complete_linorder, no_top} \<Rightarrow>
-    'b::{linorder_topology, conditionally_complete_linorder}"
-  assumes mono: "\<And>a b. a \<in> I \<Longrightarrow> b \<in> I \<Longrightarrow> x < a \<Longrightarrow> a \<le> b \<Longrightarrow> f a \<le> f b"
-    and bnd: "\<And>a. a \<in> I \<Longrightarrow> x < a \<Longrightarrow> K \<le> f a"
-  shows "(f \<longlongrightarrow> Inf (f ` ({x<..} \<inter> I))) (at x within ({x<..} \<inter> I))"
-proof (cases "{x<..} \<inter> I = {}")
-  case True
-  then show ?thesis by simp
-next
-  case False
-  show ?thesis
-  proof (rule order_tendstoI)
-    fix a
-    assume a: "a < Inf (f ` ({x<..} \<inter> I))"
-    {
-      fix y
-      assume "y \<in> {x<..} \<inter> I"
-      with False bnd have "Inf (f ` ({x<..} \<inter> I)) \<le> f y"
-        by (auto intro!: cInf_lower bdd_belowI2)
-      with a have "a < f y"
-        by (blast intro: less_le_trans)
-    }
-    then show "eventually (\<lambda>x. a < f x) (at x within ({x<..} \<inter> I))"
-      by (auto simp: eventually_at_filter intro: exI[of _ 1] zero_less_one)
-  next
-    fix a
-    assume "Inf (f ` ({x<..} \<inter> I)) < a"
-    from cInf_lessD[OF _ this] False obtain y where y: "x < y" "y \<in> I" "f y < a"
-      by auto
-    then have "eventually (\<lambda>x. x \<in> I \<longrightarrow> f x < a) (at_right x)"
-      unfolding eventually_at_right[OF \<open>x < y\<close>] by (metis less_imp_le le_less_trans mono)
-    then show "eventually (\<lambda>x. f x < a) (at x within ({x<..} \<inter> I))"
-      unfolding eventually_at_filter by eventually_elim simp
-  qed
-qed
-
-text\<open>Another limit point characterization.\<close>
-
-lemma limpt_sequential_inj:
-  fixes x :: "'a::metric_space"
-  shows "x islimpt S \<longleftrightarrow>
-         (\<exists>f. (\<forall>n::nat. f n \<in> S - {x}) \<and> inj f \<and> (f \<longlongrightarrow> x) sequentially)"
-         (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then have "\<forall>e>0. \<exists>x'\<in>S. x' \<noteq> x \<and> dist x' x < e"
-    by (force simp: islimpt_approachable)
-  then obtain y where y: "\<And>e. e>0 \<Longrightarrow> y e \<in> S \<and> y e \<noteq> x \<and> dist (y e) x < e"
-    by metis
-  define f where "f \<equiv> rec_nat (y 1) (\<lambda>n fn. y (min (inverse(2 ^ (Suc n))) (dist fn x)))"
-  have [simp]: "f 0 = y 1"
-               "f(Suc n) = y (min (inverse(2 ^ (Suc n))) (dist (f n) x))" for n
-    by (simp_all add: f_def)
-  have f: "f n \<in> S \<and> (f n \<noteq> x) \<and> dist (f n) x < inverse(2 ^ n)" for n
-  proof (induction n)
-    case 0 show ?case
-      by (simp add: y)
-  next
-    case (Suc n) then show ?case
-      apply (auto simp: y)
-      by (metis half_gt_zero_iff inverse_positive_iff_positive less_divide_eq_numeral1(1) min_less_iff_conj y zero_less_dist_iff zero_less_numeral zero_less_power)
-  qed
-  show ?rhs
-  proof (rule_tac x=f in exI, intro conjI allI)
-    show "\<And>n. f n \<in> S - {x}"
-      using f by blast
-    have "dist (f n) x < dist (f m) x" if "m < n" for m n
-    using that
-    proof (induction n)
-      case 0 then show ?case by simp
-    next
-      case (Suc n)
-      then consider "m < n" | "m = n" using less_Suc_eq by blast
-      then show ?case
-      proof cases
-        assume "m < n"
-        have "dist (f(Suc n)) x = dist (y (min (inverse(2 ^ (Suc n))) (dist (f n) x))) x"
-          by simp
-        also have "... < dist (f n) x"
-          by (metis dist_pos_lt f min.strict_order_iff min_less_iff_conj y)
-        also have "... < dist (f m) x"
-          using Suc.IH \<open>m < n\<close> by blast
-        finally show ?thesis .
-      next
-        assume "m = n" then show ?case
-          by simp (metis dist_pos_lt f half_gt_zero_iff inverse_positive_iff_positive min_less_iff_conj y zero_less_numeral zero_less_power)
-      qed
-    qed
-    then show "inj f"
-      by (metis less_irrefl linorder_injI)
-    show "f \<longlonglongrightarrow> x"
-      apply (rule tendstoI)
-      apply (rule_tac c="nat (ceiling(1/e))" in eventually_sequentiallyI)
-      apply (rule less_trans [OF f [THEN conjunct2, THEN conjunct2]])
-      apply (simp add: field_simps)
-      by (meson le_less_trans mult_less_cancel_left not_le of_nat_less_two_power)
-  qed
-next
-  assume ?rhs
-  then show ?lhs
-    by (fastforce simp add: islimpt_approachable lim_sequentially)
-qed
-
-(*could prove directly from islimpt_sequential_inj, but only for metric spaces*)
-lemma islimpt_sequential:
-  fixes x :: "'a::first_countable_topology"
-  shows "x islimpt S \<longleftrightarrow> (\<exists>f. (\<forall>n::nat. f n \<in> S - {x}) \<and> (f \<longlongrightarrow> x) sequentially)"
-    (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  from countable_basis_at_decseq[of x] obtain A where A:
-      "\<And>i. open (A i)"
-      "\<And>i. x \<in> A i"
-      "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially"
-    by blast
-  define f where "f n = (SOME y. y \<in> S \<and> y \<in> A n \<and> x \<noteq> y)" for n
-  {
-    fix n
-    from \<open>?lhs\<close> have "\<exists>y. y \<in> S \<and> y \<in> A n \<and> x \<noteq> y"
-      unfolding islimpt_def using A(1,2)[of n] by auto
-    then have "f n \<in> S \<and> f n \<in> A n \<and> x \<noteq> f n"
-      unfolding f_def by (rule someI_ex)
-    then have "f n \<in> S" "f n \<in> A n" "x \<noteq> f n" by auto
-  }
-  then have "\<forall>n. f n \<in> S - {x}" by auto
-  moreover have "(\<lambda>n. f n) \<longlonglongrightarrow> x"
-  proof (rule topological_tendstoI)
-    fix S
-    assume "open S" "x \<in> S"
-    from A(3)[OF this] \<open>\<And>n. f n \<in> A n\<close>
-    show "eventually (\<lambda>x. f x \<in> S) sequentially"
-      by (auto elim!: eventually_mono)
-  qed
-  ultimately show ?rhs by fast
-next
-  assume ?rhs
-  then obtain f :: "nat \<Rightarrow> 'a" where f: "\<And>n. f n \<in> S - {x}" and lim: "f \<longlonglongrightarrow> x"
-    by auto
-  show ?lhs
-    unfolding islimpt_def
-  proof safe
-    fix T
-    assume "open T" "x \<in> T"
-    from lim[THEN topological_tendstoD, OF this] f
-    show "\<exists>y\<in>S. y \<in> T \<and> y \<noteq> x"
-      unfolding eventually_sequentially by auto
-  qed
-qed
-
-lemma Lim_null:
-  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
-  shows "(f \<longlongrightarrow> l) net \<longleftrightarrow> ((\<lambda>x. f(x) - l) \<longlongrightarrow> 0) net"
-  by (simp add: Lim dist_norm)
-
-lemma Lim_null_comparison:
-  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
-  assumes "eventually (\<lambda>x. norm (f x) \<le> g x) net" "(g \<longlongrightarrow> 0) net"
-  shows "(f \<longlongrightarrow> 0) net"
-  using assms(2)
-proof (rule metric_tendsto_imp_tendsto)
-  show "eventually (\<lambda>x. dist (f x) 0 \<le> dist (g x) 0) net"
-    using assms(1) by (rule eventually_mono) (simp add: dist_norm)
-qed
-
-lemma Lim_transform_bound:
-  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
-    and g :: "'a \<Rightarrow> 'c::real_normed_vector"
-  assumes "eventually (\<lambda>n. norm (f n) \<le> norm (g n)) net"
-    and "(g \<longlongrightarrow> 0) net"
-  shows "(f \<longlongrightarrow> 0) net"
-  using assms(1) tendsto_norm_zero [OF assms(2)]
-  by (rule Lim_null_comparison)
-
-lemma lim_null_mult_right_bounded:
-  fixes f :: "'a \<Rightarrow> 'b::real_normed_div_algebra"
-  assumes f: "(f \<longlongrightarrow> 0) F" and g: "eventually (\<lambda>x. norm(g x) \<le> B) F"
-    shows "((\<lambda>z. f z * g z) \<longlongrightarrow> 0) F"
-proof -
-  have *: "((\<lambda>x. norm (f x) * B) \<longlongrightarrow> 0) F"
-    by (simp add: f tendsto_mult_left_zero tendsto_norm_zero)
-  have "((\<lambda>x. norm (f x) * norm (g x)) \<longlongrightarrow> 0) F"
-    apply (rule Lim_null_comparison [OF _ *])
-    apply (simp add: eventually_mono [OF g] mult_left_mono)
-    done
-  then show ?thesis
-    by (subst tendsto_norm_zero_iff [symmetric]) (simp add: norm_mult)
-qed
-
-lemma lim_null_mult_left_bounded:
-  fixes f :: "'a \<Rightarrow> 'b::real_normed_div_algebra"
-  assumes g: "eventually (\<lambda>x. norm(g x) \<le> B) F" and f: "(f \<longlongrightarrow> 0) F"
-    shows "((\<lambda>z. g z * f z) \<longlongrightarrow> 0) F"
-proof -
-  have *: "((\<lambda>x. B * norm (f x)) \<longlongrightarrow> 0) F"
-    by (simp add: f tendsto_mult_right_zero tendsto_norm_zero)
-  have "((\<lambda>x. norm (g x) * norm (f x)) \<longlongrightarrow> 0) F"
-    apply (rule Lim_null_comparison [OF _ *])
-    apply (simp add: eventually_mono [OF g] mult_right_mono)
-    done
-  then show ?thesis
-    by (subst tendsto_norm_zero_iff [symmetric]) (simp add: norm_mult)
-qed
-
-lemma lim_null_scaleR_bounded:
-  assumes f: "(f \<longlongrightarrow> 0) net" and gB: "eventually (\<lambda>a. f a = 0 \<or> norm(g a) \<le> B) net"
-    shows "((\<lambda>n. f n *\<^sub>R g n) \<longlongrightarrow> 0) net"
-proof
-  fix \<epsilon>::real
-  assume "0 < \<epsilon>"
-  then have B: "0 < \<epsilon> / (abs B + 1)" by simp
-  have *: "\<bar>f x\<bar> * norm (g x) < \<epsilon>" if f: "\<bar>f x\<bar> * (\<bar>B\<bar> + 1) < \<epsilon>" and g: "norm (g x) \<le> B" for x
-  proof -
-    have "\<bar>f x\<bar> * norm (g x) \<le> \<bar>f x\<bar> * B"
-      by (simp add: mult_left_mono g)
-    also have "... \<le> \<bar>f x\<bar> * (\<bar>B\<bar> + 1)"
-      by (simp add: mult_left_mono)
-    also have "... < \<epsilon>"
-      by (rule f)
-    finally show ?thesis .
-  qed
-  show "\<forall>\<^sub>F x in net. dist (f x *\<^sub>R g x) 0 < \<epsilon>"
-    apply (rule eventually_mono [OF eventually_conj [OF tendstoD [OF f B] gB] ])
-    apply (auto simp: \<open>0 < \<epsilon>\<close> divide_simps * split: if_split_asm)
-    done
-qed
-
-text\<open>Deducing things about the limit from the elements.\<close>
-
-lemma Lim_in_closed_set:
-  assumes "closed S"
-    and "eventually (\<lambda>x. f(x) \<in> S) net"
-    and "\<not> trivial_limit net" "(f \<longlongrightarrow> l) net"
-  shows "l \<in> S"
-proof (rule ccontr)
-  assume "l \<notin> S"
-  with \<open>closed S\<close> have "open (- S)" "l \<in> - S"
-    by (simp_all add: open_Compl)
-  with assms(4) have "eventually (\<lambda>x. f x \<in> - S) net"
-    by (rule topological_tendstoD)
-  with assms(2) have "eventually (\<lambda>x. False) net"
-    by (rule eventually_elim2) simp
-  with assms(3) show "False"
-    by (simp add: eventually_False)
-qed
-
-text\<open>Need to prove closed(cball(x,e)) before deducing this as a corollary.\<close>
-
-lemma Lim_dist_ubound:
-  assumes "\<not>(trivial_limit net)"
-    and "(f \<longlongrightarrow> l) net"
-    and "eventually (\<lambda>x. dist a (f x) \<le> e) net"
-  shows "dist a l \<le> e"
-  using assms by (fast intro: tendsto_le tendsto_intros)
-
-lemma Lim_norm_ubound:
-  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
-  assumes "\<not>(trivial_limit net)" "(f \<longlongrightarrow> l) net" "eventually (\<lambda>x. norm(f x) \<le> e) net"
-  shows "norm(l) \<le> e"
-  using assms by (fast intro: tendsto_le tendsto_intros)
-
-lemma Lim_norm_lbound:
-  fixes f :: "'a \<Rightarrow> 'b::real_normed_vector"
-  assumes "\<not> trivial_limit net"
-    and "(f \<longlongrightarrow> l) net"
-    and "eventually (\<lambda>x. e \<le> norm (f x)) net"
-  shows "e \<le> norm l"
-  using assms by (fast intro: tendsto_le tendsto_intros)
-
-text\<open>Limit under bilinear function\<close>
-
-lemma Lim_bilinear:
-  assumes "(f \<longlongrightarrow> l) net"
-    and "(g \<longlongrightarrow> m) net"
-    and "bounded_bilinear h"
-  shows "((\<lambda>x. h (f x) (g x)) \<longlongrightarrow> (h l m)) net"
-  using \<open>bounded_bilinear h\<close> \<open>(f \<longlongrightarrow> l) net\<close> \<open>(g \<longlongrightarrow> m) net\<close>
-  by (rule bounded_bilinear.tendsto)
-
-text\<open>These are special for limits out of the same vector space.\<close>
-
-lemma Lim_within_id: "(id \<longlongrightarrow> a) (at a within s)"
-  unfolding id_def by (rule tendsto_ident_at)
-
-lemma Lim_at_id: "(id \<longlongrightarrow> a) (at a)"
-  unfolding id_def by (rule tendsto_ident_at)
-
-lemma Lim_at_zero:
-  fixes a :: "'a::real_normed_vector"
-    and l :: "'b::topological_space"
-  shows "(f \<longlongrightarrow> l) (at a) \<longleftrightarrow> ((\<lambda>x. f(a + x)) \<longlongrightarrow> l) (at 0)"
-  using LIM_offset_zero LIM_offset_zero_cancel ..
-
-text\<open>It's also sometimes useful to extract the limit point from the filter.\<close>
-
-abbreviation netlimit :: "'a::t2_space filter \<Rightarrow> 'a"
-  where "netlimit F \<equiv> Lim F (\<lambda>x. x)"
-
-lemma netlimit_within: "\<not> trivial_limit (at a within S) \<Longrightarrow> netlimit (at a within S) = a"
-  by (rule tendsto_Lim) (auto intro: tendsto_intros)
-
-lemma netlimit_at:
-  fixes a :: "'a::{perfect_space,t2_space}"
-  shows "netlimit (at a) = a"
-  using netlimit_within [of a UNIV] by simp
-
-lemma lim_within_interior:
-  "x \<in> interior S \<Longrightarrow> (f \<longlongrightarrow> l) (at x within S) \<longleftrightarrow> (f \<longlongrightarrow> l) (at x)"
-  by (metis at_within_interior)
-
-lemma netlimit_within_interior:
-  fixes x :: "'a::{t2_space,perfect_space}"
-  assumes "x \<in> interior S"
-  shows "netlimit (at x within S) = x"
-  using assms by (metis at_within_interior netlimit_at)
-
-lemma netlimit_at_vector:
-  fixes a :: "'a::real_normed_vector"
-  shows "netlimit (at a) = a"
-proof (cases "\<exists>x. x \<noteq> a")
-  case True then obtain x where x: "x \<noteq> a" ..
-  have "\<not> trivial_limit (at a)"
-    unfolding trivial_limit_def eventually_at dist_norm
-    apply clarsimp
-    apply (rule_tac x="a + scaleR (d / 2) (sgn (x - a))" in exI)
-    apply (simp add: norm_sgn sgn_zero_iff x)
-    done
-  then show ?thesis
-    by (rule netlimit_within [of a UNIV])
-qed simp
-
-
-text\<open>Useful lemmas on closure and set of possible sequential limits.\<close>
-
-lemma closure_sequential:
-  fixes l :: "'a::first_countable_topology"
-  shows "l \<in> closure S \<longleftrightarrow> (\<exists>x. (\<forall>n. x n \<in> S) \<and> (x \<longlongrightarrow> l) sequentially)"
-  (is "?lhs = ?rhs")
-proof
-  assume "?lhs"
-  moreover
-  {
-    assume "l \<in> S"
-    then have "?rhs" using tendsto_const[of l sequentially] by auto
-  }
-  moreover
-  {
-    assume "l islimpt S"
-    then have "?rhs" unfolding islimpt_sequential by auto
-  }
-  ultimately show "?rhs"
-    unfolding closure_def by auto
-next
-  assume "?rhs"
-  then show "?lhs" unfolding closure_def islimpt_sequential by auto
-qed
-
-lemma closed_sequential_limits:
-  fixes S :: "'a::first_countable_topology set"
-  shows "closed S \<longleftrightarrow> (\<forall>x l. (\<forall>n. x n \<in> S) \<and> (x \<longlongrightarrow> l) sequentially \<longrightarrow> l \<in> S)"
-by (metis closure_sequential closure_subset_eq subset_iff)
-
-lemma closure_approachable:
-  fixes S :: "'a::metric_space set"
-  shows "x \<in> closure S \<longleftrightarrow> (\<forall>e>0. \<exists>y\<in>S. dist y x < e)"
-  apply (auto simp add: closure_def islimpt_approachable)
-  apply (metis dist_self)
-  done
-
-lemma closed_approachable:
-  fixes S :: "'a::metric_space set"
-  shows "closed S \<Longrightarrow> (\<forall>e>0. \<exists>y\<in>S. dist y x < e) \<longleftrightarrow> x \<in> S"
-  by (metis closure_closed closure_approachable)
-
-lemma closure_contains_Inf:
-  fixes S :: "real set"
-  assumes "S \<noteq> {}" "bdd_below S"
-  shows "Inf S \<in> closure S"
-proof -
-  have *: "\<forall>x\<in>S. Inf S \<le> x"
-    using cInf_lower[of _ S] assms by metis
-  {
-    fix e :: real
-    assume "e > 0"
-    then have "Inf S < Inf S + e" by simp
-    with assms obtain x where "x \<in> S" "x < Inf S + e"
-      by (subst (asm) cInf_less_iff) auto
-    with * have "\<exists>x\<in>S. dist x (Inf S) < e"
-      by (intro bexI[of _ x]) (auto simp add: dist_real_def)
-  }
-  then show ?thesis unfolding closure_approachable by auto
-qed
-
-lemma closed_contains_Inf:
-  fixes S :: "real set"
-  shows "S \<noteq> {} \<Longrightarrow> bdd_below S \<Longrightarrow> closed S \<Longrightarrow> Inf S \<in> S"
-  by (metis closure_contains_Inf closure_closed)
-
-lemma closed_subset_contains_Inf:
-  fixes A C :: "real set"
-  shows "closed C \<Longrightarrow> A \<subseteq> C \<Longrightarrow> A \<noteq> {} \<Longrightarrow> bdd_below A \<Longrightarrow> Inf A \<in> C"
-  by (metis closure_contains_Inf closure_minimal subset_eq)
-
-lemma atLeastAtMost_subset_contains_Inf:
-  fixes A :: "real set" and a b :: real
-  shows "A \<noteq> {} \<Longrightarrow> a \<le> b \<Longrightarrow> A \<subseteq> {a..b} \<Longrightarrow> Inf A \<in> {a..b}"
-  by (rule closed_subset_contains_Inf)
-     (auto intro: closed_real_atLeastAtMost intro!: bdd_belowI[of A a])
-
-lemma not_trivial_limit_within_ball:
-  "\<not> trivial_limit (at x within S) \<longleftrightarrow> (\<forall>e>0. S \<inter> ball x e - {x} \<noteq> {})"
-  (is "?lhs \<longleftrightarrow> ?rhs")
-proof
-  show ?rhs if ?lhs
-  proof -
-    {
-      fix e :: real
-      assume "e > 0"
-      then obtain y where "y \<in> S - {x}" and "dist y x < e"
-        using \<open>?lhs\<close> not_trivial_limit_within[of x S] closure_approachable[of x "S - {x}"]
-        by auto
-      then have "y \<in> S \<inter> ball x e - {x}"
-        unfolding ball_def by (simp add: dist_commute)
-      then have "S \<inter> ball x e - {x} \<noteq> {}" by blast
-    }
-    then show ?thesis by auto
-  qed
-  show ?lhs if ?rhs
-  proof -
-    {
-      fix e :: real
-      assume "e > 0"
-      then obtain y where "y \<in> S \<inter> ball x e - {x}"
-        using \<open>?rhs\<close> by blast
-      then have "y \<in> S - {x}" and "dist y x < e"
-        unfolding ball_def by (simp_all add: dist_commute)
-      then have "\<exists>y \<in> S - {x}. dist y x < e"
-        by auto
-    }
-    then show ?thesis
-      using not_trivial_limit_within[of x S] closure_approachable[of x "S - {x}"]
-      by auto
-  qed
-qed
-
-
-subsection \<open>Infimum Distance\<close>
-
-definition "infdist x A = (if A = {} then 0 else INF a:A. dist x a)"
-
-lemma bdd_below_infdist[intro, simp]: "bdd_below (dist x`A)"
-  by (auto intro!: zero_le_dist)
-
-lemma infdist_notempty: "A \<noteq> {} \<Longrightarrow> infdist x A = (INF a:A. dist x a)"
-  by (simp add: infdist_def)
-
-lemma infdist_nonneg: "0 \<le> infdist x A"
-  by (auto simp add: infdist_def intro: cINF_greatest)
-
-lemma infdist_le: "a \<in> A \<Longrightarrow> infdist x A \<le> dist x a"
-  by (auto intro: cINF_lower simp add: infdist_def)
-
-lemma infdist_le2: "a \<in> A \<Longrightarrow> dist x a \<le> d \<Longrightarrow> infdist x A \<le> d"
-  by (auto intro!: cINF_lower2 simp add: infdist_def)
-
-lemma infdist_zero[simp]: "a \<in> A \<Longrightarrow> infdist a A = 0"
-  by (auto intro!: antisym infdist_nonneg infdist_le2)
-
-lemma infdist_triangle: "infdist x A \<le> infdist y A + dist x y"
-proof (cases "A = {}")
-  case True
-  then show ?thesis by (simp add: infdist_def)
-next
-  case False
-  then obtain a where "a \<in> A" by auto
-  have "infdist x A \<le> Inf {dist x y + dist y a |a. a \<in> A}"
-  proof (rule cInf_greatest)
-    from \<open>A \<noteq> {}\<close> show "{dist x y + dist y a |a. a \<in> A} \<noteq> {}"
-      by simp
-    fix d
-    assume "d \<in> {dist x y + dist y a |a. a \<in> A}"
-    then obtain a where d: "d = dist x y + dist y a" "a \<in> A"
-      by auto
-    show "infdist x A \<le> d"
-      unfolding infdist_notempty[OF \<open>A \<noteq> {}\<close>]
-    proof (rule cINF_lower2)
-      show "a \<in> A" by fact
-      show "dist x a \<le> d"
-        unfolding d by (rule dist_triangle)
-    qed simp
-  qed
-  also have "\<dots> = dist x y + infdist y A"
-  proof (rule cInf_eq, safe)
-    fix a
-    assume "a \<in> A"
-    then show "dist x y + infdist y A \<le> dist x y + dist y a"
-      by (auto intro: infdist_le)
-  next
-    fix i
-    assume inf: "\<And>d. d \<in> {dist x y + dist y a |a. a \<in> A} \<Longrightarrow> i \<le> d"
-    then have "i - dist x y \<le> infdist y A"
-      unfolding infdist_notempty[OF \<open>A \<noteq> {}\<close>] using \<open>a \<in> A\<close>
-      by (intro cINF_greatest) (auto simp: field_simps)
-    then show "i \<le> dist x y + infdist y A"
-      by simp
-  qed
-  finally show ?thesis by simp
-qed
-
-lemma in_closure_iff_infdist_zero:
-  assumes "A \<noteq> {}"
-  shows "x \<in> closure A \<longleftrightarrow> infdist x A = 0"
-proof
-  assume "x \<in> closure A"
-  show "infdist x A = 0"
-  proof (rule ccontr)
-    assume "infdist x A \<noteq> 0"
-    with infdist_nonneg[of x A] have "infdist x A > 0"
-      by auto
-    then have "ball x (infdist x A) \<inter> closure A = {}"
-      apply auto
-      apply (metis \<open>x \<in> closure A\<close> closure_approachable dist_commute infdist_le not_less)
-      done
-    then have "x \<notin> closure A"
-      by (metis \<open>0 < infdist x A\<close> centre_in_ball disjoint_iff_not_equal)
-    then show False using \<open>x \<in> closure A\<close> by simp
-  qed
-next
-  assume x: "infdist x A = 0"
-  then obtain a where "a \<in> A"
-    by atomize_elim (metis all_not_in_conv assms)
-  show "x \<in> closure A"
-    unfolding closure_approachable
-    apply safe
-  proof (rule ccontr)
-    fix e :: real
-    assume "e > 0"
-    assume "\<not> (\<exists>y\<in>A. dist y x < e)"
-    then have "infdist x A \<ge> e" using \<open>a \<in> A\<close>
-      unfolding infdist_def
-      by (force simp: dist_commute intro: cINF_greatest)
-    with x \<open>e > 0\<close> show False by auto
-  qed
-qed
-
-lemma in_closed_iff_infdist_zero:
-  assumes "closed A" "A \<noteq> {}"
-  shows "x \<in> A \<longleftrightarrow> infdist x A = 0"
-proof -
-  have "x \<in> closure A \<longleftrightarrow> infdist x A = 0"
-    by (rule in_closure_iff_infdist_zero) fact
-  with assms show ?thesis by simp
-qed
-
-lemma tendsto_infdist [tendsto_intros]:
-  assumes f: "(f \<longlongrightarrow> l) F"
-  shows "((\<lambda>x. infdist (f x) A) \<longlongrightarrow> infdist l A) F"
-proof (rule tendstoI)
-  fix e ::real
-  assume "e > 0"
-  from tendstoD[OF f this]
-  show "eventually (\<lambda>x. dist (infdist (f x) A) (infdist l A) < e) F"
-  proof (eventually_elim)
-    fix x
-    from infdist_triangle[of l A "f x"] infdist_triangle[of "f x" A l]
-    have "dist (infdist (f x) A) (infdist l A) \<le> dist (f x) l"
-      by (simp add: dist_commute dist_real_def)
-    also assume "dist (f x) l < e"
-    finally show "dist (infdist (f x) A) (infdist l A) < e" .
-  qed
-qed
-
-text\<open>Some other lemmas about sequences.\<close>
-
-lemma sequentially_offset: (* TODO: move to Topological_Spaces.thy *)
-  assumes "eventually (\<lambda>i. P i) sequentially"
-  shows "eventually (\<lambda>i. P (i + k)) sequentially"
-  using assms by (rule eventually_sequentially_seg [THEN iffD2])
-
-lemma seq_offset_neg: (* TODO: move to Topological_Spaces.thy *)
-  "(f \<longlongrightarrow> l) sequentially \<Longrightarrow> ((\<lambda>i. f(i - k)) \<longlongrightarrow> l) sequentially"
-  apply (erule filterlim_compose)
-  apply (simp add: filterlim_def le_sequentially eventually_filtermap eventually_sequentially)
-  apply arith
-  done
-
-lemma seq_harmonic: "((\<lambda>n. inverse (real n)) \<longlongrightarrow> 0) sequentially"
-  using LIMSEQ_inverse_real_of_nat by (rule LIMSEQ_imp_Suc) (* TODO: move to Limits.thy *)
-
-subsection \<open>More properties of closed balls\<close>
-
-lemma closed_cball [iff]: "closed (cball x e)"
-proof -
-  have "closed (dist x -` {..e})"
-    by (intro closed_vimage closed_atMost continuous_intros)
-  also have "dist x -` {..e} = cball x e"
-    by auto
-  finally show ?thesis .
-qed
-
-lemma open_contains_cball: "open S \<longleftrightarrow> (\<forall>x\<in>S. \<exists>e>0.  cball x e \<subseteq> S)"
-proof -
-  {
-    fix x and e::real
-    assume "x\<in>S" "e>0" "ball x e \<subseteq> S"
-    then have "\<exists>d>0. cball x d \<subseteq> S" unfolding subset_eq by (rule_tac x="e/2" in exI, auto)
-  }
-  moreover
-  {
-    fix x and e::real
-    assume "x\<in>S" "e>0" "cball x e \<subseteq> S"
-    then have "\<exists>d>0. ball x d \<subseteq> S"
-      unfolding subset_eq
-      apply(rule_tac x="e/2" in exI)
-      apply auto
-      done
-  }
-  ultimately show ?thesis
-    unfolding open_contains_ball by auto
-qed
-
-lemma open_contains_cball_eq: "open S \<Longrightarrow> (\<forall>x. x \<in> S \<longleftrightarrow> (\<exists>e>0. cball x e \<subseteq> S))"
-  by (metis open_contains_cball subset_eq order_less_imp_le centre_in_cball)
-
-lemma mem_interior_cball: "x \<in> interior S \<longleftrightarrow> (\<exists>e>0. cball x e \<subseteq> S)"
-  apply (simp add: interior_def, safe)
-  apply (force simp add: open_contains_cball)
-  apply (rule_tac x="ball x e" in exI)
-  apply (simp add: subset_trans [OF ball_subset_cball])
-  done
-
-lemma islimpt_ball:
-  fixes x y :: "'a::{real_normed_vector,perfect_space}"
-  shows "y islimpt ball x e \<longleftrightarrow> 0 < e \<and> y \<in> cball x e"
-  (is "?lhs \<longleftrightarrow> ?rhs")
-proof
-  show ?rhs if ?lhs
-  proof
-    {
-      assume "e \<le> 0"
-      then have *: "ball x e = {}"
-        using ball_eq_empty[of x e] by auto
-      have False using \<open>?lhs\<close>
-        unfolding * using islimpt_EMPTY[of y] by auto
-    }
-    then show "e > 0" by (metis not_less)
-    show "y \<in> cball x e"
-      using closed_cball[of x e] islimpt_subset[of y "ball x e" "cball x e"]
-        ball_subset_cball[of x e] \<open>?lhs\<close>
-      unfolding closed_limpt by auto
-  qed
-  show ?lhs if ?rhs
-  proof -
-    from that have "e > 0" by auto
-    {
-      fix d :: real
-      assume "d > 0"
-      have "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
-      proof (cases "d \<le> dist x y")
-        case True
-        then show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
-        proof (cases "x = y")
-          case True
-          then have False
-            using \<open>d \<le> dist x y\<close> \<open>d>0\<close> by auto
-          then show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
-            by auto
-        next
-          case False
-          have "dist x (y - (d / (2 * dist y x)) *\<^sub>R (y - x)) =
-            norm (x - y + (d / (2 * norm (y - x))) *\<^sub>R (y - x))"
-            unfolding mem_cball mem_ball dist_norm diff_diff_eq2 diff_add_eq[symmetric]
-            by auto
-          also have "\<dots> = \<bar>- 1 + d / (2 * norm (x - y))\<bar> * norm (x - y)"
-            using scaleR_left_distrib[of "- 1" "d / (2 * norm (y - x))", symmetric, of "y - x"]
-            unfolding scaleR_minus_left scaleR_one
-            by (auto simp add: norm_minus_commute)
-          also have "\<dots> = \<bar>- norm (x - y) + d / 2\<bar>"
-            unfolding abs_mult_pos[of "norm (x - y)", OF norm_ge_zero[of "x - y"]]
-            unfolding distrib_right using \<open>x\<noteq>y\<close>  by auto
-          also have "\<dots> \<le> e - d/2" using \<open>d \<le> dist x y\<close> and \<open>d>0\<close> and \<open>?rhs\<close>
-            by (auto simp add: dist_norm)
-          finally have "y - (d / (2 * dist y x)) *\<^sub>R (y - x) \<in> ball x e" using \<open>d>0\<close>
-            by auto
-          moreover
-          have "(d / (2*dist y x)) *\<^sub>R (y - x) \<noteq> 0"
-            using \<open>x\<noteq>y\<close>[unfolded dist_nz] \<open>d>0\<close> unfolding scaleR_eq_0_iff
-            by (auto simp add: dist_commute)
-          moreover
-          have "dist (y - (d / (2 * dist y x)) *\<^sub>R (y - x)) y < d"
-            unfolding dist_norm
-            apply simp
-            unfolding norm_minus_cancel
-            using \<open>d > 0\<close> \<open>x\<noteq>y\<close>[unfolded dist_nz] dist_commute[of x y]
-            unfolding dist_norm
-            apply auto
-            done
-          ultimately show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
-            apply (rule_tac x = "y - (d / (2*dist y x)) *\<^sub>R (y - x)" in bexI)
-            apply auto
-            done
-        qed
-      next
-        case False
-        then have "d > dist x y" by auto
-        show "\<exists>x' \<in> ball x e. x' \<noteq> y \<and> dist x' y < d"
-        proof (cases "x = y")
-          case True
-          obtain z where **: "z \<noteq> y" "dist z y < min e d"
-            using perfect_choose_dist[of "min e d" y]
-            using \<open>d > 0\<close> \<open>e>0\<close> by auto
-          show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
-            unfolding \<open>x = y\<close>
-            using \<open>z \<noteq> y\<close> **
-            apply (rule_tac x=z in bexI)
-            apply (auto simp add: dist_commute)
-            done
-        next
-          case False
-          then show "\<exists>x'\<in>ball x e. x' \<noteq> y \<and> dist x' y < d"
-            using \<open>d>0\<close> \<open>d > dist x y\<close> \<open>?rhs\<close>
-            apply (rule_tac x=x in bexI)
-            apply auto
-            done
-        qed
-      qed
-    }
-    then show ?thesis
-      unfolding mem_cball islimpt_approachable mem_ball by auto
-  qed
-qed
-
-lemma closure_ball_lemma:
-  fixes x y :: "'a::real_normed_vector"
-  assumes "x \<noteq> y"
-  shows "y islimpt ball x (dist x y)"
-proof (rule islimptI)
-  fix T
-  assume "y \<in> T" "open T"
-  then obtain r where "0 < r" "\<forall>z. dist z y < r \<longrightarrow> z \<in> T"
-    unfolding open_dist by fast
-  (* choose point between x and y, within distance r of y. *)
-  define k where "k = min 1 (r / (2 * dist x y))"
-  define z where "z = y + scaleR k (x - y)"
-  have z_def2: "z = x + scaleR (1 - k) (y - x)"
-    unfolding z_def by (simp add: algebra_simps)
-  have "dist z y < r"
-    unfolding z_def k_def using \<open>0 < r\<close>
-    by (simp add: dist_norm min_def)
-  then have "z \<in> T"
-    using \<open>\<forall>z. dist z y < r \<longrightarrow> z \<in> T\<close> by simp
-  have "dist x z < dist x y"
-    unfolding z_def2 dist_norm
-    apply (simp add: norm_minus_commute)
-    apply (simp only: dist_norm [symmetric])
-    apply (subgoal_tac "\<bar>1 - k\<bar> * dist x y < 1 * dist x y", simp)
-    apply (rule mult_strict_right_mono)
-    apply (simp add: k_def \<open>0 < r\<close> \<open>x \<noteq> y\<close>)
-    apply (simp add: \<open>x \<noteq> y\<close>)
-    done
-  then have "z \<in> ball x (dist x y)"
-    by simp
-  have "z \<noteq> y"
-    unfolding z_def k_def using \<open>x \<noteq> y\<close> \<open>0 < r\<close>
-    by (simp add: min_def)
-  show "\<exists>z\<in>ball x (dist x y). z \<in> T \<and> z \<noteq> y"
-    using \<open>z \<in> ball x (dist x y)\<close> \<open>z \<in> T\<close> \<open>z \<noteq> y\<close>
-    by fast
-qed
-
-lemma closure_ball [simp]:
-  fixes x :: "'a::real_normed_vector"
-  shows "0 < e \<Longrightarrow> closure (ball x e) = cball x e"
-  apply (rule equalityI)
-  apply (rule closure_minimal)
-  apply (rule ball_subset_cball)
-  apply (rule closed_cball)
-  apply (rule subsetI, rename_tac y)
-  apply (simp add: le_less [where 'a=real])
-  apply (erule disjE)
-  apply (rule subsetD [OF closure_subset], simp)
-  apply (simp add: closure_def)
-  apply clarify
-  apply (rule closure_ball_lemma)
-  apply (simp add: zero_less_dist_iff)
-  done
-
-(* In a trivial vector space, this fails for e = 0. *)
-lemma interior_cball [simp]:
-  fixes x :: "'a::{real_normed_vector, perfect_space}"
-  shows "interior (cball x e) = ball x e"
-proof (cases "e \<ge> 0")
-  case False note cs = this
-  from cs have null: "ball x e = {}"
-    using ball_empty[of e x] by auto
-  moreover
-  {
-    fix y
-    assume "y \<in> cball x e"
-    then have False
-      by (metis ball_eq_empty null cs dist_eq_0_iff dist_le_zero_iff empty_subsetI mem_cball subset_antisym subset_ball)
-  }
-  then have "cball x e = {}" by auto
-  then have "interior (cball x e) = {}"
-    using interior_empty by auto
-  ultimately show ?thesis by blast
-next
-  case True note cs = this
-  have "ball x e \<subseteq> cball x e"
-    using ball_subset_cball by auto
-  moreover
-  {
-    fix S y
-    assume as: "S \<subseteq> cball x e" "open S" "y\<in>S"
-    then obtain d where "d>0" and d: "\<forall>x'. dist x' y < d \<longrightarrow> x' \<in> S"
-      unfolding open_dist by blast
-    then obtain xa where xa_y: "xa \<noteq> y" and xa: "dist xa y < d"
-      using perfect_choose_dist [of d] by auto
-    have "xa \<in> S"
-      using d[THEN spec[where x = xa]]
-      using xa by (auto simp add: dist_commute)
-    then have xa_cball: "xa \<in> cball x e"
-      using as(1) by auto
-    then have "y \<in> ball x e"
-    proof (cases "x = y")
-      case True
-      then have "e > 0" using cs order.order_iff_strict xa_cball xa_y by fastforce
-      then show "y \<in> ball x e"
-        using \<open>x = y \<close> by simp
-    next
-      case False
-      have "dist (y + (d / 2 / dist y x) *\<^sub>R (y - x)) y < d"
-        unfolding dist_norm
-        using \<open>d>0\<close> norm_ge_zero[of "y - x"] \<open>x \<noteq> y\<close> by auto
-      then have *: "y + (d / 2 / dist y x) *\<^sub>R (y - x) \<in> cball x e"
-        using d as(1)[unfolded subset_eq] by blast
-      have "y - x \<noteq> 0" using \<open>x \<noteq> y\<close> by auto
-      hence **:"d / (2 * norm (y - x)) > 0"
-        unfolding zero_less_norm_iff[symmetric] using \<open>d>0\<close> by auto
-      have "dist (y + (d / 2 / dist y x) *\<^sub>R (y - x)) x =
-        norm (y + (d / (2 * norm (y - x))) *\<^sub>R y - (d / (2 * norm (y - x))) *\<^sub>R x - x)"
-        by (auto simp add: dist_norm algebra_simps)
-      also have "\<dots> = norm ((1 + d / (2 * norm (y - x))) *\<^sub>R (y - x))"
-        by (auto simp add: algebra_simps)
-      also have "\<dots> = \<bar>1 + d / (2 * norm (y - x))\<bar> * norm (y - x)"
-        using ** by auto
-      also have "\<dots> = (dist y x) + d/2"
-        using ** by (auto simp add: distrib_right dist_norm)
-      finally have "e \<ge> dist x y +d/2"
-        using *[unfolded mem_cball] by (auto simp add: dist_commute)
-      then show "y \<in> ball x e"
-        unfolding mem_ball using \<open>d>0\<close> by auto
-    qed
-  }
-  then have "\<forall>S \<subseteq> cball x e. open S \<longrightarrow> S \<subseteq> ball x e"
-    by auto
-  ultimately show ?thesis
-    using interior_unique[of "ball x e" "cball x e"]
-    using open_ball[of x e]
-    by auto
-qed
-
-lemma interior_ball [simp]: "interior (ball x e) = ball x e"
-  by (simp add: interior_open)
-
-lemma frontier_ball [simp]:
-  fixes a :: "'a::real_normed_vector"
-  shows "0 < e \<Longrightarrow> frontier (ball a e) = sphere a e"
-  by (force simp: frontier_def)
-
-lemma frontier_cball [simp]:
-  fixes a :: "'a::{real_normed_vector, perfect_space}"
-  shows "frontier (cball a e) = sphere a e"
-  by (force simp: frontier_def)
-
-lemma cball_eq_empty [simp]: "cball x e = {} \<longleftrightarrow> e < 0"
-  apply (simp add: set_eq_iff not_le)
-  apply (metis zero_le_dist dist_self order_less_le_trans)
-  done
-
-lemma cball_empty [simp]: "e < 0 \<Longrightarrow> cball x e = {}"
-  by (simp add: cball_eq_empty)
-
-lemma cball_eq_sing:
-  fixes x :: "'a::{metric_space,perfect_space}"
-  shows "cball x e = {x} \<longleftrightarrow> e = 0"
-proof (rule linorder_cases)
-  assume e: "0 < e"
-  obtain a where "a \<noteq> x" "dist a x < e"
-    using perfect_choose_dist [OF e] by auto
-  then have "a \<noteq> x" "dist x a \<le> e"
-    by (auto simp add: dist_commute)
-  with e show ?thesis by (auto simp add: set_eq_iff)
-qed auto
-
-lemma cball_sing:
-  fixes x :: "'a::metric_space"
-  shows "e = 0 \<Longrightarrow> cball x e = {x}"
-  by (auto simp add: set_eq_iff)
-
-lemma ball_divide_subset: "d \<ge> 1 \<Longrightarrow> ball x (e/d) \<subseteq> ball x e"
-  apply (cases "e \<le> 0")
-  apply (simp add: ball_empty divide_simps)
-  apply (rule subset_ball)
-  apply (simp add: divide_simps)
-  done
-
-lemma ball_divide_subset_numeral: "ball x (e / numeral w) \<subseteq> ball x e"
-  using ball_divide_subset one_le_numeral by blast
-
-lemma cball_divide_subset: "d \<ge> 1 \<Longrightarrow> cball x (e/d) \<subseteq> cball x e"
-  apply (cases "e < 0")
-  apply (simp add: divide_simps)
-  apply (rule subset_cball)
-  apply (metis divide_1 frac_le not_le order_refl zero_less_one)
-  done
-
-lemma cball_divide_subset_numeral: "cball x (e / numeral w) \<subseteq> cball x e"
-  using cball_divide_subset one_le_numeral by blast
-
-
-subsection \<open>Boundedness\<close>
-
-  (* FIXME: This has to be unified with BSEQ!! *)
-definition (in metric_space) bounded :: "'a set \<Rightarrow> bool"
-  where "bounded S \<longleftrightarrow> (\<exists>x e. \<forall>y\<in>S. dist x y \<le> e)"
-
-lemma bounded_subset_cball: "bounded S \<longleftrightarrow> (\<exists>e x. S \<subseteq> cball x e \<and> 0 \<le> e)"
-  unfolding bounded_def subset_eq  by auto (meson order_trans zero_le_dist)
-
-lemma bounded_subset_ballD:
-  assumes "bounded S" shows "\<exists>r. 0 < r \<and> S \<subseteq> ball x r"
-proof -
-  obtain e::real and y where "S \<subseteq> cball y e"  "0 \<le> e"
-    using assms by (auto simp: bounded_subset_cball)
-  then show ?thesis
-    apply (rule_tac x="dist x y + e + 1" in exI)
-    apply (simp add: add.commute add_pos_nonneg)
-    apply (erule subset_trans)
-    apply (clarsimp simp add: cball_def)
-    by (metis add_le_cancel_right add_strict_increasing dist_commute dist_triangle_le zero_less_one)
-qed
-
-lemma bounded_any_center: "bounded S \<longleftrightarrow> (\<exists>e. \<forall>y\<in>S. dist a y \<le> e)"
-  unfolding bounded_def
-  by auto (metis add.commute add_le_cancel_right dist_commute dist_triangle_le)
-
-lemma bounded_iff: "bounded S \<longleftrightarrow> (\<exists>a. \<forall>x\<in>S. norm x \<le> a)"
-  unfolding bounded_any_center [where a=0]
-  by (simp add: dist_norm)
-
-lemma bdd_above_norm: "bdd_above (norm ` X) \<longleftrightarrow> bounded X"
-  by (simp add: bounded_iff bdd_above_def)
-
-lemma bounded_realI:
-  assumes "\<forall>x\<in>s. \<bar>x::real\<bar> \<le> B"
-  shows "bounded s"
-  unfolding bounded_def dist_real_def
-  by (metis abs_minus_commute assms diff_0_right)
-
-lemma bounded_empty [simp]: "bounded {}"
-  by (simp add: bounded_def)
-
-lemma bounded_subset: "bounded T \<Longrightarrow> S \<subseteq> T \<Longrightarrow> bounded S"
-  by (metis bounded_def subset_eq)
-
-lemma bounded_interior[intro]: "bounded S \<Longrightarrow> bounded(interior S)"
-  by (metis bounded_subset interior_subset)
-
-lemma bounded_closure[intro]:
-  assumes "bounded S"
-  shows "bounded (closure S)"
-proof -
-  from assms obtain x and a where a: "\<forall>y\<in>S. dist x y \<le> a"
-    unfolding bounded_def by auto
-  {
-    fix y
-    assume "y \<in> closure S"
-    then obtain f where f: "\<forall>n. f n \<in> S"  "(f \<longlongrightarrow> y) sequentially"
-      unfolding closure_sequential by auto
-    have "\<forall>n. f n \<in> S \<longrightarrow> dist x (f n) \<le> a" using a by simp
-    then have "eventually (\<lambda>n. dist x (f n) \<le> a) sequentially"
-      by (simp add: f(1))
-    have "dist x y \<le> a"
-      apply (rule Lim_dist_ubound [of sequentially f])
-      apply (rule trivial_limit_sequentially)
-      apply (rule f(2))
-      apply fact
-      done
-  }
-  then show ?thesis
-    unfolding bounded_def by auto
-qed
-
-lemma bounded_cball[simp,intro]: "bounded (cball x e)"
-  apply (simp add: bounded_def)
-  apply (rule_tac x=x in exI)
-  apply (rule_tac x=e in exI)
-  apply auto
-  done
-
-lemma bounded_ball[simp,intro]: "bounded (ball x e)"
-  by (metis ball_subset_cball bounded_cball bounded_subset)
-
-lemma bounded_Un[simp]: "bounded (S \<union> T) \<longleftrightarrow> bounded S \<and> bounded T"
-  apply (auto simp add: bounded_def)
-  by (metis Un_iff add_le_cancel_left dist_triangle le_max_iff_disj max.order_iff)
-
-lemma bounded_Union[intro]: "finite F \<Longrightarrow> \<forall>S\<in>F. bounded S \<Longrightarrow> bounded (\<Union>F)"
-  by (induct rule: finite_induct[of F]) auto
-
-lemma bounded_UN [intro]: "finite A \<Longrightarrow> \<forall>x\<in>A. bounded (B x) \<Longrightarrow> bounded (\<Union>x\<in>A. B x)"
-  by (induct set: finite) auto
-
-lemma bounded_insert [simp]: "bounded (insert x S) \<longleftrightarrow> bounded S"
-proof -
-  have "\<forall>y\<in>{x}. dist x y \<le> 0"
-    by simp
-  then have "bounded {x}"
-    unfolding bounded_def by fast
-  then show ?thesis
-    by (metis insert_is_Un bounded_Un)
-qed
-
-lemma finite_imp_bounded [intro]: "finite S \<Longrightarrow> bounded S"
-  by (induct set: finite) simp_all
-
-lemma bounded_pos: "bounded S \<longleftrightarrow> (\<exists>b>0. \<forall>x\<in> S. norm x \<le> b)"
-  apply (simp add: bounded_iff)
-  apply (subgoal_tac "\<And>x (y::real). 0 < 1 + \<bar>y\<bar> \<and> (x \<le> y \<longrightarrow> x \<le> 1 + \<bar>y\<bar>)")
-  apply metis
-  apply arith
-  done
-
-lemma bounded_pos_less: "bounded S \<longleftrightarrow> (\<exists>b>0. \<forall>x\<in> S. norm x < b)"
-  apply (simp add: bounded_pos)
-  apply (safe; rule_tac x="b+1" in exI; force)
-  done
-
-lemma Bseq_eq_bounded:
-  fixes f :: "nat \<Rightarrow> 'a::real_normed_vector"
-  shows "Bseq f \<longleftrightarrow> bounded (range f)"
-  unfolding Bseq_def bounded_pos by auto
-
-lemma bounded_Int[intro]: "bounded S \<or> bounded T \<Longrightarrow> bounded (S \<inter> T)"
-  by (metis Int_lower1 Int_lower2 bounded_subset)
-
-lemma bounded_diff[intro]: "bounded S \<Longrightarrow> bounded (S - T)"
-  by (metis Diff_subset bounded_subset)
-
-lemma not_bounded_UNIV[simp]:
-  "\<not> bounded (UNIV :: 'a::{real_normed_vector, perfect_space} set)"
-proof (auto simp add: bounded_pos not_le)
-  obtain x :: 'a where "x \<noteq> 0"
-    using perfect_choose_dist [OF zero_less_one] by fast
-  fix b :: real
-  assume b: "b >0"
-  have b1: "b +1 \<ge> 0"
-    using b by simp
-  with \<open>x \<noteq> 0\<close> have "b < norm (scaleR (b + 1) (sgn x))"
-    by (simp add: norm_sgn)
-  then show "\<exists>x::'a. b < norm x" ..
-qed
-
-corollary cobounded_imp_unbounded:
-    fixes S :: "'a::{real_normed_vector, perfect_space} set"
-    shows "bounded (- S) \<Longrightarrow> ~ (bounded S)"
-  using bounded_Un [of S "-S"]  by (simp add: sup_compl_top)
-
-lemma bounded_linear_image:
-  assumes "bounded S"
-    and "bounded_linear f"
-  shows "bounded (f ` S)"
-proof -
-  from assms(1) obtain b where b: "b > 0" "\<forall>x\<in>S. norm x \<le> b"
-    unfolding bounded_pos by auto
-  from assms(2) obtain B where B: "B > 0" "\<forall>x. norm (f x) \<le> B * norm x"
-    using bounded_linear.pos_bounded by (auto simp add: ac_simps)
-  {
-    fix x
-    assume "x \<in> S"
-    then have "norm x \<le> b"
-      using b by auto
-    then have "norm (f x) \<le> B * b"
-      using B(2)
-      apply (erule_tac x=x in allE)
-      apply (metis B(1) B(2) order_trans mult_le_cancel_left_pos)
-      done
-  }
-  then show ?thesis
-    unfolding bounded_pos
-    apply (rule_tac x="b*B" in exI)
-    using b B by (auto simp add: mult.commute)
-qed
-
-lemma bounded_scaling:
-  fixes S :: "'a::real_normed_vector set"
-  shows "bounded S \<Longrightarrow> bounded ((\<lambda>x. c *\<^sub>R x) ` S)"
-  apply (rule bounded_linear_image)
-  apply assumption
-  apply (rule bounded_linear_scaleR_right)
-  done
-
-lemma bounded_translation:
-  fixes S :: "'a::real_normed_vector set"
-  assumes "bounded S"
-  shows "bounded ((\<lambda>x. a + x) ` S)"
-proof -
-  from assms obtain b where b: "b > 0" "\<forall>x\<in>S. norm x \<le> b"
-    unfolding bounded_pos by auto
-  {
-    fix x
-    assume "x \<in> S"
-    then have "norm (a + x) \<le> b + norm a"
-      using norm_triangle_ineq[of a x] b by auto
-  }
-  then show ?thesis
-    unfolding bounded_pos
-    using norm_ge_zero[of a] b(1) and add_strict_increasing[of b 0 "norm a"]
-    by (auto intro!: exI[of _ "b + norm a"])
-qed
-
-lemma bounded_translation_minus:
-  fixes S :: "'a::real_normed_vector set"
-  shows "bounded S \<Longrightarrow> bounded ((\<lambda>x. x - a) ` S)"
-using bounded_translation [of S "-a"] by simp
-
-lemma bounded_uminus [simp]:
-  fixes X :: "'a::real_normed_vector set"
-  shows "bounded (uminus ` X) \<longleftrightarrow> bounded X"
-by (auto simp: bounded_def dist_norm; rule_tac x="-x" in exI; force simp add: add.commute norm_minus_commute)
-
-text\<open>Some theorems on sups and infs using the notion "bounded".\<close>
-
-lemma bounded_real: "bounded (S::real set) \<longleftrightarrow> (\<exists>a. \<forall>x\<in>S. \<bar>x\<bar> \<le> a)"
-  by (simp add: bounded_iff)
-
-lemma bounded_imp_bdd_above: "bounded S \<Longrightarrow> bdd_above (S :: real set)"
-  by (auto simp: bounded_def bdd_above_def dist_real_def)
-     (metis abs_le_D1 abs_minus_commute diff_le_eq)
-
-lemma bounded_imp_bdd_below: "bounded S \<Longrightarrow> bdd_below (S :: real set)"
-  by (auto simp: bounded_def bdd_below_def dist_real_def)
-     (metis abs_le_D1 add.commute diff_le_eq)
-
-lemma bounded_inner_imp_bdd_above:
-  assumes "bounded s"
-    shows "bdd_above ((\<lambda>x. x \<bullet> a) ` s)"
-by (simp add: assms bounded_imp_bdd_above bounded_linear_image bounded_linear_inner_left)
-
-lemma bounded_inner_imp_bdd_below:
-  assumes "bounded s"
-    shows "bdd_below ((\<lambda>x. x \<bullet> a) ` s)"
-by (simp add: assms bounded_imp_bdd_below bounded_linear_image bounded_linear_inner_left)
-
-lemma bounded_has_Sup:
-  fixes S :: "real set"
-  assumes "bounded S"
-    and "S \<noteq> {}"
-  shows "\<forall>x\<in>S. x \<le> Sup S"
-    and "\<forall>b. (\<forall>x\<in>S. x \<le> b) \<longrightarrow> Sup S \<le> b"
-proof
-  show "\<forall>b. (\<forall>x\<in>S. x \<le> b) \<longrightarrow> Sup S \<le> b"
-    using assms by (metis cSup_least)
-qed (metis cSup_upper assms(1) bounded_imp_bdd_above)
-
-lemma Sup_insert:
-  fixes S :: "real set"
-  shows "bounded S \<Longrightarrow> Sup (insert x S) = (if S = {} then x else max x (Sup S))"
-  by (auto simp: bounded_imp_bdd_above sup_max cSup_insert_If)
-
-lemma Sup_insert_finite:
-  fixes S :: "'a::conditionally_complete_linorder set"
-  shows "finite S \<Longrightarrow> Sup (insert x S) = (if S = {} then x else max x (Sup S))"
-by (simp add: cSup_insert sup_max)
-
-lemma bounded_has_Inf:
-  fixes S :: "real set"
-  assumes "bounded S"
-    and "S \<noteq> {}"
-  shows "\<forall>x\<in>S. x \<ge> Inf S"
-    and "\<forall>b. (\<forall>x\<in>S. x \<ge> b) \<longrightarrow> Inf S \<ge> b"
-proof
-  show "\<forall>b. (\<forall>x\<in>S. x \<ge> b) \<longrightarrow> Inf S \<ge> b"
-    using assms by (metis cInf_greatest)
-qed (metis cInf_lower assms(1) bounded_imp_bdd_below)
-
-lemma Inf_insert:
-  fixes S :: "real set"
-  shows "bounded S \<Longrightarrow> Inf (insert x S) = (if S = {} then x else min x (Inf S))"
-  by (auto simp: bounded_imp_bdd_below inf_min cInf_insert_If)
-
-lemma Inf_insert_finite:
-  fixes S :: "'a::conditionally_complete_linorder set"
-  shows "finite S \<Longrightarrow> Inf (insert x S) = (if S = {} then x else min x (Inf S))"
-by (simp add: cInf_eq_Min)
-
-lemma finite_imp_less_Inf:
-  fixes a :: "'a::conditionally_complete_linorder"
-  shows "\<lbrakk>finite X; x \<in> X; \<And>x. x\<in>X \<Longrightarrow> a < x\<rbrakk> \<Longrightarrow> a < Inf X"
-  by (induction X rule: finite_induct) (simp_all add: cInf_eq_Min Inf_insert_finite)
-
-lemma finite_less_Inf_iff:
-  fixes a :: "'a :: conditionally_complete_linorder"
-  shows "\<lbrakk>finite X; X \<noteq> {}\<rbrakk> \<Longrightarrow> a < Inf X \<longleftrightarrow> (\<forall>x \<in> X. a < x)"
-  by (auto simp: cInf_eq_Min)
-
-lemma finite_imp_Sup_less:
-  fixes a :: "'a::conditionally_complete_linorder"
-  shows "\<lbrakk>finite X; x \<in> X; \<And>x. x\<in>X \<Longrightarrow> a > x\<rbrakk> \<Longrightarrow> a > Sup X"
-  by (induction X rule: finite_induct) (simp_all add: cSup_eq_Max Sup_insert_finite)
-
-lemma finite_Sup_less_iff:
-  fixes a :: "'a :: conditionally_complete_linorder"
-  shows "\<lbrakk>finite X; X \<noteq> {}\<rbrakk> \<Longrightarrow> a > Sup X \<longleftrightarrow> (\<forall>x \<in> X. a > x)"
-  by (auto simp: cSup_eq_Max)
-
-subsection \<open>Compactness\<close>
-
-subsubsection \<open>Bolzano-Weierstrass property\<close>
-
-lemma heine_borel_imp_bolzano_weierstrass:
-  assumes "compact s"
-    and "infinite t"
-    and "t \<subseteq> s"
-  shows "\<exists>x \<in> s. x islimpt t"
-proof (rule ccontr)
-  assume "\<not> (\<exists>x \<in> s. x islimpt t)"
-  then obtain f where f: "\<forall>x\<in>s. x \<in> f x \<and> open (f x) \<and> (\<forall>y\<in>t. y \<in> f x \<longrightarrow> y = x)"
-    unfolding islimpt_def
-    using bchoice[of s "\<lambda> x T. x \<in> T \<and> open T \<and> (\<forall>y\<in>t. y \<in> T \<longrightarrow> y = x)"]
-    by auto
-  obtain g where g: "g \<subseteq> {t. \<exists>x. x \<in> s \<and> t = f x}" "finite g" "s \<subseteq> \<Union>g"
-    using assms(1)[unfolded compact_eq_heine_borel, THEN spec[where x="{t. \<exists>x. x\<in>s \<and> t = f x}"]]
-    using f by auto
-  from g(1,3) have g':"\<forall>x\<in>g. \<exists>xa \<in> s. x = f xa"
-    by auto
-  {
-    fix x y
-    assume "x \<in> t" "y \<in> t" "f x = f y"
-    then have "x \<in> f x"  "y \<in> f x \<longrightarrow> y = x"
-      using f[THEN bspec[where x=x]] and \<open>t \<subseteq> s\<close> by auto
-    then have "x = y"
-      using \<open>f x = f y\<close> and f[THEN bspec[where x=y]] and \<open>y \<in> t\<close> and \<open>t \<subseteq> s\<close>
-      by auto
-  }
-  then have "inj_on f t"
-    unfolding inj_on_def by simp
-  then have "infinite (f ` t)"
-    using assms(2) using finite_imageD by auto
-  moreover
-  {
-    fix x
-    assume "x \<in> t" "f x \<notin> g"
-    from g(3) assms(3) \<open>x \<in> t\<close> obtain h where "h \<in> g" and "x \<in> h"
-      by auto
-    then obtain y where "y \<in> s" "h = f y"
-      using g'[THEN bspec[where x=h]] by auto
-    then have "y = x"
-      using f[THEN bspec[where x=y]] and \<open>x\<in>t\<close> and \<open>x\<in>h\<close>[unfolded \<open>h = f y\<close>]
-      by auto
-    then have False
-      using \<open>f x \<notin> g\<close> \<open>h \<in> g\<close> unfolding \<open>h = f y\<close>
-      by auto
-  }
-  then have "f ` t \<subseteq> g" by auto
-  ultimately show False
-    using g(2) using finite_subset by auto
-qed
-
-lemma acc_point_range_imp_convergent_subsequence:
-  fixes l :: "'a :: first_countable_topology"
-  assumes l: "\<forall>U. l\<in>U \<longrightarrow> open U \<longrightarrow> infinite (U \<inter> range f)"
-  shows "\<exists>r. subseq r \<and> (f \<circ> r) \<longlonglongrightarrow> l"
-proof -
-  from countable_basis_at_decseq[of l]
-  obtain A where A:
-      "\<And>i. open (A i)"
-      "\<And>i. l \<in> A i"
-      "\<And>S. open S \<Longrightarrow> l \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially"
-    by blast
-  define s where "s n i = (SOME j. i < j \<and> f j \<in> A (Suc n))" for n i
-  {
-    fix n i
-    have "infinite (A (Suc n) \<inter> range f - f`{.. i})"
-      using l A by auto
-    then have "\<exists>x. x \<in> A (Suc n) \<inter> range f - f`{.. i}"
-      unfolding ex_in_conv by (intro notI) simp
-    then have "\<exists>j. f j \<in> A (Suc n) \<and> j \<notin> {.. i}"
-      by auto
-    then have "\<exists>a. i < a \<and> f a \<in> A (Suc n)"
-      by (auto simp: not_le)
-    then have "i < s n i" "f (s n i) \<in> A (Suc n)"
-      unfolding s_def by (auto intro: someI2_ex)
-  }
-  note s = this
-  define r where "r = rec_nat (s 0 0) s"
-  have "subseq r"
-    by (auto simp: r_def s subseq_Suc_iff)
-  moreover
-  have "(\<lambda>n. f (r n)) \<longlonglongrightarrow> l"
-  proof (rule topological_tendstoI)
-    fix S
-    assume "open S" "l \<in> S"
-    with A(3) have "eventually (\<lambda>i. A i \<subseteq> S) sequentially"
-      by auto
-    moreover
-    {
-      fix i
-      assume "Suc 0 \<le> i"
-      then have "f (r i) \<in> A i"
-        by (cases i) (simp_all add: r_def s)
-    }
-    then have "eventually (\<lambda>i. f (r i) \<in> A i) sequentially"
-      by (auto simp: eventually_sequentially)
-    ultimately show "eventually (\<lambda>i. f (r i) \<in> S) sequentially"
-      by eventually_elim auto
-  qed
-  ultimately show "\<exists>r. subseq r \<and> (f \<circ> r) \<longlonglongrightarrow> l"
-    by (auto simp: convergent_def comp_def)
-qed
-
-lemma sequence_infinite_lemma:
-  fixes f :: "nat \<Rightarrow> 'a::t1_space"
-  assumes "\<forall>n. f n \<noteq> l"
-    and "(f \<longlongrightarrow> l) sequentially"
-  shows "infinite (range f)"
-proof
-  assume "finite (range f)"
-  then have "closed (range f)"
-    by (rule finite_imp_closed)
-  then have "open (- range f)"
-    by (rule open_Compl)
-  from assms(1) have "l \<in> - range f"
-    by auto
-  from assms(2) have "eventually (\<lambda>n. f n \<in> - range f) sequentially"
-    using \<open>open (- range f)\<close> \<open>l \<in> - range f\<close>
-    by (rule topological_tendstoD)
-  then show False
-    unfolding eventually_sequentially
-    by auto
-qed
-
-lemma closure_insert:
-  fixes x :: "'a::t1_space"
-  shows "closure (insert x s) = insert x (closure s)"
-  apply (rule closure_unique)
-  apply (rule insert_mono [OF closure_subset])
-  apply (rule closed_insert [OF closed_closure])
-  apply (simp add: closure_minimal)
-  done
-
-lemma islimpt_insert:
-  fixes x :: "'a::t1_space"
-  shows "x islimpt (insert a s) \<longleftrightarrow> x islimpt s"
-proof
-  assume *: "x islimpt (insert a s)"
-  show "x islimpt s"
-  proof (rule islimptI)
-    fix t
-    assume t: "x \<in> t" "open t"
-    show "\<exists>y\<in>s. y \<in> t \<and> y \<noteq> x"
-    proof (cases "x = a")
-      case True
-      obtain y where "y \<in> insert a s" "y \<in> t" "y \<noteq> x"
-        using * t by (rule islimptE)
-      with \<open>x = a\<close> show ?thesis by auto
-    next
-      case False
-      with t have t': "x \<in> t - {a}" "open (t - {a})"
-        by (simp_all add: open_Diff)
-      obtain y where "y \<in> insert a s" "y \<in> t - {a}" "y \<noteq> x"
-        using * t' by (rule islimptE)
-      then show ?thesis by auto
-    qed
-  qed
-next
-  assume "x islimpt s"
-  then show "x islimpt (insert a s)"
-    by (rule islimpt_subset) auto
-qed
-
-lemma islimpt_finite:
-  fixes x :: "'a::t1_space"
-  shows "finite s \<Longrightarrow> \<not> x islimpt s"
-  by (induct set: finite) (simp_all add: islimpt_insert)
-
-lemma islimpt_Un_finite:
-  fixes x :: "'a::t1_space"
-  shows "finite s \<Longrightarrow> x islimpt (s \<union> t) \<longleftrightarrow> x islimpt t"
-  by (simp add: islimpt_Un islimpt_finite)
-
-lemma islimpt_eq_acc_point:
-  fixes l :: "'a :: t1_space"
-  shows "l islimpt S \<longleftrightarrow> (\<forall>U. l\<in>U \<longrightarrow> open U \<longrightarrow> infinite (U \<inter> S))"
-proof (safe intro!: islimptI)
-  fix U
-  assume "l islimpt S" "l \<in> U" "open U" "finite (U \<inter> S)"
-  then have "l islimpt S" "l \<in> (U - (U \<inter> S - {l}))" "open (U - (U \<inter> S - {l}))"
-    by (auto intro: finite_imp_closed)
-  then show False
-    by (rule islimptE) auto
-next
-  fix T
-  assume *: "\<forall>U. l\<in>U \<longrightarrow> open U \<longrightarrow> infinite (U \<inter> S)" "l \<in> T" "open T"
-  then have "infinite (T \<inter> S - {l})"
-    by auto
-  then have "\<exists>x. x \<in> (T \<inter> S - {l})"
-    unfolding ex_in_conv by (intro notI) simp
-  then show "\<exists>y\<in>S. y \<in> T \<and> y \<noteq> l"
-    by auto
-qed
-
-lemma islimpt_range_imp_convergent_subsequence:
-  fixes l :: "'a :: {t1_space, first_countable_topology}"
-  assumes l: "l islimpt (range f)"
-  shows "\<exists>r. subseq r \<and> (f \<circ> r) \<longlonglongrightarrow> l"
-  using l unfolding islimpt_eq_acc_point
-  by (rule acc_point_range_imp_convergent_subsequence)
-
-lemma sequence_unique_limpt:
-  fixes f :: "nat \<Rightarrow> 'a::t2_space"
-  assumes "(f \<longlongrightarrow> l) sequentially"
-    and "l' islimpt (range f)"
-  shows "l' = l"
-proof (rule ccontr)
-  assume "l' \<noteq> l"
-  obtain s t where "open s" "open t" "l' \<in> s" "l \<in> t" "s \<inter> t = {}"
-    using hausdorff [OF \<open>l' \<noteq> l\<close>] by auto
-  have "eventually (\<lambda>n. f n \<in> t) sequentially"
-    using assms(1) \<open>open t\<close> \<open>l \<in> t\<close> by (rule topological_tendstoD)
-  then obtain N where "\<forall>n\<ge>N. f n \<in> t"
-    unfolding eventually_sequentially by auto
-
-  have "UNIV = {..<N} \<union> {N..}"
-    by auto
-  then have "l' islimpt (f ` ({..<N} \<union> {N..}))"
-    using assms(2) by simp
-  then have "l' islimpt (f ` {..<N} \<union> f ` {N..})"
-    by (simp add: image_Un)
-  then have "l' islimpt (f ` {N..})"
-    by (simp add: islimpt_Un_finite)
-  then obtain y where "y \<in> f ` {N..}" "y \<in> s" "y \<noteq> l'"
-    using \<open>l' \<in> s\<close> \<open>open s\<close> by (rule islimptE)
-  then obtain n where "N \<le> n" "f n \<in> s" "f n \<noteq> l'"
-    by auto
-  with \<open>\<forall>n\<ge>N. f n \<in> t\<close> have "f n \<in> s \<inter> t"
-    by simp
-  with \<open>s \<inter> t = {}\<close> show False
-    by simp
-qed
-
-lemma bolzano_weierstrass_imp_closed:
-  fixes s :: "'a::{first_countable_topology,t2_space} set"
-  assumes "\<forall>t. infinite t \<and> t \<subseteq> s --> (\<exists>x \<in> s. x islimpt t)"
-  shows "closed s"
-proof -
-  {
-    fix x l
-    assume as: "\<forall>n::nat. x n \<in> s" "(x \<longlongrightarrow> l) sequentially"
-    then have "l \<in> s"
-    proof (cases "\<forall>n. x n \<noteq> l")
-      case False
-      then show "l\<in>s" using as(1) by auto
-    next
-      case True note cas = this
-      with as(2) have "infinite (range x)"
-        using sequence_infinite_lemma[of x l] by auto
-      then obtain l' where "l'\<in>s" "l' islimpt (range x)"
-        using assms[THEN spec[where x="range x"]] as(1) by auto
-      then show "l\<in>s" using sequence_unique_limpt[of x l l']
-        using as cas by auto
-    qed
-  }
-  then show ?thesis
-    unfolding closed_sequential_limits by fast
-qed
-
-lemma compact_imp_bounded:
-  assumes "compact U"
-  shows "bounded U"
-proof -
-  have "compact U" "\<forall>x\<in>U. open (ball x 1)" "U \<subseteq> (\<Union>x\<in>U. ball x 1)"
-    using assms by auto
-  then obtain D where D: "D \<subseteq> U" "finite D" "U \<subseteq> (\<Union>x\<in>D. ball x 1)"
-    by (rule compactE_image)
-  from \<open>finite D\<close> have "bounded (\<Union>x\<in>D. ball x 1)"
-    by (simp add: bounded_UN)
-  then show "bounded U" using \<open>U \<subseteq> (\<Union>x\<in>D. ball x 1)\<close>
-    by (rule bounded_subset)
-qed
-
-text\<open>In particular, some common special cases.\<close>
-
-lemma compact_Un [intro]:
-  assumes "compact s"
-    and "compact t"
-  shows " compact (s \<union> t)"
-proof (rule compactI)
-  fix f
-  assume *: "Ball f open" "s \<union> t \<subseteq> \<Union>f"
-  from * \<open>compact s\<close> obtain s' where "s' \<subseteq> f \<and> finite s' \<and> s \<subseteq> \<Union>s'"
-    unfolding compact_eq_heine_borel by (auto elim!: allE[of _ f])
-  moreover
-  from * \<open>compact t\<close> obtain t' where "t' \<subseteq> f \<and> finite t' \<and> t \<subseteq> \<Union>t'"
-    unfolding compact_eq_heine_borel by (auto elim!: allE[of _ f])
-  ultimately show "\<exists>f'\<subseteq>f. finite f' \<and> s \<union> t \<subseteq> \<Union>f'"
-    by (auto intro!: exI[of _ "s' \<union> t'"])
-qed
-
-lemma compact_Union [intro]: "finite S \<Longrightarrow> (\<And>T. T \<in> S \<Longrightarrow> compact T) \<Longrightarrow> compact (\<Union>S)"
-  by (induct set: finite) auto
-
-lemma compact_UN [intro]:
-  "finite A \<Longrightarrow> (\<And>x. x \<in> A \<Longrightarrow> compact (B x)) \<Longrightarrow> compact (\<Union>x\<in>A. B x)"
-  by (rule compact_Union) auto
-
-lemma closed_Int_compact [intro]:
-  assumes "closed s"
-    and "compact t"
-  shows "compact (s \<inter> t)"
-  using compact_Int_closed [of t s] assms
-  by (simp add: Int_commute)
-
-lemma compact_Int [intro]:
-  fixes s t :: "'a :: t2_space set"
-  assumes "compact s"
-    and "compact t"
-  shows "compact (s \<inter> t)"
-  using assms by (intro compact_Int_closed compact_imp_closed)
-
-lemma compact_sing [simp]: "compact {a}"
-  unfolding compact_eq_heine_borel by auto
-
-lemma compact_insert [simp]:
-  assumes "compact s"
-  shows "compact (insert x s)"
-proof -
-  have "compact ({x} \<union> s)"
-    using compact_sing assms by (rule compact_Un)
-  then show ?thesis by simp
-qed
-
-lemma finite_imp_compact: "finite s \<Longrightarrow> compact s"
-  by (induct set: finite) simp_all
-
-lemma open_delete:
-  fixes s :: "'a::t1_space set"
-  shows "open s \<Longrightarrow> open (s - {x})"
-  by (simp add: open_Diff)
-
-lemma openin_delete:
-  fixes a :: "'a :: t1_space"
-  shows "openin (subtopology euclidean u) s
-         \<Longrightarrow> openin (subtopology euclidean u) (s - {a})"
-by (metis Int_Diff open_delete openin_open)
-
-text\<open>Compactness expressed with filters\<close>
-
-lemma closure_iff_nhds_not_empty:
-  "x \<in> closure X \<longleftrightarrow> (\<forall>A. \<forall>S\<subseteq>A. open S \<longrightarrow> x \<in> S \<longrightarrow> X \<inter> A \<noteq> {})"
-proof safe
-  assume x: "x \<in> closure X"
-  fix S A
-  assume "open S" "x \<in> S" "X \<inter> A = {}" "S \<subseteq> A"
-  then have "x \<notin> closure (-S)"
-    by (auto simp: closure_complement subset_eq[symmetric] intro: interiorI)
-  with x have "x \<in> closure X - closure (-S)"
-    by auto
-  also have "\<dots> \<subseteq> closure (X \<inter> S)"
-    using \<open>open S\<close> open_Int_closure_subset[of S X] by (simp add: closed_Compl ac_simps)
-  finally have "X \<inter> S \<noteq> {}" by auto
-  then show False using \<open>X \<inter> A = {}\<close> \<open>S \<subseteq> A\<close> by auto
-next
-  assume "\<forall>A S. S \<subseteq> A \<longrightarrow> open S \<longrightarrow> x \<in> S \<longrightarrow> X \<inter> A \<noteq> {}"
-  from this[THEN spec, of "- X", THEN spec, of "- closure X"]
-  show "x \<in> closure X"
-    by (simp add: closure_subset open_Compl)
-qed
-
-lemma compact_filter:
-  "compact U \<longleftrightarrow> (\<forall>F. F \<noteq> bot \<longrightarrow> eventually (\<lambda>x. x \<in> U) F \<longrightarrow> (\<exists>x\<in>U. inf (nhds x) F \<noteq> bot))"
-proof (intro allI iffI impI compact_fip[THEN iffD2] notI)
-  fix F
-  assume "compact U"
-  assume F: "F \<noteq> bot" "eventually (\<lambda>x. x \<in> U) F"
-  then have "U \<noteq> {}"
-    by (auto simp: eventually_False)
-
-  define Z where "Z = closure ` {A. eventually (\<lambda>x. x \<in> A) F}"
-  then have "\<forall>z\<in>Z. closed z"
-    by auto
-  moreover
-  have ev_Z: "\<And>z. z \<in> Z \<Longrightarrow> eventually (\<lambda>x. x \<in> z) F"
-    unfolding Z_def by (auto elim: eventually_mono intro: set_mp[OF closure_subset])
-  have "(\<forall>B \<subseteq> Z. finite B \<longrightarrow> U \<inter> \<Inter>B \<noteq> {})"
-  proof (intro allI impI)
-    fix B assume "finite B" "B \<subseteq> Z"
-    with \<open>finite B\<close> ev_Z F(2) have "eventually (\<lambda>x. x \<in> U \<inter> (\<Inter>B)) F"
-      by (auto simp: eventually_ball_finite_distrib eventually_conj_iff)
-    with F show "U \<inter> \<Inter>B \<noteq> {}"
-      by (intro notI) (simp add: eventually_False)
-  qed
-  ultimately have "U \<inter> \<Inter>Z \<noteq> {}"
-    using \<open>compact U\<close> unfolding compact_fip by blast
-  then obtain x where "x \<in> U" and x: "\<And>z. z \<in> Z \<Longrightarrow> x \<in> z"
-    by auto
-
-  have "\<And>P. eventually P (inf (nhds x) F) \<Longrightarrow> P \<noteq> bot"
-    unfolding eventually_inf eventually_nhds
-  proof safe
-    fix P Q R S
-    assume "eventually R F" "open S" "x \<in> S"
-    with open_Int_closure_eq_empty[of S "{x. R x}"] x[of "closure {x. R x}"]
-    have "S \<inter> {x. R x} \<noteq> {}" by (auto simp: Z_def)
-    moreover assume "Ball S Q" "\<forall>x. Q x \<and> R x \<longrightarrow> bot x"
-    ultimately show False by (auto simp: set_eq_iff)
-  qed
-  with \<open>x \<in> U\<close> show "\<exists>x\<in>U. inf (nhds x) F \<noteq> bot"
-    by (metis eventually_bot)
-next
-  fix A
-  assume A: "\<forall>a\<in>A. closed a" "\<forall>B\<subseteq>A. finite B \<longrightarrow> U \<inter> \<Inter>B \<noteq> {}" "U \<inter> \<Inter>A = {}"
-  define F where "F = (INF a:insert U A. principal a)"
-  have "F \<noteq> bot"
-    unfolding F_def
-  proof (rule INF_filter_not_bot)
-    fix X
-    assume X: "X \<subseteq> insert U A" "finite X"
-    with A(2)[THEN spec, of "X - {U}"] have "U \<inter> \<Inter>(X - {U}) \<noteq> {}"
-      by auto
-    with X show "(INF a:X. principal a) \<noteq> bot"
-      by (auto simp add: INF_principal_finite principal_eq_bot_iff)
-  qed
-  moreover
-  have "F \<le> principal U"
-    unfolding F_def by auto
-  then have "eventually (\<lambda>x. x \<in> U) F"
-    by (auto simp: le_filter_def eventually_principal)
-  moreover
-  assume "\<forall>F. F \<noteq> bot \<longrightarrow> eventually (\<lambda>x. x \<in> U) F \<longrightarrow> (\<exists>x\<in>U. inf (nhds x) F \<noteq> bot)"
-  ultimately obtain x where "x \<in> U" and x: "inf (nhds x) F \<noteq> bot"
-    by auto
-
-  { fix V assume "V \<in> A"
-    then have "F \<le> principal V"
-      unfolding F_def by (intro INF_lower2[of V]) auto
-    then have V: "eventually (\<lambda>x. x \<in> V) F"
-      by (auto simp: le_filter_def eventually_principal)
-    have "x \<in> closure V"
-      unfolding closure_iff_nhds_not_empty
-    proof (intro impI allI)
-      fix S A
-      assume "open S" "x \<in> S" "S \<subseteq> A"
-      then have "eventually (\<lambda>x. x \<in> A) (nhds x)"
-        by (auto simp: eventually_nhds)
-      with V have "eventually (\<lambda>x. x \<in> V \<inter> A) (inf (nhds x) F)"
-        by (auto simp: eventually_inf)
-      with x show "V \<inter> A \<noteq> {}"
-        by (auto simp del: Int_iff simp add: trivial_limit_def)
-    qed
-    then have "x \<in> V"
-      using \<open>V \<in> A\<close> A(1) by simp
-  }
-  with \<open>x\<in>U\<close> have "x \<in> U \<inter> \<Inter>A" by auto
-  with \<open>U \<inter> \<Inter>A = {}\<close> show False by auto
-qed
-
-definition "countably_compact U \<longleftrightarrow>
-    (\<forall>A. countable A \<longrightarrow> (\<forall>a\<in>A. open a) \<longrightarrow> U \<subseteq> \<Union>A \<longrightarrow> (\<exists>T\<subseteq>A. finite T \<and> U \<subseteq> \<Union>T))"
-
-lemma countably_compactE:
-  assumes "countably_compact s" and "\<forall>t\<in>C. open t" and "s \<subseteq> \<Union>C" "countable C"
-  obtains C' where "C' \<subseteq> C" and "finite C'" and "s \<subseteq> \<Union>C'"
-  using assms unfolding countably_compact_def by metis
-
-lemma countably_compactI:
-  assumes "\<And>C. \<forall>t\<in>C. open t \<Longrightarrow> s \<subseteq> \<Union>C \<Longrightarrow> countable C \<Longrightarrow> (\<exists>C'\<subseteq>C. finite C' \<and> s \<subseteq> \<Union>C')"
-  shows "countably_compact s"
-  using assms unfolding countably_compact_def by metis
-
-lemma compact_imp_countably_compact: "compact U \<Longrightarrow> countably_compact U"
-  by (auto simp: compact_eq_heine_borel countably_compact_def)
-
-lemma countably_compact_imp_compact:
-  assumes "countably_compact U"
-    and ccover: "countable B" "\<forall>b\<in>B. open b"
-    and basis: "\<And>T x. open T \<Longrightarrow> x \<in> T \<Longrightarrow> x \<in> U \<Longrightarrow> \<exists>b\<in>B. x \<in> b \<and> b \<inter> U \<subseteq> T"
-  shows "compact U"
-  using \<open>countably_compact U\<close>
-  unfolding compact_eq_heine_borel countably_compact_def
-proof safe
-  fix A
-  assume A: "\<forall>a\<in>A. open a" "U \<subseteq> \<Union>A"
-  assume *: "\<forall>A. countable A \<longrightarrow> (\<forall>a\<in>A. open a) \<longrightarrow> U \<subseteq> \<Union>A \<longrightarrow> (\<exists>T\<subseteq>A. finite T \<and> U \<subseteq> \<Union>T)"
-  moreover define C where "C = {b\<in>B. \<exists>a\<in>A. b \<inter> U \<subseteq> a}"
-  ultimately have "countable C" "\<forall>a\<in>C. open a"
-    unfolding C_def using ccover by auto
-  moreover
-  have "\<Union>A \<inter> U \<subseteq> \<Union>C"
-  proof safe
-    fix x a
-    assume "x \<in> U" "x \<in> a" "a \<in> A"
-    with basis[of a x] A obtain b where "b \<in> B" "x \<in> b" "b \<inter> U \<subseteq> a"
-      by blast
-    with \<open>a \<in> A\<close> show "x \<in> \<Union>C"
-      unfolding C_def by auto
-  qed
-  then have "U \<subseteq> \<Union>C" using \<open>U \<subseteq> \<Union>A\<close> by auto
-  ultimately obtain T where T: "T\<subseteq>C" "finite T" "U \<subseteq> \<Union>T"
-    using * by metis
-  then have "\<forall>t\<in>T. \<exists>a\<in>A. t \<inter> U \<subseteq> a"
-    by (auto simp: C_def)
-  then obtain f where "\<forall>t\<in>T. f t \<in> A \<and> t \<inter> U \<subseteq> f t"
-    unfolding bchoice_iff Bex_def ..
-  with T show "\<exists>T\<subseteq>A. finite T \<and> U \<subseteq> \<Union>T"
-    unfolding C_def by (intro exI[of _ "f`T"]) fastforce
-qed
-
-lemma countably_compact_imp_compact_second_countable:
-  "countably_compact U \<Longrightarrow> compact (U :: 'a :: second_countable_topology set)"
-proof (rule countably_compact_imp_compact)
-  fix T and x :: 'a
-  assume "open T" "x \<in> T"
-  from topological_basisE[OF is_basis this] obtain b where
-    "b \<in> (SOME B. countable B \<and> topological_basis B)" "x \<in> b" "b \<subseteq> T" .
-  then show "\<exists>b\<in>SOME B. countable B \<and> topological_basis B. x \<in> b \<and> b \<inter> U \<subseteq> T"
-    by blast
-qed (insert countable_basis topological_basis_open[OF is_basis], auto)
-
-lemma countably_compact_eq_compact:
-  "countably_compact U \<longleftrightarrow> compact (U :: 'a :: second_countable_topology set)"
-  using countably_compact_imp_compact_second_countable compact_imp_countably_compact by blast
-
-subsubsection\<open>Sequential compactness\<close>
-
-definition seq_compact :: "'a::topological_space set \<Rightarrow> bool"
-  where "seq_compact S \<longleftrightarrow>
-    (\<forall>f. (\<forall>n. f n \<in> S) \<longrightarrow> (\<exists>l\<in>S. \<exists>r. subseq r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially))"
-
-lemma seq_compactI:
-  assumes "\<And>f. \<forall>n. f n \<in> S \<Longrightarrow> \<exists>l\<in>S. \<exists>r. subseq r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially"
-  shows "seq_compact S"
-  unfolding seq_compact_def using assms by fast
-
-lemma seq_compactE:
-  assumes "seq_compact S" "\<forall>n. f n \<in> S"
-  obtains l r where "l \<in> S" "subseq r" "((f \<circ> r) \<longlongrightarrow> l) sequentially"
-  using assms unfolding seq_compact_def by fast
-
-lemma closed_sequentially: (* TODO: move upwards *)
-  assumes "closed s" and "\<forall>n. f n \<in> s" and "f \<longlonglongrightarrow> l"
-  shows "l \<in> s"
-proof (rule ccontr)
-  assume "l \<notin> s"
-  with \<open>closed s\<close> and \<open>f \<longlonglongrightarrow> l\<close> have "eventually (\<lambda>n. f n \<in> - s) sequentially"
-    by (fast intro: topological_tendstoD)
-  with \<open>\<forall>n. f n \<in> s\<close> show "False"
-    by simp
-qed
-
-lemma seq_compact_Int_closed:
-  assumes "seq_compact s" and "closed t"
-  shows "seq_compact (s \<inter> t)"
-proof (rule seq_compactI)
-  fix f assume "\<forall>n::nat. f n \<in> s \<inter> t"
-  hence "\<forall>n. f n \<in> s" and "\<forall>n. f n \<in> t"
-    by simp_all
-  from \<open>seq_compact s\<close> and \<open>\<forall>n. f n \<in> s\<close>
-  obtain l r where "l \<in> s" and r: "subseq r" and l: "(f \<circ> r) \<longlonglongrightarrow> l"
-    by (rule seq_compactE)
-  from \<open>\<forall>n. f n \<in> t\<close> have "\<forall>n. (f \<circ> r) n \<in> t"
-    by simp
-  from \<open>closed t\<close> and this and l have "l \<in> t"
-    by (rule closed_sequentially)
-  with \<open>l \<in> s\<close> and r and l show "\<exists>l\<in>s \<inter> t. \<exists>r. subseq r \<and> (f \<circ> r) \<longlonglongrightarrow> l"
-    by fast
-qed
-
-lemma seq_compact_closed_subset:
-  assumes "closed s" and "s \<subseteq> t" and "seq_compact t"
-  shows "seq_compact s"
-  using assms seq_compact_Int_closed [of t s] by (simp add: Int_absorb1)
-
-lemma seq_compact_imp_countably_compact:
-  fixes U :: "'a :: first_countable_topology set"
-  assumes "seq_compact U"
-  shows "countably_compact U"
-proof (safe intro!: countably_compactI)
-  fix A
-  assume A: "\<forall>a\<in>A. open a" "U \<subseteq> \<Union>A" "countable A"
-  have subseq: "\<And>X. range X \<subseteq> U \<Longrightarrow> \<exists>r x. x \<in> U \<and> subseq r \<and> (X \<circ> r) \<longlonglongrightarrow> x"
-    using \<open>seq_compact U\<close> by (fastforce simp: seq_compact_def subset_eq)
-  show "\<exists>T\<subseteq>A. finite T \<and> U \<subseteq> \<Union>T"
-  proof cases
-    assume "finite A"
-    with A show ?thesis by auto
-  next
-    assume "infinite A"
-    then have "A \<noteq> {}" by auto
-    show ?thesis
-    proof (rule ccontr)
-      assume "\<not> (\<exists>T\<subseteq>A. finite T \<and> U \<subseteq> \<Union>T)"
-      then have "\<forall>T. \<exists>x. T \<subseteq> A \<and> finite T \<longrightarrow> (x \<in> U - \<Union>T)"
-        by auto
-      then obtain X' where T: "\<And>T. T \<subseteq> A \<Longrightarrow> finite T \<Longrightarrow> X' T \<in> U - \<Union>T"
-        by metis
-      define X where "X n = X' (from_nat_into A ` {.. n})" for n
-      have X: "\<And>n. X n \<in> U - (\<Union>i\<le>n. from_nat_into A i)"
-        using \<open>A \<noteq> {}\<close> unfolding X_def by (intro T) (auto intro: from_nat_into)
-      then have "range X \<subseteq> U"
-        by auto
-      with subseq[of X] obtain r x where "x \<in> U" and r: "subseq r" "(X \<circ> r) \<longlonglongrightarrow> x"
-        by auto
-      from \<open>x\<in>U\<close> \<open>U \<subseteq> \<Union>A\<close> from_nat_into_surj[OF \<open>countable A\<close>]
-      obtain n where "x \<in> from_nat_into A n" by auto
-      with r(2) A(1) from_nat_into[OF \<open>A \<noteq> {}\<close>, of n]
-      have "eventually (\<lambda>i. X (r i) \<in> from_nat_into A n) sequentially"
-        unfolding tendsto_def by (auto simp: comp_def)
-      then obtain N where "\<And>i. N \<le> i \<Longrightarrow> X (r i) \<in> from_nat_into A n"
-        by (auto simp: eventually_sequentially)
-      moreover from X have "\<And>i. n \<le> r i \<Longrightarrow> X (r i) \<notin> from_nat_into A n"
-        by auto
-      moreover from \<open>subseq r\<close>[THEN seq_suble, of "max n N"] have "\<exists>i. n \<le> r i \<and> N \<le> i"
-        by (auto intro!: exI[of _ "max n N"])
-      ultimately show False
-        by auto
-    qed
-  qed
-qed
-
-lemma compact_imp_seq_compact:
-  fixes U :: "'a :: first_countable_topology set"
-  assumes "compact U"
-  shows "seq_compact U"
-  unfolding seq_compact_def
-proof safe
-  fix X :: "nat \<Rightarrow> 'a"
-  assume "\<forall>n. X n \<in> U"
-  then have "eventually (\<lambda>x. x \<in> U) (filtermap X sequentially)"
-    by (auto simp: eventually_filtermap)
-  moreover
-  have "filtermap X sequentially \<noteq> bot"
-    by (simp add: trivial_limit_def eventually_filtermap)
-  ultimately
-  obtain x where "x \<in> U" and x: "inf (nhds x) (filtermap X sequentially) \<noteq> bot" (is "?F \<noteq> _")
-    using \<open>compact U\<close> by (auto simp: compact_filter)
-
-  from countable_basis_at_decseq[of x]
-  obtain A where A:
-      "\<And>i. open (A i)"
-      "\<And>i. x \<in> A i"
-      "\<And>S. open S \<Longrightarrow> x \<in> S \<Longrightarrow> eventually (\<lambda>i. A i \<subseteq> S) sequentially"
-    by blast
-  define s where "s n i = (SOME j. i < j \<and> X j \<in> A (Suc n))" for n i
-  {
-    fix n i
-    have "\<exists>a. i < a \<and> X a \<in> A (Suc n)"
-    proof (rule ccontr)
-      assume "\<not> (\<exists>a>i. X a \<in> A (Suc n))"
-      then have "\<And>a. Suc i \<le> a \<Longrightarrow> X a \<notin> A (Suc n)"
-        by auto
-      then have "eventually (\<lambda>x. x \<notin> A (Suc n)) (filtermap X sequentially)"
-        by (auto simp: eventually_filtermap eventually_sequentially)
-      moreover have "eventually (\<lambda>x. x \<in> A (Suc n)) (nhds x)"
-        using A(1,2)[of "Suc n"] by (auto simp: eventually_nhds)
-      ultimately have "eventually (\<lambda>x. False) ?F"
-        by (auto simp add: eventually_inf)
-      with x show False
-        by (simp add: eventually_False)
-    qed
-    then have "i < s n i" "X (s n i) \<in> A (Suc n)"
-      unfolding s_def by (auto intro: someI2_ex)
-  }
-  note s = this
-  define r where "r = rec_nat (s 0 0) s"
-  have "subseq r"
-    by (auto simp: r_def s subseq_Suc_iff)
-  moreover
-  have "(\<lambda>n. X (r n)) \<longlonglongrightarrow> x"
-  proof (rule topological_tendstoI)
-    fix S
-    assume "open S" "x \<in> S"
-    with A(3) have "eventually (\<lambda>i. A i \<subseteq> S) sequentially"
-      by auto
-    moreover
-    {
-      fix i
-      assume "Suc 0 \<le> i"
-      then have "X (r i) \<in> A i"
-        by (cases i) (simp_all add: r_def s)
-    }
-    then have "eventually (\<lambda>i. X (r i) \<in> A i) sequentially"
-      by (auto simp: eventually_sequentially)
-    ultimately show "eventually (\<lambda>i. X (r i) \<in> S) sequentially"
-      by eventually_elim auto
-  qed
-  ultimately show "\<exists>x \<in> U. \<exists>r. subseq r \<and> (X \<circ> r) \<longlonglongrightarrow> x"
-    using \<open>x \<in> U\<close> by (auto simp: convergent_def comp_def)
-qed
-
-lemma countably_compact_imp_acc_point:
-  assumes "countably_compact s"
-    and "countable t"
-    and "infinite t"
-    and "t \<subseteq> s"
-  shows "\<exists>x\<in>s. \<forall>U. x\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> t)"
-proof (rule ccontr)
-  define C where "C = (\<lambda>F. interior (F \<union> (- t))) ` {F. finite F \<and> F \<subseteq> t }"
-  note \<open>countably_compact s\<close>
-  moreover have "\<forall>t\<in>C. open t"
-    by (auto simp: C_def)
-  moreover
-  assume "\<not> (\<exists>x\<in>s. \<forall>U. x\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> t))"
-  then have s: "\<And>x. x \<in> s \<Longrightarrow> \<exists>U. x\<in>U \<and> open U \<and> finite (U \<inter> t)" by metis
-  have "s \<subseteq> \<Union>C"
-    using \<open>t \<subseteq> s\<close>
-    unfolding C_def
-    apply (safe dest!: s)
-    apply (rule_tac a="U \<inter> t" in UN_I)
-    apply (auto intro!: interiorI simp add: finite_subset)
-    done
-  moreover
-  from \<open>countable t\<close> have "countable C"
-    unfolding C_def by (auto intro: countable_Collect_finite_subset)
-  ultimately
-  obtain D where "D \<subseteq> C" "finite D" "s \<subseteq> \<Union>D"
-    by (rule countably_compactE)
-  then obtain E where E: "E \<subseteq> {F. finite F \<and> F \<subseteq> t }" "finite E"
-    and s: "s \<subseteq> (\<Union>F\<in>E. interior (F \<union> (- t)))"
-    by (metis (lifting) finite_subset_image C_def)
-  from s \<open>t \<subseteq> s\<close> have "t \<subseteq> \<Union>E"
-    using interior_subset by blast
-  moreover have "finite (\<Union>E)"
-    using E by auto
-  ultimately show False using \<open>infinite t\<close>
-    by (auto simp: finite_subset)
-qed
-
-lemma countable_acc_point_imp_seq_compact:
-  fixes s :: "'a::first_countable_topology set"
-  assumes "\<forall>t. infinite t \<and> countable t \<and> t \<subseteq> s \<longrightarrow>
-    (\<exists>x\<in>s. \<forall>U. x\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> t))"
-  shows "seq_compact s"
-proof -
-  {
-    fix f :: "nat \<Rightarrow> 'a"
-    assume f: "\<forall>n. f n \<in> s"
-    have "\<exists>l\<in>s. \<exists>r. subseq r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially"
-    proof (cases "finite (range f)")
-      case True
-      obtain l where "infinite {n. f n = f l}"
-        using pigeonhole_infinite[OF _ True] by auto
-      then obtain r where "subseq r" and fr: "\<forall>n. f (r n) = f l"
-        using infinite_enumerate by blast
-      then have "subseq r \<and> (f \<circ> r) \<longlonglongrightarrow> f l"
-        by (simp add: fr o_def)
-      with f show "\<exists>l\<in>s. \<exists>r. subseq r \<and> (f \<circ> r) \<longlonglongrightarrow> l"
-        by auto
-    next
-      case False
-      with f assms have "\<exists>x\<in>s. \<forall>U. x\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> range f)"
-        by auto
-      then obtain l where "l \<in> s" "\<forall>U. l\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> range f)" ..
-      from this(2) have "\<exists>r. subseq r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially"
-        using acc_point_range_imp_convergent_subsequence[of l f] by auto
-      with \<open>l \<in> s\<close> show "\<exists>l\<in>s. \<exists>r. subseq r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially" ..
-    qed
-  }
-  then show ?thesis
-    unfolding seq_compact_def by auto
-qed
-
-lemma seq_compact_eq_countably_compact:
-  fixes U :: "'a :: first_countable_topology set"
-  shows "seq_compact U \<longleftrightarrow> countably_compact U"
-  using
-    countable_acc_point_imp_seq_compact
-    countably_compact_imp_acc_point
-    seq_compact_imp_countably_compact
-  by metis
-
-lemma seq_compact_eq_acc_point:
-  fixes s :: "'a :: first_countable_topology set"
-  shows "seq_compact s \<longleftrightarrow>
-    (\<forall>t. infinite t \<and> countable t \<and> t \<subseteq> s --> (\<exists>x\<in>s. \<forall>U. x\<in>U \<and> open U \<longrightarrow> infinite (U \<inter> t)))"
-  using
-    countable_acc_point_imp_seq_compact[of s]
-    countably_compact_imp_acc_point[of s]
-    seq_compact_imp_countably_compact[of s]
-  by metis
-
-lemma seq_compact_eq_compact:
-  fixes U :: "'a :: second_countable_topology set"
-  shows "seq_compact U \<longleftrightarrow> compact U"
-  using seq_compact_eq_countably_compact countably_compact_eq_compact by blast
-
-lemma bolzano_weierstrass_imp_seq_compact:
-  fixes s :: "'a::{t1_space, first_countable_topology} set"
-  shows "\<forall>t. infinite t \<and> t \<subseteq> s --> (\<exists>x \<in> s. x islimpt t) \<Longrightarrow> seq_compact s"
-  by (rule countable_acc_point_imp_seq_compact) (metis islimpt_eq_acc_point)
-
-subsubsection\<open>Totally bounded\<close>
-
-lemma cauchy_def: "Cauchy s \<longleftrightarrow> (\<forall>e>0. \<exists>N. \<forall>m n. m \<ge> N \<and> n \<ge> N --> dist(s m)(s n) < e)"
-  unfolding Cauchy_def by metis
-
-lemma seq_compact_imp_totally_bounded:
-  assumes "seq_compact s"
-  shows "\<forall>e>0. \<exists>k. finite k \<and> k \<subseteq> s \<and> s \<subseteq> (\<Union>x\<in>k. ball x e)"
-proof -
-  { fix e::real assume "e > 0" assume *: "\<And>k. finite k \<Longrightarrow> k \<subseteq> s \<Longrightarrow> \<not> s \<subseteq> (\<Union>x\<in>k. ball x e)"
-    let ?Q = "\<lambda>x n r. r \<in> s \<and> (\<forall>m < (n::nat). \<not> (dist (x m) r < e))"
-    have "\<exists>x. \<forall>n::nat. ?Q x n (x n)"
-    proof (rule dependent_wellorder_choice)
-      fix n x assume "\<And>y. y < n \<Longrightarrow> ?Q x y (x y)"
-      then have "\<not> s \<subseteq> (\<Union>x\<in>x ` {0..<n}. ball x e)"
-        using *[of "x ` {0 ..< n}"] by (auto simp: subset_eq)
-      then obtain z where z:"z\<in>s" "z \<notin> (\<Union>x\<in>x ` {0..<n}. ball x e)"
-        unfolding subset_eq by auto
-      show "\<exists>r. ?Q x n r"
-        using z by auto
-    qed simp
-    then obtain x where "\<forall>n::nat. x n \<in> s" and x:"\<And>n m. m < n \<Longrightarrow> \<not> (dist (x m) (x n) < e)"
-      by blast
-    then obtain l r where "l \<in> s" and r:"subseq r" and "((x \<circ> r) \<longlongrightarrow> l) sequentially"
-      using assms by (metis seq_compact_def)
-    from this(3) have "Cauchy (x \<circ> r)"
-      using LIMSEQ_imp_Cauchy by auto
-    then obtain N::nat where "\<And>m n. N \<le> m \<Longrightarrow> N \<le> n \<Longrightarrow> dist ((x \<circ> r) m) ((x \<circ> r) n) < e"
-      unfolding cauchy_def using \<open>e > 0\<close> by blast
-    then have False
-      using x[of "r N" "r (N+1)"] r by (auto simp: subseq_def) }
-  then show ?thesis
-    by metis
-qed
-
-subsubsection\<open>Heine-Borel theorem\<close>
-
-lemma seq_compact_imp_heine_borel:
-  fixes s :: "'a :: metric_space set"
-  assumes "seq_compact s"
-  shows "compact s"
-proof -
-  from seq_compact_imp_totally_bounded[OF \<open>seq_compact s\<close>]
-  obtain f where f: "\<forall>e>0. finite (f e) \<and> f e \<subseteq> s \<and> s \<subseteq> (\<Union>x\<in>f e. ball x e)"
-    unfolding choice_iff' ..
-  define K where "K = (\<lambda>(x, r). ball x r) ` ((\<Union>e \<in> \<rat> \<inter> {0 <..}. f e) \<times> \<rat>)"
-  have "countably_compact s"
-    using \<open>seq_compact s\<close> by (rule seq_compact_imp_countably_compact)
-  then show "compact s"
-  proof (rule countably_compact_imp_compact)
-    show "countable K"
-      unfolding K_def using f
-      by (auto intro: countable_finite countable_subset countable_rat
-               intro!: countable_image countable_SIGMA countable_UN)
-    show "\<forall>b\<in>K. open b" by (auto simp: K_def)
-  next
-    fix T x
-    assume T: "open T" "x \<in> T" and x: "x \<in> s"
-    from openE[OF T] obtain e where "0 < e" "ball x e \<subseteq> T"
-      by auto
-    then have "0 < e / 2" "ball x (e / 2) \<subseteq> T"
-      by auto
-    from Rats_dense_in_real[OF \<open>0 < e / 2\<close>] obtain r where "r \<in> \<rat>" "0 < r" "r < e / 2"
-      by auto
-    from f[rule_format, of r] \<open>0 < r\<close> \<open>x \<in> s\<close> obtain k where "k \<in> f r" "x \<in> ball k r"
-      by auto
-    from \<open>r \<in> \<rat>\<close> \<open>0 < r\<close> \<open>k \<in> f r\<close> have "ball k r \<in> K"
-      by (auto simp: K_def)
-    then show "\<exists>b\<in>K. x \<in> b \<and> b \<inter> s \<subseteq> T"
-    proof (rule bexI[rotated], safe)
-      fix y
-      assume "y \<in> ball k r"
-      with \<open>r < e / 2\<close> \<open>x \<in> ball k r\<close> have "dist x y < e"
-        by (intro dist_triangle_half_r [of k _ e]) (auto simp: dist_commute)
-      with \<open>ball x e \<subseteq> T\<close> show "y \<in> T"
-        by auto
-    next
-      show "x \<in> ball k r" by fact
-    qed
-  qed
-qed
-
-lemma compact_eq_seq_compact_metric:
-  "compact (s :: 'a::metric_space set) \<longleftrightarrow> seq_compact s"
-  using compact_imp_seq_compact seq_compact_imp_heine_borel by blast
-
-lemma compact_def:
-  "compact (S :: 'a::metric_space set) \<longleftrightarrow>
-   (\<forall>f. (\<forall>n. f n \<in> S) \<longrightarrow> (\<exists>l\<in>S. \<exists>r. subseq r \<and> (f \<circ> r) \<longlonglongrightarrow> l))"
-  unfolding compact_eq_seq_compact_metric seq_compact_def by auto
-
-subsubsection \<open>Complete the chain of compactness variants\<close>
-
-lemma compact_eq_bolzano_weierstrass:
-  fixes s :: "'a::metric_space set"
-  shows "compact s \<longleftrightarrow> (\<forall>t. infinite t \<and> t \<subseteq> s --> (\<exists>x \<in> s. x islimpt t))"
-  (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then show ?rhs
-    using heine_borel_imp_bolzano_weierstrass[of s] by auto
-next
-  assume ?rhs
-  then show ?lhs
-    unfolding compact_eq_seq_compact_metric by (rule bolzano_weierstrass_imp_seq_compact)
-qed
-
-lemma bolzano_weierstrass_imp_bounded:
-  "\<forall>t. infinite t \<and> t \<subseteq> s \<longrightarrow> (\<exists>x \<in> s. x islimpt t) \<Longrightarrow> bounded s"
-  using compact_imp_bounded unfolding compact_eq_bolzano_weierstrass .
-
-subsection \<open>Metric spaces with the Heine-Borel property\<close>
-
-text \<open>
-  A metric space (or topological vector space) is said to have the
-  Heine-Borel property if every closed and bounded subset is compact.
-\<close>
-
-class heine_borel = metric_space +
-  assumes bounded_imp_convergent_subsequence:
-    "bounded (range f) \<Longrightarrow> \<exists>l r. subseq r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially"
-
-lemma bounded_closed_imp_seq_compact:
-  fixes s::"'a::heine_borel set"
-  assumes "bounded s"
-    and "closed s"
-  shows "seq_compact s"
-proof (unfold seq_compact_def, clarify)
-  fix f :: "nat \<Rightarrow> 'a"
-  assume f: "\<forall>n. f n \<in> s"
-  with \<open>bounded s\<close> have "bounded (range f)"
-    by (auto intro: bounded_subset)
-  obtain l r where r: "subseq r" and l: "((f \<circ> r) \<longlongrightarrow> l) sequentially"
-    using bounded_imp_convergent_subsequence [OF \<open>bounded (range f)\<close>] by auto
-  from f have fr: "\<forall>n. (f \<circ> r) n \<in> s"
-    by simp
-  have "l \<in> s" using \<open>closed s\<close> fr l
-    by (rule closed_sequentially)
-  show "\<exists>l\<in>s. \<exists>r. subseq r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially"
-    using \<open>l \<in> s\<close> r l by blast
-qed
-
-lemma compact_eq_bounded_closed:
-  fixes s :: "'a::heine_borel set"
-  shows "compact s \<longleftrightarrow> bounded s \<and> closed s"
-  (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then show ?rhs
-    using compact_imp_closed compact_imp_bounded
-    by blast
-next
-  assume ?rhs
-  then show ?lhs
-    using bounded_closed_imp_seq_compact[of s]
-    unfolding compact_eq_seq_compact_metric
-    by auto
-qed
-
-lemma compact_closure [simp]:
-  fixes S :: "'a::heine_borel set"
-  shows "compact(closure S) \<longleftrightarrow> bounded S"
-by (meson bounded_closure bounded_subset closed_closure closure_subset compact_eq_bounded_closed)
-
-lemma compact_components:
-  fixes s :: "'a::heine_borel set"
-  shows "\<lbrakk>compact s; c \<in> components s\<rbrakk> \<Longrightarrow> compact c"
-by (meson bounded_subset closed_components in_components_subset compact_eq_bounded_closed)
-
-lemma not_compact_UNIV[simp]:
-  fixes s :: "'a::{real_normed_vector,perfect_space,heine_borel} set"
-  shows "~ compact (UNIV::'a set)"
-    by (simp add: compact_eq_bounded_closed)
-
-(* TODO: is this lemma necessary? *)
-lemma bounded_increasing_convergent:
-  fixes s :: "nat \<Rightarrow> real"
-  shows "bounded {s n| n. True} \<Longrightarrow> \<forall>n. s n \<le> s (Suc n) \<Longrightarrow> \<exists>l. s \<longlonglongrightarrow> l"
-  using Bseq_mono_convergent[of s] incseq_Suc_iff[of s]
-  by (auto simp: image_def Bseq_eq_bounded convergent_def incseq_def)
-
-instance real :: heine_borel
-proof
-  fix f :: "nat \<Rightarrow> real"
-  assume f: "bounded (range f)"
-  obtain r where r: "subseq r" "monoseq (f \<circ> r)"
-    unfolding comp_def by (metis seq_monosub)
-  then have "Bseq (f \<circ> r)"
-    unfolding Bseq_eq_bounded using f by (force intro: bounded_subset)
-  with r show "\<exists>l r. subseq r \<and> (f \<circ> r) \<longlonglongrightarrow> l"
-    using Bseq_monoseq_convergent[of "f \<circ> r"] by (auto simp: convergent_def)
-qed
-
-lemma compact_lemma_general:
-  fixes f :: "nat \<Rightarrow> 'a"
-  fixes proj::"'a \<Rightarrow> 'b \<Rightarrow> 'c::heine_borel" (infixl "proj" 60)
-  fixes unproj:: "('b \<Rightarrow> 'c) \<Rightarrow> 'a"
-  assumes finite_basis: "finite basis"
-  assumes bounded_proj: "\<And>k. k \<in> basis \<Longrightarrow> bounded ((\<lambda>x. x proj k) ` range f)"
-  assumes proj_unproj: "\<And>e k. k \<in> basis \<Longrightarrow> (unproj e) proj k = e k"
-  assumes unproj_proj: "\<And>x. unproj (\<lambda>k. x proj k) = x"
-  shows "\<forall>d\<subseteq>basis. \<exists>l::'a. \<exists> r.
-    subseq r \<and> (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) proj i) (l proj i) < e) sequentially)"
-proof safe
-  fix d :: "'b set"
-  assume d: "d \<subseteq> basis"
-  with finite_basis have "finite d"
-    by (blast intro: finite_subset)
-  from this d show "\<exists>l::'a. \<exists>r. subseq r \<and>
-    (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) proj i) (l proj i) < e) sequentially)"
-  proof (induct d)
-    case empty
-    then show ?case
-      unfolding subseq_def by auto
-  next
-    case (insert k d)
-    have k[intro]: "k \<in> basis"
-      using insert by auto
-    have s': "bounded ((\<lambda>x. x proj k) ` range f)"
-      using k
-      by (rule bounded_proj)
-    obtain l1::"'a" and r1 where r1: "subseq r1"
-      and lr1: "\<forall>e > 0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) proj i) (l1 proj i) < e) sequentially"
-      using insert(3) using insert(4) by auto
-    have f': "\<forall>n. f (r1 n) proj k \<in> (\<lambda>x. x proj k) ` range f"
-      by simp
-    have "bounded (range (\<lambda>i. f (r1 i) proj k))"
-      by (metis (lifting) bounded_subset f' image_subsetI s')
-    then obtain l2 r2 where r2:"subseq r2" and lr2:"((\<lambda>i. f (r1 (r2 i)) proj k) \<longlongrightarrow> l2) sequentially"
-      using bounded_imp_convergent_subsequence[of "\<lambda>i. f (r1 i) proj k"]
-      by (auto simp: o_def)
-    define r where "r = r1 \<circ> r2"
-    have r:"subseq r"
-      using r1 and r2 unfolding r_def o_def subseq_def by auto
-    moreover
-    define l where "l = unproj (\<lambda>i. if i = k then l2 else l1 proj i)"
-    {
-      fix e::real
-      assume "e > 0"
-      from lr1 \<open>e > 0\<close> have N1: "eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 n) proj i) (l1 proj i) < e) sequentially"
-        by blast
-      from lr2 \<open>e > 0\<close> have N2:"eventually (\<lambda>n. dist (f (r1 (r2 n)) proj k) l2 < e) sequentially"
-        by (rule tendstoD)
-      from r2 N1 have N1': "eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r1 (r2 n)) proj i) (l1 proj i) < e) sequentially"
-        by (rule eventually_subseq)
-      have "eventually (\<lambda>n. \<forall>i\<in>(insert k d). dist (f (r n) proj i) (l proj i) < e) sequentially"
-        using N1' N2
-        by eventually_elim (insert insert.prems, auto simp: l_def r_def o_def proj_unproj)
-    }
-    ultimately show ?case by auto
-  qed
-qed
-
-lemma compact_lemma:
-  fixes f :: "nat \<Rightarrow> 'a::euclidean_space"
-  assumes "bounded (range f)"
-  shows "\<forall>d\<subseteq>Basis. \<exists>l::'a. \<exists> r.
-    subseq r \<and> (\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>d. dist (f (r n) \<bullet> i) (l \<bullet> i) < e) sequentially)"
-  by (rule compact_lemma_general[where unproj="\<lambda>e. \<Sum>i\<in>Basis. e i *\<^sub>R i"])
-     (auto intro!: assms bounded_linear_inner_left bounded_linear_image
-       simp: euclidean_representation)
-
-instance euclidean_space \<subseteq> heine_borel
-proof
-  fix f :: "nat \<Rightarrow> 'a"
-  assume f: "bounded (range f)"
-  then obtain l::'a and r where r: "subseq r"
-    and l: "\<forall>e>0. eventually (\<lambda>n. \<forall>i\<in>Basis. dist (f (r n) \<bullet> i) (l \<bullet> i) < e) sequentially"
-    using compact_lemma [OF f] by blast
-  {
-    fix e::real
-    assume "e > 0"
-    hence "e / real_of_nat DIM('a) > 0" by (simp add: DIM_positive)
-    with l have "eventually (\<lambda>n. \<forall>i\<in>Basis. dist (f (r n) \<bullet> i) (l \<bullet> i) < e / (real_of_nat DIM('a))) sequentially"
-      by simp
-    moreover
-    {
-      fix n
-      assume n: "\<forall>i\<in>Basis. dist (f (r n) \<bullet> i) (l \<bullet> i) < e / (real_of_nat DIM('a))"
-      have "dist (f (r n)) l \<le> (\<Sum>i\<in>Basis. dist (f (r n) \<bullet> i) (l \<bullet> i))"
-        apply (subst euclidean_dist_l2)
-        using zero_le_dist
-        apply (rule setL2_le_setsum)
-        done
-      also have "\<dots> < (\<Sum>i\<in>(Basis::'a set). e / (real_of_nat DIM('a)))"
-        apply (rule setsum_strict_mono)
-        using n
-        apply auto
-        done
-      finally have "dist (f (r n)) l < e"
-        by auto
-    }
-    ultimately have "eventually (\<lambda>n. dist (f (r n)) l < e) sequentially"
-      by (rule eventually_mono)
-  }
-  then have *: "((f \<circ> r) \<longlongrightarrow> l) sequentially"
-    unfolding o_def tendsto_iff by simp
-  with r show "\<exists>l r. subseq r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially"
-    by auto
-qed
-
-lemma bounded_fst: "bounded s \<Longrightarrow> bounded (fst ` s)"
-  unfolding bounded_def
-  by (metis (erased, hide_lams) dist_fst_le image_iff order_trans)
-
-lemma bounded_snd: "bounded s \<Longrightarrow> bounded (snd ` s)"
-  unfolding bounded_def
-  by (metis (no_types, hide_lams) dist_snd_le image_iff order.trans)
-
-instance prod :: (heine_borel, heine_borel) heine_borel
-proof
-  fix f :: "nat \<Rightarrow> 'a \<times> 'b"
-  assume f: "bounded (range f)"
-  then have "bounded (fst ` range f)"
-    by (rule bounded_fst)
-  then have s1: "bounded (range (fst \<circ> f))"
-    by (simp add: image_comp)
-  obtain l1 r1 where r1: "subseq r1" and l1: "(\<lambda>n. fst (f (r1 n))) \<longlonglongrightarrow> l1"
-    using bounded_imp_convergent_subsequence [OF s1] unfolding o_def by fast
-  from f have s2: "bounded (range (snd \<circ> f \<circ> r1))"
-    by (auto simp add: image_comp intro: bounded_snd bounded_subset)
-  obtain l2 r2 where r2: "subseq r2" and l2: "((\<lambda>n. snd (f (r1 (r2 n)))) \<longlongrightarrow> l2) sequentially"
-    using bounded_imp_convergent_subsequence [OF s2]
-    unfolding o_def by fast
-  have l1': "((\<lambda>n. fst (f (r1 (r2 n)))) \<longlongrightarrow> l1) sequentially"
-    using LIMSEQ_subseq_LIMSEQ [OF l1 r2] unfolding o_def .
-  have l: "((f \<circ> (r1 \<circ> r2)) \<longlongrightarrow> (l1, l2)) sequentially"
-    using tendsto_Pair [OF l1' l2] unfolding o_def by simp
-  have r: "subseq (r1 \<circ> r2)"
-    using r1 r2 unfolding subseq_def by simp
-  show "\<exists>l r. subseq r \<and> ((f \<circ> r) \<longlongrightarrow> l) sequentially"
-    using l r by fast
-qed
-
-subsubsection \<open>Completeness\<close>
-
-lemma (in metric_space) completeI:
-  assumes "\<And>f. \<forall>n. f n \<in> s \<Longrightarrow> Cauchy f \<Longrightarrow> \<exists>l\<in>s. f \<longlonglongrightarrow> l"
-  shows "complete s"
-  using assms unfolding complete_def by fast
-
-lemma (in metric_space) completeE:
-  assumes "complete s" and "\<forall>n. f n \<in> s" and "Cauchy f"
-  obtains l where "l \<in> s" and "f \<longlonglongrightarrow> l"
-  using assms unfolding complete_def by fast
-
-(* TODO: generalize to uniform spaces *)
-lemma compact_imp_complete:
-  fixes s :: "'a::metric_space set"
-  assumes "compact s"
-  shows "complete s"
-proof -
-  {
-    fix f
-    assume as: "(\<forall>n::nat. f n \<in> s)" "Cauchy f"
-    from as(1) obtain l r where lr: "l\<in>s" "subseq r" "(f \<circ> r) \<longlonglongrightarrow> l"
-      using assms unfolding compact_def by blast
-
-    note lr' = seq_suble [OF lr(2)]
-    {
-      fix e :: real
-      assume "e > 0"
-      from as(2) obtain N where N:"\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (f m) (f n) < e/2"
-        unfolding cauchy_def
-        using \<open>e > 0\<close>
-        apply (erule_tac x="e/2" in allE)
-        apply auto
-        done
-      from lr(3)[unfolded lim_sequentially, THEN spec[where x="e/2"]]
-      obtain M where M:"\<forall>n\<ge>M. dist ((f \<circ> r) n) l < e/2"
-        using \<open>e > 0\<close> by auto
-      {
-        fix n :: nat
-        assume n: "n \<ge> max N M"
-        have "dist ((f \<circ> r) n) l < e/2"
-          using n M by auto
-        moreover have "r n \<ge> N"
-          using lr'[of n] n by auto
-        then have "dist (f n) ((f \<circ> r) n) < e / 2"
-          using N and n by auto
-        ultimately have "dist (f n) l < e"
-          using dist_triangle_half_r[of "f (r n)" "f n" e l]
-          by (auto simp add: dist_commute)
-      }
-      then have "\<exists>N. \<forall>n\<ge>N. dist (f n) l < e" by blast
-    }
-    then have "\<exists>l\<in>s. (f \<longlongrightarrow> l) sequentially" using \<open>l\<in>s\<close>
-      unfolding lim_sequentially by auto
-  }
-  then show ?thesis unfolding complete_def by auto
-qed
-
-lemma nat_approx_posE:
-  fixes e::real
-  assumes "0 < e"
-  obtains n :: nat where "1 / (Suc n) < e"
-proof atomize_elim
-  have "1 / real (Suc (nat \<lceil>1/e\<rceil>)) < 1 / \<lceil>1/e\<rceil>"
-    by (rule divide_strict_left_mono) (auto simp: \<open>0 < e\<close>)
-  also have "1 / \<lceil>1/e\<rceil> \<le> 1 / (1/e)"
-    by (rule divide_left_mono) (auto simp: \<open>0 < e\<close> ceiling_correct)
-  also have "\<dots> = e" by simp
-  finally show  "\<exists>n. 1 / real (Suc n) < e" ..
-qed
-
-lemma compact_eq_totally_bounded:
-  "compact s \<longleftrightarrow> complete s \<and> (\<forall>e>0. \<exists>k. finite k \<and> s \<subseteq> (\<Union>x\<in>k. ball x e))"
-    (is "_ \<longleftrightarrow> ?rhs")
-proof
-  assume assms: "?rhs"
-  then obtain k where k: "\<And>e. 0 < e \<Longrightarrow> finite (k e)" "\<And>e. 0 < e \<Longrightarrow> s \<subseteq> (\<Union>x\<in>k e. ball x e)"
-    by (auto simp: choice_iff')
-
-  show "compact s"
-  proof cases
-    assume "s = {}"
-    then show "compact s" by (simp add: compact_def)
-  next
-    assume "s \<noteq> {}"
-    show ?thesis
-      unfolding compact_def
-    proof safe
-      fix f :: "nat \<Rightarrow> 'a"
-      assume f: "\<forall>n. f n \<in> s"
-
-      define e where "e n = 1 / (2 * Suc n)" for n
-      then have [simp]: "\<And>n. 0 < e n" by auto
-      define B where "B n U = (SOME b. infinite {n. f n \<in> b} \<and> (\<exists>x. b \<subseteq> ball x (e n) \<inter> U))" for n U
-      {
-        fix n U
-        assume "infinite {n. f n \<in> U}"
-        then have "\<exists>b\<in>k (e n). infinite {i\<in>{n. f n \<in> U}. f i \<in> ball b (e n)}"
-          using k f by (intro pigeonhole_infinite_rel) (auto simp: subset_eq)
-        then obtain a where
-          "a \<in> k (e n)"
-          "infinite {i \<in> {n. f n \<in> U}. f i \<in> ball a (e n)}" ..
-        then have "\<exists>b. infinite {i. f i \<in> b} \<and> (\<exists>x. b \<subseteq> ball x (e n) \<inter> U)"
-          by (intro exI[of _ "ball a (e n) \<inter> U"] exI[of _ a]) (auto simp: ac_simps)
-        from someI_ex[OF this]
-        have "infinite {i. f i \<in> B n U}" "\<exists>x. B n U \<subseteq> ball x (e n) \<inter> U"
-          unfolding B_def by auto
-      }
-      note B = this
-
-      define F where "F = rec_nat (B 0 UNIV) B"
-      {
-        fix n
-        have "infinite {i. f i \<in> F n}"
-          by (induct n) (auto simp: F_def B)
-      }
-      then have F: "\<And>n. \<exists>x. F (Suc n) \<subseteq> ball x (e n) \<inter> F n"
-        using B by (simp add: F_def)
-      then have F_dec: "\<And>m n. m \<le> n \<Longrightarrow> F n \<subseteq> F m"
-        using decseq_SucI[of F] by (auto simp: decseq_def)
-
-      obtain sel where sel: "\<And>k i. i < sel k i" "\<And>k i. f (sel k i) \<in> F k"
-      proof (atomize_elim, unfold all_conj_distrib[symmetric], intro choice allI)
-        fix k i
-        have "infinite ({n. f n \<in> F k} - {.. i})"
-          using \<open>infinite {n. f n \<in> F k}\<close> by auto
-        from infinite_imp_nonempty[OF this]
-        show "\<exists>x>i. f x \<in> F k"
-          by (simp add: set_eq_iff not_le conj_commute)
-      qed
-
-      define t where "t = rec_nat (sel 0 0) (\<lambda>n i. sel (Suc n) i)"
-      have "subseq t"
-        unfolding subseq_Suc_iff by (simp add: t_def sel)
-      moreover have "\<forall>i. (f \<circ> t) i \<in> s"
-        using f by auto
-      moreover
-      {
-        fix n
-        have "(f \<circ> t) n \<in> F n"
-          by (cases n) (simp_all add: t_def sel)
-      }
-      note t = this
-
-      have "Cauchy (f \<circ> t)"
-      proof (safe intro!: metric_CauchyI exI elim!: nat_approx_posE)
-        fix r :: real and N n m
-        assume "1 / Suc N < r" "Suc N \<le> n" "Suc N \<le> m"
-        then have "(f \<circ> t) n \<in> F (Suc N)" "(f \<circ> t) m \<in> F (Suc N)" "2 * e N < r"
-          using F_dec t by (auto simp: e_def field_simps of_nat_Suc)
-        with F[of N] obtain x where "dist x ((f \<circ> t) n) < e N" "dist x ((f \<circ> t) m) < e N"
-          by (auto simp: subset_eq)
-        with dist_triangle[of "(f \<circ> t) m" "(f \<circ> t) n" x] \<open>2 * e N < r\<close>
-        show "dist ((f \<circ> t) m) ((f \<circ> t) n) < r"
-          by (simp add: dist_commute)
-      qed
-
-      ultimately show "\<exists>l\<in>s. \<exists>r. subseq r \<and> (f \<circ> r) \<longlonglongrightarrow> l"
-        using assms unfolding complete_def by blast
-    qed
-  qed
-qed (metis compact_imp_complete compact_imp_seq_compact seq_compact_imp_totally_bounded)
-
-lemma cauchy: "Cauchy s \<longleftrightarrow> (\<forall>e>0.\<exists> N::nat. \<forall>n\<ge>N. dist(s n)(s N) < e)" (is "?lhs = ?rhs")
-proof -
-  {
-    assume ?rhs
-    {
-      fix e::real
-      assume "e>0"
-      with \<open>?rhs\<close> obtain N where N:"\<forall>n\<ge>N. dist (s n) (s N) < e/2"
-        by (erule_tac x="e/2" in allE) auto
-      {
-        fix n m
-        assume nm:"N \<le> m \<and> N \<le> n"
-        then have "dist (s m) (s n) < e" using N
-          using dist_triangle_half_l[of "s m" "s N" "e" "s n"]
-          by blast
-      }
-      then have "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (s m) (s n) < e"
-        by blast
-    }
-    then have ?lhs
-      unfolding cauchy_def
-      by blast
-  }
-  then show ?thesis
-    unfolding cauchy_def
-    using dist_triangle_half_l
-    by blast
-qed
-
-lemma cauchy_imp_bounded:
-  assumes "Cauchy s"
-  shows "bounded (range s)"
-proof -
-  from assms obtain N :: nat where "\<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (s m) (s n) < 1"
-    unfolding cauchy_def
-    apply (erule_tac x= 1 in allE)
-    apply auto
-    done
-  then have N:"\<forall>n. N \<le> n \<longrightarrow> dist (s N) (s n) < 1" by auto
-  moreover
-  have "bounded (s ` {0..N})"
-    using finite_imp_bounded[of "s ` {1..N}"] by auto
-  then obtain a where a:"\<forall>x\<in>s ` {0..N}. dist (s N) x \<le> a"
-    unfolding bounded_any_center [where a="s N"] by auto
-  ultimately show "?thesis"
-    unfolding bounded_any_center [where a="s N"]
-    apply (rule_tac x="max a 1" in exI)
-    apply auto
-    apply (erule_tac x=y in allE)
-    apply (erule_tac x=y in ballE)
-    apply auto
-    done
-qed
-
-instance heine_borel < complete_space
-proof
-  fix f :: "nat \<Rightarrow> 'a" assume "Cauchy f"
-  then have "bounded (range f)"
-    by (rule cauchy_imp_bounded)
-  then have "compact (closure (range f))"
-    unfolding compact_eq_bounded_closed by auto
-  then have "complete (closure (range f))"
-    by (rule compact_imp_complete)
-  moreover have "\<forall>n. f n \<in> closure (range f)"
-    using closure_subset [of "range f"] by auto
-  ultimately have "\<exists>l\<in>closure (range f). (f \<longlongrightarrow> l) sequentially"
-    using \<open>Cauchy f\<close> unfolding complete_def by auto
-  then show "convergent f"
-    unfolding convergent_def by auto
-qed
-
-instance euclidean_space \<subseteq> banach ..
-
-lemma complete_UNIV: "complete (UNIV :: ('a::complete_space) set)"
-proof (rule completeI)
-  fix f :: "nat \<Rightarrow> 'a" assume "Cauchy f"
-  then have "convergent f" by (rule Cauchy_convergent)
-  then show "\<exists>l\<in>UNIV. f \<longlonglongrightarrow> l" unfolding convergent_def by simp
-qed
-
-lemma complete_imp_closed:
-  fixes s :: "'a::metric_space set"
-  assumes "complete s"
-  shows "closed s"
-proof (unfold closed_sequential_limits, clarify)
-  fix f x assume "\<forall>n. f n \<in> s" and "f \<longlonglongrightarrow> x"
-  from \<open>f \<longlonglongrightarrow> x\<close> have "Cauchy f"
-    by (rule LIMSEQ_imp_Cauchy)
-  with \<open>complete s\<close> and \<open>\<forall>n. f n \<in> s\<close> obtain l where "l \<in> s" and "f \<longlonglongrightarrow> l"
-    by (rule completeE)
-  from \<open>f \<longlonglongrightarrow> x\<close> and \<open>f \<longlonglongrightarrow> l\<close> have "x = l"
-    by (rule LIMSEQ_unique)
-  with \<open>l \<in> s\<close> show "x \<in> s"
-    by simp
-qed
-
-lemma complete_Int_closed:
-  fixes s :: "'a::metric_space set"
-  assumes "complete s" and "closed t"
-  shows "complete (s \<inter> t)"
-proof (rule completeI)
-  fix f assume "\<forall>n. f n \<in> s \<inter> t" and "Cauchy f"
-  then have "\<forall>n. f n \<in> s" and "\<forall>n. f n \<in> t"
-    by simp_all
-  from \<open>complete s\<close> obtain l where "l \<in> s" and "f \<longlonglongrightarrow> l"
-    using \<open>\<forall>n. f n \<in> s\<close> and \<open>Cauchy f\<close> by (rule completeE)
-  from \<open>closed t\<close> and \<open>\<forall>n. f n \<in> t\<close> and \<open>f \<longlonglongrightarrow> l\<close> have "l \<in> t"
-    by (rule closed_sequentially)
-  with \<open>l \<in> s\<close> and \<open>f \<longlonglongrightarrow> l\<close> show "\<exists>l\<in>s \<inter> t. f \<longlonglongrightarrow> l"
-    by fast
-qed
-
-lemma complete_closed_subset:
-  fixes s :: "'a::metric_space set"
-  assumes "closed s" and "s \<subseteq> t" and "complete t"
-  shows "complete s"
-  using assms complete_Int_closed [of t s] by (simp add: Int_absorb1)
-
-lemma complete_eq_closed:
-  fixes s :: "('a::complete_space) set"
-  shows "complete s \<longleftrightarrow> closed s"
-proof
-  assume "closed s" then show "complete s"
-    using subset_UNIV complete_UNIV by (rule complete_closed_subset)
-next
-  assume "complete s" then show "closed s"
-    by (rule complete_imp_closed)
-qed
-
-lemma convergent_eq_cauchy:
-  fixes s :: "nat \<Rightarrow> 'a::complete_space"
-  shows "(\<exists>l. (s \<longlongrightarrow> l) sequentially) \<longleftrightarrow> Cauchy s"
-  unfolding Cauchy_convergent_iff convergent_def ..
-
-lemma convergent_imp_bounded:
-  fixes s :: "nat \<Rightarrow> 'a::metric_space"
-  shows "(s \<longlongrightarrow> l) sequentially \<Longrightarrow> bounded (range s)"
-  by (intro cauchy_imp_bounded LIMSEQ_imp_Cauchy)
-
-lemma compact_cball[simp]:
-  fixes x :: "'a::heine_borel"
-  shows "compact (cball x e)"
-  using compact_eq_bounded_closed bounded_cball closed_cball
-  by blast
-
-lemma compact_frontier_bounded[intro]:
-  fixes s :: "'a::heine_borel set"
-  shows "bounded s \<Longrightarrow> compact (frontier s)"
-  unfolding frontier_def
-  using compact_eq_bounded_closed
-  by blast
-
-lemma compact_frontier[intro]:
-  fixes s :: "'a::heine_borel set"
-  shows "compact s \<Longrightarrow> compact (frontier s)"
-  using compact_eq_bounded_closed compact_frontier_bounded
-  by blast
-
-corollary compact_sphere [simp]:
-  fixes a :: "'a::{real_normed_vector,perfect_space,heine_borel}"
-  shows "compact (sphere a r)"
-using compact_frontier [of "cball a r"] by simp
-
-corollary bounded_sphere [simp]:
-  fixes a :: "'a::{real_normed_vector,perfect_space,heine_borel}"
-  shows "bounded (sphere a r)"
-by (simp add: compact_imp_bounded)
-
-corollary closed_sphere  [simp]:
-  fixes a :: "'a::{real_normed_vector,perfect_space,heine_borel}"
-  shows "closed (sphere a r)"
-by (simp add: compact_imp_closed)
-
-lemma frontier_subset_compact:
-  fixes s :: "'a::heine_borel set"
-  shows "compact s \<Longrightarrow> frontier s \<subseteq> s"
-  using frontier_subset_closed compact_eq_bounded_closed
-  by blast
-
-subsection\<open>Relations among convergence and absolute convergence for power series.\<close>
-
-lemma summable_imp_bounded:
-  fixes f :: "nat \<Rightarrow> 'a::real_normed_vector"
-  shows "summable f \<Longrightarrow> bounded (range f)"
-by (frule summable_LIMSEQ_zero) (simp add: convergent_imp_bounded)
-
-lemma summable_imp_sums_bounded:
-   "summable f \<Longrightarrow> bounded (range (\<lambda>n. setsum f {..<n}))"
-by (auto simp: summable_def sums_def dest: convergent_imp_bounded)
-
-lemma power_series_conv_imp_absconv_weak:
-  fixes a:: "nat \<Rightarrow> 'a::{real_normed_div_algebra,banach}" and w :: 'a
-  assumes sum: "summable (\<lambda>n. a n * z ^ n)" and no: "norm w < norm z"
-    shows "summable (\<lambda>n. of_real(norm(a n)) * w ^ n)"
-proof -
-  obtain M where M: "\<And>x. norm (a x * z ^ x) \<le> M"
-    using summable_imp_bounded [OF sum] by (force simp add: bounded_iff)
-  then have *: "summable (\<lambda>n. norm (a n) * norm w ^ n)"
-    by (rule_tac M=M in Abel_lemma) (auto simp: norm_mult norm_power intro: no)
-  show ?thesis
-    apply (rule series_comparison_complex [of "(\<lambda>n. of_real(norm(a n) * norm w ^ n))"])
-    apply (simp only: summable_complex_of_real *)
-    apply (auto simp: norm_mult norm_power)
-    done
-qed
-
-subsection \<open>Bounded closed nest property (proof does not use Heine-Borel)\<close>
-
-lemma bounded_closed_nest:
-  fixes s :: "nat \<Rightarrow> ('a::heine_borel) set"
-  assumes "\<forall>n. closed (s n)"
-    and "\<forall>n. s n \<noteq> {}"
-    and "\<forall>m n. m \<le> n \<longrightarrow> s n \<subseteq> s m"
-    and "bounded (s 0)"
-  shows "\<exists>a. \<forall>n. a \<in> s n"
-proof -
-  from assms(2) obtain x where x: "\<forall>n. x n \<in> s n"
-    using choice[of "\<lambda>n x. x \<in> s n"] by auto
-  from assms(4,1) have "seq_compact (s 0)"
-    by (simp add: bounded_closed_imp_seq_compact)
-  then obtain l r where lr: "l \<in> s 0" "subseq r" "(x \<circ> r) \<longlonglongrightarrow> l"
-    using x and assms(3) unfolding seq_compact_def by blast
-  have "\<forall>n. l \<in> s n"
-  proof
-    fix n :: nat
-    have "closed (s n)"
-      using assms(1) by simp
-    moreover have "\<forall>i. (x \<circ> r) i \<in> s i"
-      using x and assms(3) and lr(2) [THEN seq_suble] by auto
-    then have "\<forall>i. (x \<circ> r) (i + n) \<in> s n"
-      using assms(3) by (fast intro!: le_add2)
-    moreover have "(\<lambda>i. (x \<circ> r) (i + n)) \<longlonglongrightarrow> l"
-      using lr(3) by (rule LIMSEQ_ignore_initial_segment)
-    ultimately show "l \<in> s n"
-      by (rule closed_sequentially)
-  qed
-  then show ?thesis ..
-qed
-
-text \<open>Decreasing case does not even need compactness, just completeness.\<close>
-
-lemma decreasing_closed_nest:
-  fixes s :: "nat \<Rightarrow> ('a::complete_space) set"
-  assumes
-    "\<forall>n. closed (s n)"
-    "\<forall>n. s n \<noteq> {}"
-    "\<forall>m n. m \<le> n \<longrightarrow> s n \<subseteq> s m"
-    "\<forall>e>0. \<exists>n. \<forall>x\<in>s n. \<forall>y\<in>s n. dist x y < e"
-  shows "\<exists>a. \<forall>n. a \<in> s n"
-proof -
-  have "\<forall>n. \<exists>x. x \<in> s n"
-    using assms(2) by auto
-  then have "\<exists>t. \<forall>n. t n \<in> s n"
-    using choice[of "\<lambda>n x. x \<in> s n"] by auto
-  then obtain t where t: "\<forall>n. t n \<in> s n" by auto
-  {
-    fix e :: real
-    assume "e > 0"
-    then obtain N where N:"\<forall>x\<in>s N. \<forall>y\<in>s N. dist x y < e"
-      using assms(4) by auto
-    {
-      fix m n :: nat
-      assume "N \<le> m \<and> N \<le> n"
-      then have "t m \<in> s N" "t n \<in> s N"
-        using assms(3) t unfolding  subset_eq t by blast+
-      then have "dist (t m) (t n) < e"
-        using N by auto
-    }
-    then have "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (t m) (t n) < e"
-      by auto
-  }
-  then have "Cauchy t"
-    unfolding cauchy_def by auto
-  then obtain l where l:"(t \<longlongrightarrow> l) sequentially"
-    using complete_UNIV unfolding complete_def by auto
-  {
-    fix n :: nat
-    {
-      fix e :: real
-      assume "e > 0"
-      then obtain N :: nat where N: "\<forall>n\<ge>N. dist (t n) l < e"
-        using l[unfolded lim_sequentially] by auto
-      have "t (max n N) \<in> s n"
-        using assms(3)
-        unfolding subset_eq
-        apply (erule_tac x=n in allE)
-        apply (erule_tac x="max n N" in allE)
-        using t
-        apply auto
-        done
-      then have "\<exists>y\<in>s n. dist y l < e"
-        apply (rule_tac x="t (max n N)" in bexI)
-        using N
-        apply auto
-        done
-    }
-    then have "l \<in> s n"
-      using closed_approachable[of "s n" l] assms(1) by auto
-  }
-  then show ?thesis by auto
-qed
-
-text \<open>Strengthen it to the intersection actually being a singleton.\<close>
-
-lemma decreasing_closed_nest_sing:
-  fixes s :: "nat \<Rightarrow> 'a::complete_space set"
-  assumes
-    "\<forall>n. closed(s n)"
-    "\<forall>n. s n \<noteq> {}"
-    "\<forall>m n. m \<le> n \<longrightarrow> s n \<subseteq> s m"
-    "\<forall>e>0. \<exists>n. \<forall>x \<in> (s n). \<forall> y\<in>(s n). dist x y < e"
-  shows "\<exists>a. \<Inter>(range s) = {a}"
-proof -
-  obtain a where a: "\<forall>n. a \<in> s n"
-    using decreasing_closed_nest[of s] using assms by auto
-  {
-    fix b
-    assume b: "b \<in> \<Inter>(range s)"
-    {
-      fix e :: real
-      assume "e > 0"
-      then have "dist a b < e"
-        using assms(4) and b and a by blast
-    }
-    then have "dist a b = 0"
-      by (metis dist_eq_0_iff dist_nz less_le)
-  }
-  with a have "\<Inter>(range s) = {a}"
-    unfolding image_def by auto
-  then show ?thesis ..
-qed
-
-text\<open>Cauchy-type criteria for uniform convergence.\<close>
-
-lemma uniformly_convergent_eq_cauchy:
-  fixes s::"nat \<Rightarrow> 'b \<Rightarrow> 'a::complete_space"
-  shows
-    "(\<exists>l. \<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist(s n x)(l x) < e) \<longleftrightarrow>
-      (\<forall>e>0. \<exists>N. \<forall>m n x. N \<le> m \<and> N \<le> n \<and> P x  \<longrightarrow> dist (s m x) (s n x) < e)"
-  (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then obtain l where l:"\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist (s n x) (l x) < e"
-    by auto
-  {
-    fix e :: real
-    assume "e > 0"
-    then obtain N :: nat where N: "\<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist (s n x) (l x) < e / 2"
-      using l[THEN spec[where x="e/2"]] by auto
-    {
-      fix n m :: nat and x :: "'b"
-      assume "N \<le> m \<and> N \<le> n \<and> P x"
-      then have "dist (s m x) (s n x) < e"
-        using N[THEN spec[where x=m], THEN spec[where x=x]]
-        using N[THEN spec[where x=n], THEN spec[where x=x]]
-        using dist_triangle_half_l[of "s m x" "l x" e "s n x"] by auto
-    }
-    then have "\<exists>N. \<forall>m n x. N \<le> m \<and> N \<le> n \<and> P x  --> dist (s m x) (s n x) < e"  by auto
-  }
-  then show ?rhs by auto
-next
-  assume ?rhs
-  then have "\<forall>x. P x \<longrightarrow> Cauchy (\<lambda>n. s n x)"
-    unfolding cauchy_def
-    apply auto
-    apply (erule_tac x=e in allE)
-    apply auto
-    done
-  then obtain l where l: "\<forall>x. P x \<longrightarrow> ((\<lambda>n. s n x) \<longlongrightarrow> l x) sequentially"
-    unfolding convergent_eq_cauchy[symmetric]
-    using choice[of "\<lambda>x l. P x \<longrightarrow> ((\<lambda>n. s n x) \<longlongrightarrow> l) sequentially"]
-    by auto
-  {
-    fix e :: real
-    assume "e > 0"
-    then obtain N where N:"\<forall>m n x. N \<le> m \<and> N \<le> n \<and> P x \<longrightarrow> dist (s m x) (s n x) < e/2"
-      using \<open>?rhs\<close>[THEN spec[where x="e/2"]] by auto
-    {
-      fix x
-      assume "P x"
-      then obtain M where M:"\<forall>n\<ge>M. dist (s n x) (l x) < e/2"
-        using l[THEN spec[where x=x], unfolded lim_sequentially] and \<open>e > 0\<close>
-        by (auto elim!: allE[where x="e/2"])
-      fix n :: nat
-      assume "n \<ge> N"
-      then have "dist(s n x)(l x) < e"
-        using \<open>P x\<close>and N[THEN spec[where x=n], THEN spec[where x="N+M"], THEN spec[where x=x]]
-        using M[THEN spec[where x="N+M"]] and dist_triangle_half_l[of "s n x" "s (N+M) x" e "l x"]
-        by (auto simp add: dist_commute)
-    }
-    then have "\<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist(s n x)(l x) < e"
-      by auto
-  }
-  then show ?lhs by auto
-qed
-
-lemma uniformly_cauchy_imp_uniformly_convergent:
-  fixes s :: "nat \<Rightarrow> 'a \<Rightarrow> 'b::complete_space"
-  assumes "\<forall>e>0.\<exists>N. \<forall>m (n::nat) x. N \<le> m \<and> N \<le> n \<and> P x --> dist(s m x)(s n x) < e"
-    and "\<forall>x. P x --> (\<forall>e>0. \<exists>N. \<forall>n. N \<le> n \<longrightarrow> dist(s n x)(l x) < e)"
-  shows "\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist(s n x)(l x) < e"
-proof -
-  obtain l' where l:"\<forall>e>0. \<exists>N. \<forall>n x. N \<le> n \<and> P x \<longrightarrow> dist (s n x) (l' x) < e"
-    using assms(1) unfolding uniformly_convergent_eq_cauchy[symmetric] by auto
-  moreover
-  {
-    fix x
-    assume "P x"
-    then have "l x = l' x"
-      using tendsto_unique[OF trivial_limit_sequentially, of "\<lambda>n. s n x" "l x" "l' x"]
-      using l and assms(2) unfolding lim_sequentially by blast
-  }
-  ultimately show ?thesis by auto
-qed
-
-
-subsection \<open>Continuity\<close>
-
-text\<open>Derive the epsilon-delta forms, which we often use as "definitions"\<close>
-
-lemma continuous_within_eps_delta:
-  "continuous (at x within s) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. \<forall>x'\<in> s.  dist x' x < d --> dist (f x') (f x) < e)"
-  unfolding continuous_within and Lim_within
-  apply auto
-  apply (metis dist_nz dist_self)
-  apply blast
-  done
-
-corollary continuous_at_eps_delta:
-  "continuous (at x) f \<longleftrightarrow> (\<forall>e > 0. \<exists>d > 0. \<forall>x'. dist x' x < d \<longrightarrow> dist (f x') (f x) < e)"
-  using continuous_within_eps_delta [of x UNIV f] by simp
-
-lemma continuous_at_right_real_increasing:
-  fixes f :: "real \<Rightarrow> real"
-  assumes nondecF: "\<And>x y. x \<le> y \<Longrightarrow> f x \<le> f y"
-  shows "continuous (at_right a) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. f (a + d) - f a < e)"
-  apply (simp add: greaterThan_def dist_real_def continuous_within Lim_within_le)
-  apply (intro all_cong ex_cong)
-  apply safe
-  apply (erule_tac x="a + d" in allE)
-  apply simp
-  apply (simp add: nondecF field_simps)
-  apply (drule nondecF)
-  apply simp
-  done
-
-lemma continuous_at_left_real_increasing:
-  assumes nondecF: "\<And> x y. x \<le> y \<Longrightarrow> f x \<le> ((f y) :: real)"
-  shows "(continuous (at_left (a :: real)) f) = (\<forall>e > 0. \<exists>delta > 0. f a - f (a - delta) < e)"
-  apply (simp add: lessThan_def dist_real_def continuous_within Lim_within_le)
-  apply (intro all_cong ex_cong)
-  apply safe
-  apply (erule_tac x="a - d" in allE)
-  apply simp
-  apply (simp add: nondecF field_simps)
-  apply (cut_tac x="a - d" and y="x" in nondecF)
-  apply simp_all
-  done
-
-text\<open>Versions in terms of open balls.\<close>
-
-lemma continuous_within_ball:
-  "continuous (at x within s) f \<longleftrightarrow>
-    (\<forall>e > 0. \<exists>d > 0. f ` (ball x d \<inter> s) \<subseteq> ball (f x) e)"
-  (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  {
-    fix e :: real
-    assume "e > 0"
-    then obtain d where d: "d>0" "\<forall>xa\<in>s. 0 < dist xa x \<and> dist xa x < d \<longrightarrow> dist (f xa) (f x) < e"
-      using \<open>?lhs\<close>[unfolded continuous_within Lim_within] by auto
-    {
-      fix y
-      assume "y \<in> f ` (ball x d \<inter> s)"
-      then have "y \<in> ball (f x) e"
-        using d(2)
-        apply (auto simp add: dist_commute)
-        apply (erule_tac x=xa in ballE)
-        apply auto
-        using \<open>e > 0\<close>
-        apply auto
-        done
-    }
-    then have "\<exists>d>0. f ` (ball x d \<inter> s) \<subseteq> ball (f x) e"
-      using \<open>d > 0\<close>
-      unfolding subset_eq ball_def by (auto simp add: dist_commute)
-  }
-  then show ?rhs by auto
-next
-  assume ?rhs
-  then show ?lhs
-    unfolding continuous_within Lim_within ball_def subset_eq
-    apply (auto simp add: dist_commute)
-    apply (erule_tac x=e in allE)
-    apply auto
-    done
-qed
-
-lemma continuous_at_ball:
-  "continuous (at x) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. f ` (ball x d) \<subseteq> ball (f x) e)" (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then show ?rhs
-    unfolding continuous_at Lim_at subset_eq Ball_def Bex_def image_iff mem_ball
-    apply auto
-    apply (erule_tac x=e in allE)
-    apply auto
-    apply (rule_tac x=d in exI)
-    apply auto
-    apply (erule_tac x=xa in allE)
-    apply (auto simp add: dist_commute)
-    done
-next
-  assume ?rhs
-  then show ?lhs
-    unfolding continuous_at Lim_at subset_eq Ball_def Bex_def image_iff mem_ball
-    apply auto
-    apply (erule_tac x=e in allE)
-    apply auto
-    apply (rule_tac x=d in exI)
-    apply auto
-    apply (erule_tac x="f xa" in allE)
-    apply (auto simp add: dist_commute)
-    done
-qed
-
-text\<open>Define setwise continuity in terms of limits within the set.\<close>
-
-lemma continuous_on_iff:
-  "continuous_on s f \<longleftrightarrow>
-    (\<forall>x\<in>s. \<forall>e>0. \<exists>d>0. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e)"
-  unfolding continuous_on_def Lim_within
-  by (metis dist_pos_lt dist_self)
-
-lemma continuous_within_E:
-  assumes "continuous (at x within s) f" "e>0"
-  obtains d where "d>0"  "\<And>x'. \<lbrakk>x'\<in> s; dist x' x \<le> d\<rbrakk> \<Longrightarrow> dist (f x') (f x) < e"
-  using assms apply (simp add: continuous_within_eps_delta)
-  apply (drule spec [of _ e], clarify)
-  apply (rule_tac d="d/2" in that, auto)
-  done
-
-lemma continuous_onI [intro?]:
-  assumes "\<And>x e. \<lbrakk>e > 0; x \<in> s\<rbrakk> \<Longrightarrow> \<exists>d>0. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) \<le> e"
-  shows "continuous_on s f"
-apply (simp add: continuous_on_iff, clarify)
-apply (rule ex_forward [OF assms [OF half_gt_zero]], auto)
-done
-
-text\<open>Some simple consequential lemmas.\<close>
-
-lemma continuous_onE:
-    assumes "continuous_on s f" "x\<in>s" "e>0"
-    obtains d where "d>0"  "\<And>x'. \<lbrakk>x' \<in> s; dist x' x \<le> d\<rbrakk> \<Longrightarrow> dist (f x') (f x) < e"
-  using assms
-  apply (simp add: continuous_on_iff)
-  apply (elim ballE allE)
-  apply (auto intro: that [where d="d/2" for d])
-  done
-
-lemma uniformly_continuous_onE:
-  assumes "uniformly_continuous_on s f" "0 < e"
-  obtains d where "d>0" "\<And>x x'. \<lbrakk>x\<in>s; x'\<in>s; dist x' x < d\<rbrakk> \<Longrightarrow> dist (f x') (f x) < e"
-using assms
-by (auto simp: uniformly_continuous_on_def)
-
-lemma continuous_at_imp_continuous_within:
-  "continuous (at x) f \<Longrightarrow> continuous (at x within s) f"
-  unfolding continuous_within continuous_at using Lim_at_imp_Lim_at_within by auto
-
-lemma Lim_trivial_limit: "trivial_limit net \<Longrightarrow> (f \<longlongrightarrow> l) net"
-  by simp
-
-lemmas continuous_on = continuous_on_def \<comment> "legacy theorem name"
-
-lemma continuous_within_subset:
-  "continuous (at x within s) f \<Longrightarrow> t \<subseteq> s \<Longrightarrow> continuous (at x within t) f"
-  unfolding continuous_within by(metis tendsto_within_subset)
-
-lemma continuous_on_interior:
-  "continuous_on s f \<Longrightarrow> x \<in> interior s \<Longrightarrow> continuous (at x) f"
-  by (metis continuous_on_eq_continuous_at continuous_on_subset interiorE)
-
-lemma continuous_on_eq:
-  "\<lbrakk>continuous_on s f; \<And>x. x \<in> s \<Longrightarrow> f x = g x\<rbrakk> \<Longrightarrow> continuous_on s g"
-  unfolding continuous_on_def tendsto_def eventually_at_topological
-  by simp
-
-text \<open>Characterization of various kinds of continuity in terms of sequences.\<close>
-
-lemma continuous_within_sequentially:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::topological_space"
-  shows "continuous (at a within s) f \<longleftrightarrow>
-    (\<forall>x. (\<forall>n::nat. x n \<in> s) \<and> (x \<longlongrightarrow> a) sequentially
-         \<longrightarrow> ((f \<circ> x) \<longlongrightarrow> f a) sequentially)"
-  (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  {
-    fix x :: "nat \<Rightarrow> 'a"
-    assume x: "\<forall>n. x n \<in> s" "\<forall>e>0. eventually (\<lambda>n. dist (x n) a < e) sequentially"
-    fix T :: "'b set"
-    assume "open T" and "f a \<in> T"
-    with \<open>?lhs\<close> obtain d where "d>0" and d:"\<forall>x\<in>s. 0 < dist x a \<and> dist x a < d \<longrightarrow> f x \<in> T"
-      unfolding continuous_within tendsto_def eventually_at by auto
-    have "eventually (\<lambda>n. dist (x n) a < d) sequentially"
-      using x(2) \<open>d>0\<close> by simp
-    then have "eventually (\<lambda>n. (f \<circ> x) n \<in> T) sequentially"
-    proof eventually_elim
-      case (elim n)
-      then show ?case
-        using d x(1) \<open>f a \<in> T\<close> by auto
-    qed
-  }
-  then show ?rhs
-    unfolding tendsto_iff tendsto_def by simp
-next
-  assume ?rhs
-  then show ?lhs
-    unfolding continuous_within tendsto_def [where l="f a"]
-    by (simp add: sequentially_imp_eventually_within)
-qed
-
-lemma continuous_at_sequentially:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::topological_space"
-  shows "continuous (at a) f \<longleftrightarrow>
-    (\<forall>x. (x \<longlongrightarrow> a) sequentially --> ((f \<circ> x) \<longlongrightarrow> f a) sequentially)"
-  using continuous_within_sequentially[of a UNIV f] by simp
-
-lemma continuous_on_sequentially:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::topological_space"
-  shows "continuous_on s f \<longleftrightarrow>
-    (\<forall>x. \<forall>a \<in> s. (\<forall>n. x(n) \<in> s) \<and> (x \<longlongrightarrow> a) sequentially
-      --> ((f \<circ> x) \<longlongrightarrow> f a) sequentially)"
-  (is "?lhs = ?rhs")
-proof
-  assume ?rhs
-  then show ?lhs
-    using continuous_within_sequentially[of _ s f]
-    unfolding continuous_on_eq_continuous_within
-    by auto
-next
-  assume ?lhs
-  then show ?rhs
-    unfolding continuous_on_eq_continuous_within
-    using continuous_within_sequentially[of _ s f]
-    by auto
-qed
-
-lemma uniformly_continuous_on_sequentially:
-  "uniformly_continuous_on s f \<longleftrightarrow> (\<forall>x y. (\<forall>n. x n \<in> s) \<and> (\<forall>n. y n \<in> s) \<and>
-    (\<lambda>n. dist (x n) (y n)) \<longlonglongrightarrow> 0 \<longrightarrow> (\<lambda>n. dist (f(x n)) (f(y n))) \<longlonglongrightarrow> 0)" (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  {
-    fix x y
-    assume x: "\<forall>n. x n \<in> s"
-      and y: "\<forall>n. y n \<in> s"
-      and xy: "((\<lambda>n. dist (x n) (y n)) \<longlongrightarrow> 0) sequentially"
-    {
-      fix e :: real
-      assume "e > 0"
-      then obtain d where "d > 0" and d: "\<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e"
-        using \<open>?lhs\<close>[unfolded uniformly_continuous_on_def, THEN spec[where x=e]] by auto
-      obtain N where N: "\<forall>n\<ge>N. dist (x n) (y n) < d"
-        using xy[unfolded lim_sequentially dist_norm] and \<open>d>0\<close> by auto
-      {
-        fix n
-        assume "n\<ge>N"
-        then have "dist (f (x n)) (f (y n)) < e"
-          using N[THEN spec[where x=n]]
-          using d[THEN bspec[where x="x n"], THEN bspec[where x="y n"]]
-          using x and y
-          by (simp add: dist_commute)
-      }
-      then have "\<exists>N. \<forall>n\<ge>N. dist (f (x n)) (f (y n)) < e"
-        by auto
-    }
-    then have "((\<lambda>n. dist (f(x n)) (f(y n))) \<longlongrightarrow> 0) sequentially"
-      unfolding lim_sequentially and dist_real_def by auto
-  }
-  then show ?rhs by auto
-next
-  assume ?rhs
-  {
-    assume "\<not> ?lhs"
-    then obtain e where "e > 0" "\<forall>d>0. \<exists>x\<in>s. \<exists>x'\<in>s. dist x' x < d \<and> \<not> dist (f x') (f x) < e"
-      unfolding uniformly_continuous_on_def by auto
-    then obtain fa where fa:
-      "\<forall>x. 0 < x \<longrightarrow> fst (fa x) \<in> s \<and> snd (fa x) \<in> s \<and> dist (fst (fa x)) (snd (fa x)) < x \<and> \<not> dist (f (fst (fa x))) (f (snd (fa x))) < e"
-      using choice[of "\<lambda>d x. d>0 \<longrightarrow> fst x \<in> s \<and> snd x \<in> s \<and> dist (snd x) (fst x) < d \<and> \<not> dist (f (snd x)) (f (fst x)) < e"]
-      unfolding Bex_def
-      by (auto simp add: dist_commute)
-    define x where "x n = fst (fa (inverse (real n + 1)))" for n
-    define y where "y n = snd (fa (inverse (real n + 1)))" for n
-    have xyn: "\<forall>n. x n \<in> s \<and> y n \<in> s"
-      and xy0: "\<forall>n. dist (x n) (y n) < inverse (real n + 1)"
-      and fxy:"\<forall>n. \<not> dist (f (x n)) (f (y n)) < e"
-      unfolding x_def and y_def using fa
-      by auto
-    {
-      fix e :: real
-      assume "e > 0"
-      then obtain N :: nat where "N \<noteq> 0" and N: "0 < inverse (real N) \<and> inverse (real N) < e"
-        unfolding real_arch_inverse[of e] by auto
-      {
-        fix n :: nat
-        assume "n \<ge> N"
-        then have "inverse (real n + 1) < inverse (real N)"
-          using of_nat_0_le_iff and \<open>N\<noteq>0\<close> by auto
-        also have "\<dots> < e" using N by auto
-        finally have "inverse (real n + 1) < e" by auto
-        then have "dist (x n) (y n) < e"
-          using xy0[THEN spec[where x=n]] by auto
-      }
-      then have "\<exists>N. \<forall>n\<ge>N. dist (x n) (y n) < e" by auto
-    }
-    then have "\<forall>e>0. \<exists>N. \<forall>n\<ge>N. dist (f (x n)) (f (y n)) < e"
-      using \<open>?rhs\<close>[THEN spec[where x=x], THEN spec[where x=y]] and xyn
-      unfolding lim_sequentially dist_real_def by auto
-    then have False using fxy and \<open>e>0\<close> by auto
-  }
-  then show ?lhs
-    unfolding uniformly_continuous_on_def by blast
-qed
-
-
-text\<open>The usual transformation theorems.\<close>
-
-lemma continuous_transform_within:
-  fixes f g :: "'a::metric_space \<Rightarrow> 'b::topological_space"
-  assumes "continuous (at x within s) f"
-    and "0 < d"
-    and "x \<in> s"
-    and "\<And>x'. \<lbrakk>x' \<in> s; dist x' x < d\<rbrakk> \<Longrightarrow> f x' = g x'"
-  shows "continuous (at x within s) g"
-  using assms
-  unfolding continuous_within
-  by (force simp add: intro: Lim_transform_within)
-
-
-subsubsection \<open>Structural rules for pointwise continuity\<close>
-
-lemma continuous_infdist[continuous_intros]:
-  assumes "continuous F f"
-  shows "continuous F (\<lambda>x. infdist (f x) A)"
-  using assms unfolding continuous_def by (rule tendsto_infdist)
-
-lemma continuous_infnorm[continuous_intros]:
-  "continuous F f \<Longrightarrow> continuous F (\<lambda>x. infnorm (f x))"
-  unfolding continuous_def by (rule tendsto_infnorm)
-
-lemma continuous_inner[continuous_intros]:
-  assumes "continuous F f"
-    and "continuous F g"
-  shows "continuous F (\<lambda>x. inner (f x) (g x))"
-  using assms unfolding continuous_def by (rule tendsto_inner)
-
-lemmas continuous_at_inverse = isCont_inverse
-
-subsubsection \<open>Structural rules for setwise continuity\<close>
-
-lemma continuous_on_infnorm[continuous_intros]:
-  "continuous_on s f \<Longrightarrow> continuous_on s (\<lambda>x. infnorm (f x))"
-  unfolding continuous_on by (fast intro: tendsto_infnorm)
-
-lemma continuous_on_inner[continuous_intros]:
-  fixes g :: "'a::topological_space \<Rightarrow> 'b::real_inner"
-  assumes "continuous_on s f"
-    and "continuous_on s g"
-  shows "continuous_on s (\<lambda>x. inner (f x) (g x))"
-  using bounded_bilinear_inner assms
-  by (rule bounded_bilinear.continuous_on)
-
-subsubsection \<open>Structural rules for uniform continuity\<close>
-
-lemma uniformly_continuous_on_dist[continuous_intros]:
-  fixes f g :: "'a::metric_space \<Rightarrow> 'b::metric_space"
-  assumes "uniformly_continuous_on s f"
-    and "uniformly_continuous_on s g"
-  shows "uniformly_continuous_on s (\<lambda>x. dist (f x) (g x))"
-proof -
-  {
-    fix a b c d :: 'b
-    have "\<bar>dist a b - dist c d\<bar> \<le> dist a c + dist b d"
-      using dist_triangle2 [of a b c] dist_triangle2 [of b c d]
-      using dist_triangle3 [of c d a] dist_triangle [of a d b]
-      by arith
-  } note le = this
-  {
-    fix x y
-    assume f: "(\<lambda>n. dist (f (x n)) (f (y n))) \<longlonglongrightarrow> 0"
-    assume g: "(\<lambda>n. dist (g (x n)) (g (y n))) \<longlonglongrightarrow> 0"
-    have "(\<lambda>n. \<bar>dist (f (x n)) (g (x n)) - dist (f (y n)) (g (y n))\<bar>) \<longlonglongrightarrow> 0"
-      by (rule Lim_transform_bound [OF _ tendsto_add_zero [OF f g]],
-        simp add: le)
-  }
-  then show ?thesis
-    using assms unfolding uniformly_continuous_on_sequentially
-    unfolding dist_real_def by simp
-qed
-
-lemma uniformly_continuous_on_norm[continuous_intros]:
-  fixes f :: "'a :: metric_space \<Rightarrow> 'b :: real_normed_vector"
-  assumes "uniformly_continuous_on s f"
-  shows "uniformly_continuous_on s (\<lambda>x. norm (f x))"
-  unfolding norm_conv_dist using assms
-  by (intro uniformly_continuous_on_dist uniformly_continuous_on_const)
-
-lemma (in bounded_linear) uniformly_continuous_on[continuous_intros]:
-  fixes g :: "_::metric_space \<Rightarrow> _"
-  assumes "uniformly_continuous_on s g"
-  shows "uniformly_continuous_on s (\<lambda>x. f (g x))"
-  using assms unfolding uniformly_continuous_on_sequentially
-  unfolding dist_norm tendsto_norm_zero_iff diff[symmetric]
-  by (auto intro: tendsto_zero)
-
-lemma uniformly_continuous_on_cmul[continuous_intros]:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
-  assumes "uniformly_continuous_on s f"
-  shows "uniformly_continuous_on s (\<lambda>x. c *\<^sub>R f(x))"
-  using bounded_linear_scaleR_right assms
-  by (rule bounded_linear.uniformly_continuous_on)
-
-lemma dist_minus:
-  fixes x y :: "'a::real_normed_vector"
-  shows "dist (- x) (- y) = dist x y"
-  unfolding dist_norm minus_diff_minus norm_minus_cancel ..
-
-lemma uniformly_continuous_on_minus[continuous_intros]:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
-  shows "uniformly_continuous_on s f \<Longrightarrow> uniformly_continuous_on s (\<lambda>x. - f x)"
-  unfolding uniformly_continuous_on_def dist_minus .
-
-lemma uniformly_continuous_on_add[continuous_intros]:
-  fixes f g :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
-  assumes "uniformly_continuous_on s f"
-    and "uniformly_continuous_on s g"
-  shows "uniformly_continuous_on s (\<lambda>x. f x + g x)"
-  using assms
-  unfolding uniformly_continuous_on_sequentially
-  unfolding dist_norm tendsto_norm_zero_iff add_diff_add
-  by (auto intro: tendsto_add_zero)
-
-lemma uniformly_continuous_on_diff[continuous_intros]:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
-  assumes "uniformly_continuous_on s f"
-    and "uniformly_continuous_on s g"
-  shows "uniformly_continuous_on s (\<lambda>x. f x - g x)"
-  using assms uniformly_continuous_on_add [of s f "- g"]
-    by (simp add: fun_Compl_def uniformly_continuous_on_minus)
-
-lemmas continuous_at_compose = isCont_o
-
-text \<open>Continuity in terms of open preimages.\<close>
-
-lemma continuous_at_open:
-  "continuous (at x) f \<longleftrightarrow> (\<forall>t. open t \<and> f x \<in> t --> (\<exists>s. open s \<and> x \<in> s \<and> (\<forall>x' \<in> s. (f x') \<in> t)))"
-  unfolding continuous_within_topological [of x UNIV f]
-  unfolding imp_conjL
-  by (intro all_cong imp_cong ex_cong conj_cong refl) auto
-
-lemma continuous_imp_tendsto:
-  assumes "continuous (at x0) f"
-    and "x \<longlonglongrightarrow> x0"
-  shows "(f \<circ> x) \<longlonglongrightarrow> (f x0)"
-proof (rule topological_tendstoI)
-  fix S
-  assume "open S" "f x0 \<in> S"
-  then obtain T where T_def: "open T" "x0 \<in> T" "\<forall>x\<in>T. f x \<in> S"
-     using assms continuous_at_open by metis
-  then have "eventually (\<lambda>n. x n \<in> T) sequentially"
-    using assms T_def by (auto simp: tendsto_def)
-  then show "eventually (\<lambda>n. (f \<circ> x) n \<in> S) sequentially"
-    using T_def by (auto elim!: eventually_mono)
-qed
-
-lemma continuous_on_open:
-  "continuous_on s f \<longleftrightarrow>
-    (\<forall>t. openin (subtopology euclidean (f ` s)) t \<longrightarrow>
-      openin (subtopology euclidean s) {x \<in> s. f x \<in> t})"
-  unfolding continuous_on_open_invariant openin_open Int_def vimage_def Int_commute
-  by (simp add: imp_ex imageI conj_commute eq_commute cong: conj_cong)
-
-lemma continuous_on_open_gen:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
-  assumes "f ` S \<subseteq> T"
-    shows "continuous_on S f \<longleftrightarrow>
-             (\<forall>U. openin (subtopology euclidean T) U
-                  \<longrightarrow> openin (subtopology euclidean S) {x \<in> S. f x \<in> U})"
-     (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then show ?rhs
-    apply (auto simp: openin_euclidean_subtopology_iff continuous_on_iff)
-    by (metis assms image_subset_iff)
-next
-  have ope: "openin (subtopology euclidean T) (ball y e \<inter> T)" for y e
-    by (simp add: Int_commute openin_open_Int)
-  assume ?rhs
-  then show ?lhs
-    apply (clarsimp simp add: continuous_on_iff)
-    apply (drule_tac x = "ball (f x) e \<inter> T" in spec)
-    apply (clarsimp simp add: ope openin_euclidean_subtopology_iff [of S])
-    by (metis (no_types, hide_lams) assms dist_commute dist_self image_subset_iff)
-qed
-
-lemma continuous_openin_preimage:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
-  shows
-   "\<lbrakk>continuous_on S f; f ` S \<subseteq> T; openin (subtopology euclidean T) U\<rbrakk>
-        \<Longrightarrow> openin (subtopology euclidean S) {x \<in> S. f x \<in> U}"
-by (simp add: continuous_on_open_gen)
-
-text \<open>Similarly in terms of closed sets.\<close>
-
-lemma continuous_on_closed:
-  "continuous_on s f \<longleftrightarrow>
-    (\<forall>t. closedin (subtopology euclidean (f ` s)) t \<longrightarrow>
-      closedin (subtopology euclidean s) {x \<in> s. f x \<in> t})"
-  unfolding continuous_on_closed_invariant closedin_closed Int_def vimage_def Int_commute
-  by (simp add: imp_ex imageI conj_commute eq_commute cong: conj_cong)
-
-lemma continuous_on_closed_gen:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
-  assumes "f ` S \<subseteq> T"
-    shows "continuous_on S f \<longleftrightarrow>
-             (\<forall>U. closedin (subtopology euclidean T) U
-                  \<longrightarrow> closedin (subtopology euclidean S) {x \<in> S. f x \<in> U})"
-proof -
-  have *: "U \<subseteq> T \<Longrightarrow> {x \<in> S. f x \<in> T \<and> f x \<notin> U} = S - {x \<in> S. f x \<in> U}" for U
-    using assms by blast
-  show ?thesis
-    apply (simp add: continuous_on_open_gen [OF assms], safe)
-    apply (drule_tac [!] x="T-U" in spec)
-    apply (force simp: closedin_def *)
-    apply (force simp: openin_closedin_eq *)
-    done
-qed
-
-lemma continuous_closedin_preimage_gen:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
-  assumes "continuous_on S f" "f ` S \<subseteq> T" "closedin (subtopology euclidean T) U"
-    shows "closedin (subtopology euclidean S) {x \<in> S. f x \<in> U}"
-using assms continuous_on_closed_gen by blast
-
-lemma continuous_on_imp_closedin:
-  assumes "continuous_on S f" "closedin (subtopology euclidean (f ` S)) T"
-    shows "closedin (subtopology euclidean S) {x. x \<in> S \<and> f x \<in> T}"
-using assms continuous_on_closed by blast
-
-subsection \<open>Half-global and completely global cases.\<close>
-
-lemma continuous_openin_preimage_gen:
-  assumes "continuous_on s f"  "open t"
-  shows "openin (subtopology euclidean s) {x \<in> s. f x \<in> t}"
-proof -
-  have *: "\<forall>x. x \<in> s \<and> f x \<in> t \<longleftrightarrow> x \<in> s \<and> f x \<in> (t \<inter> f ` s)"
-    by auto
-  have "openin (subtopology euclidean (f ` s)) (t \<inter> f ` s)"
-    using openin_open_Int[of t "f ` s", OF assms(2)] unfolding openin_open by auto
-  then show ?thesis
-    using assms(1)[unfolded continuous_on_open, THEN spec[where x="t \<inter> f ` s"]]
-    using * by auto
-qed
-
-lemma continuous_closedin_preimage:
-  assumes "continuous_on s f" and "closed t"
-  shows "closedin (subtopology euclidean s) {x \<in> s. f x \<in> t}"
-proof -
-  have *: "\<forall>x. x \<in> s \<and> f x \<in> t \<longleftrightarrow> x \<in> s \<and> f x \<in> (t \<inter> f ` s)"
-    by auto
-  have "closedin (subtopology euclidean (f ` s)) (t \<inter> f ` s)"
-    using closedin_closed_Int[of t "f ` s", OF assms(2)]
-    by (simp add: Int_commute)
-  then show ?thesis
-    using assms(1)[unfolded continuous_on_closed, THEN spec[where x="t \<inter> f ` s"]]
-    using * by auto
-qed
-
-lemma continuous_open_preimage:
-  assumes "continuous_on s f"
-    and "open s"
-    and "open t"
-  shows "open {x \<in> s. f x \<in> t}"
-proof-
-  obtain T where T: "open T" "{x \<in> s. f x \<in> t} = s \<inter> T"
-    using continuous_openin_preimage_gen[OF assms(1,3)] unfolding openin_open by auto
-  then show ?thesis
-    using open_Int[of s T, OF assms(2)] by auto
-qed
-
-lemma continuous_closed_preimage:
-  assumes "continuous_on s f"
-    and "closed s"
-    and "closed t"
-  shows "closed {x \<in> s. f x \<in> t}"
-proof-
-  obtain T where "closed T" "{x \<in> s. f x \<in> t} = s \<inter> T"
-    using continuous_closedin_preimage[OF assms(1,3)]
-    unfolding closedin_closed by auto
-  then show ?thesis using closed_Int[of s T, OF assms(2)] by auto
-qed
-
-lemma continuous_open_preimage_univ:
-  "\<forall>x. continuous (at x) f \<Longrightarrow> open s \<Longrightarrow> open {x. f x \<in> s}"
-  using continuous_open_preimage[of UNIV f s] open_UNIV continuous_at_imp_continuous_on by auto
-
-lemma continuous_closed_preimage_univ:
-  "(\<forall>x. continuous (at x) f) \<Longrightarrow> closed s \<Longrightarrow> closed {x. f x \<in> s}"
-  using continuous_closed_preimage[of UNIV f s] closed_UNIV continuous_at_imp_continuous_on by auto
-
-lemma continuous_open_vimage: "\<forall>x. continuous (at x) f \<Longrightarrow> open s \<Longrightarrow> open (f -` s)"
-  unfolding vimage_def by (rule continuous_open_preimage_univ)
-
-lemma continuous_closed_vimage: "\<forall>x. continuous (at x) f \<Longrightarrow> closed s \<Longrightarrow> closed (f -` s)"
-  unfolding vimage_def by (rule continuous_closed_preimage_univ)
-
-lemma interior_image_subset:
-  assumes "\<forall>x. continuous (at x) f"
-    and "inj f"
-  shows "interior (f ` s) \<subseteq> f ` (interior s)"
-proof
-  fix x assume "x \<in> interior (f ` s)"
-  then obtain T where as: "open T" "x \<in> T" "T \<subseteq> f ` s" ..
-  then have "x \<in> f ` s" by auto
-  then obtain y where y: "y \<in> s" "x = f y" by auto
-  have "open (vimage f T)"
-    using assms(1) \<open>open T\<close> by (rule continuous_open_vimage)
-  moreover have "y \<in> vimage f T"
-    using \<open>x = f y\<close> \<open>x \<in> T\<close> by simp
-  moreover have "vimage f T \<subseteq> s"
-    using \<open>T \<subseteq> image f s\<close> \<open>inj f\<close> unfolding inj_on_def subset_eq by auto
-  ultimately have "y \<in> interior s" ..
-  with \<open>x = f y\<close> show "x \<in> f ` interior s" ..
-qed
-
-subsection \<open>Equality of continuous functions on closure and related results.\<close>
-
-lemma continuous_closedin_preimage_constant:
-  fixes f :: "_ \<Rightarrow> 'b::t1_space"
-  shows "continuous_on s f \<Longrightarrow> closedin (subtopology euclidean s) {x \<in> s. f x = a}"
-  using continuous_closedin_preimage[of s f "{a}"] by auto
-
-lemma continuous_closed_preimage_constant:
-  fixes f :: "_ \<Rightarrow> 'b::t1_space"
-  shows "continuous_on s f \<Longrightarrow> closed s \<Longrightarrow> closed {x \<in> s. f x = a}"
-  using continuous_closed_preimage[of s f "{a}"] by auto
-
-lemma continuous_constant_on_closure:
-  fixes f :: "_ \<Rightarrow> 'b::t1_space"
-  assumes "continuous_on (closure S) f"
-      and "\<And>x. x \<in> S \<Longrightarrow> f x = a"
-      and "x \<in> closure S"
-  shows "f x = a"
-    using continuous_closed_preimage_constant[of "closure S" f a]
-      assms closure_minimal[of S "{x \<in> closure S. f x = a}"] closure_subset
-    unfolding subset_eq
-    by auto
-
-lemma image_closure_subset:
-  assumes "continuous_on (closure s) f"
-    and "closed t"
-    and "(f ` s) \<subseteq> t"
-  shows "f ` (closure s) \<subseteq> t"
-proof -
-  have "s \<subseteq> {x \<in> closure s. f x \<in> t}"
-    using assms(3) closure_subset by auto
-  moreover have "closed {x \<in> closure s. f x \<in> t}"
-    using continuous_closed_preimage[OF assms(1)] and assms(2) by auto
-  ultimately have "closure s = {x \<in> closure s . f x \<in> t}"
-    using closure_minimal[of s "{x \<in> closure s. f x \<in> t}"] by auto
-  then show ?thesis by auto
-qed
-
-lemma continuous_on_closure_norm_le:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::real_normed_vector"
-  assumes "continuous_on (closure s) f"
-    and "\<forall>y \<in> s. norm(f y) \<le> b"
-    and "x \<in> (closure s)"
-  shows "norm (f x) \<le> b"
-proof -
-  have *: "f ` s \<subseteq> cball 0 b"
-    using assms(2)[unfolded mem_cball_0[symmetric]] by auto
-  show ?thesis
-    using image_closure_subset[OF assms(1) closed_cball[of 0 b] *] assms(3)
-    unfolding subset_eq
-    apply (erule_tac x="f x" in ballE)
-    apply (auto simp add: dist_norm)
-    done
-qed
-
-lemma isCont_indicator:
-  fixes x :: "'a::t2_space"
-  shows "isCont (indicator A :: 'a \<Rightarrow> real) x = (x \<notin> frontier A)"
-proof auto
-  fix x
-  assume cts_at: "isCont (indicator A :: 'a \<Rightarrow> real) x" and fr: "x \<in> frontier A"
-  with continuous_at_open have 1: "\<forall>V::real set. open V \<and> indicator A x \<in> V \<longrightarrow>
-    (\<exists>U::'a set. open U \<and> x \<in> U \<and> (\<forall>y\<in>U. indicator A y \<in> V))" by auto
-  show False
-  proof (cases "x \<in> A")
-    assume x: "x \<in> A"
-    hence "indicator A x \<in> ({0<..<2} :: real set)" by simp
-    hence "\<exists>U. open U \<and> x \<in> U \<and> (\<forall>y\<in>U. indicator A y \<in> ({0<..<2} :: real set))"
-      using 1 open_greaterThanLessThan by blast
-    then guess U .. note U = this
-    hence "\<forall>y\<in>U. indicator A y > (0::real)"
-      unfolding greaterThanLessThan_def by auto
-    hence "U \<subseteq> A" using indicator_eq_0_iff by force
-    hence "x \<in> interior A" using U interiorI by auto
-    thus ?thesis using fr unfolding frontier_def by simp
-  next
-    assume x: "x \<notin> A"
-    hence "indicator A x \<in> ({-1<..<1} :: real set)" by simp
-    hence "\<exists>U. open U \<and> x \<in> U \<and> (\<forall>y\<in>U. indicator A y \<in> ({-1<..<1} :: real set))"
-      using 1 open_greaterThanLessThan by blast
-    then guess U .. note U = this
-    hence "\<forall>y\<in>U. indicator A y < (1::real)"
-      unfolding greaterThanLessThan_def by auto
-    hence "U \<subseteq> -A" by auto
-    hence "x \<in> interior (-A)" using U interiorI by auto
-    thus ?thesis using fr interior_complement unfolding frontier_def by auto
-  qed
-next
-  assume nfr: "x \<notin> frontier A"
-  hence "x \<in> interior A \<or> x \<in> interior (-A)"
-    by (auto simp: frontier_def closure_interior)
-  thus "isCont ((indicator A)::'a \<Rightarrow> real) x"
-  proof
-    assume int: "x \<in> interior A"
-    then obtain U where U: "open U" "x \<in> U" "U \<subseteq> A" unfolding interior_def by auto
-    hence "\<forall>y\<in>U. indicator A y = (1::real)" unfolding indicator_def by auto
-    hence "continuous_on U (indicator A)" by (simp add: continuous_on_const indicator_eq_1_iff)
-    thus ?thesis using U continuous_on_eq_continuous_at by auto
-  next
-    assume ext: "x \<in> interior (-A)"
-    then obtain U where U: "open U" "x \<in> U" "U \<subseteq> -A" unfolding interior_def by auto
-    then have "continuous_on U (indicator A)"
-      using continuous_on_topological by (auto simp: subset_iff)
-    thus ?thesis using U continuous_on_eq_continuous_at by auto
-  qed
-qed
-
-subsection\<open> Theorems relating continuity and uniform continuity to closures\<close>
-
-lemma continuous_on_closure:
-   "continuous_on (closure S) f \<longleftrightarrow>
-    (\<forall>x e. x \<in> closure S \<and> 0 < e
-           \<longrightarrow> (\<exists>d. 0 < d \<and> (\<forall>y. y \<in> S \<and> dist y x < d \<longrightarrow> dist (f y) (f x) < e)))"
-   (is "?lhs = ?rhs")
-proof
-  assume ?lhs then show ?rhs
-    unfolding continuous_on_iff  by (metis Un_iff closure_def)
-next
-  assume R [rule_format]: ?rhs
-  show ?lhs
-  proof
-    fix x and e::real
-    assume "0 < e" and x: "x \<in> closure S"
-    obtain \<delta>::real where "\<delta> > 0"
-                   and \<delta>: "\<And>y. \<lbrakk>y \<in> S; dist y x < \<delta>\<rbrakk> \<Longrightarrow> dist (f y) (f x) < e/2"
-      using R [of x "e/2"] \<open>0 < e\<close> x by auto
-    have "dist (f y) (f x) \<le> e" if y: "y \<in> closure S" and dyx: "dist y x < \<delta>/2" for y
-    proof -
-      obtain \<delta>'::real where "\<delta>' > 0"
-                      and \<delta>': "\<And>z. \<lbrakk>z \<in> S; dist z y < \<delta>'\<rbrakk> \<Longrightarrow> dist (f z) (f y) < e/2"
-        using R [of y "e/2"] \<open>0 < e\<close> y by auto
-      obtain z where "z \<in> S" and z: "dist z y < min \<delta>' \<delta> / 2"
-        using closure_approachable y
-        by (metis \<open>0 < \<delta>'\<close> \<open>0 < \<delta>\<close> divide_pos_pos min_less_iff_conj zero_less_numeral)
-      have "dist (f z) (f y) < e/2"
-        apply (rule \<delta>' [OF \<open>z \<in> S\<close>])
-        using z \<open>0 < \<delta>'\<close> by linarith
-      moreover have "dist (f z) (f x) < e/2"
-        apply (rule \<delta> [OF \<open>z \<in> S\<close>])
-        using z \<open>0 < \<delta>\<close>  dist_commute[of y z] dist_triangle_half_r [of y] dyx by auto
-      ultimately show ?thesis
-        by (metis dist_commute dist_triangle_half_l less_imp_le)
-    qed
-    then show "\<exists>d>0. \<forall>x'\<in>closure S. dist x' x < d \<longrightarrow> dist (f x') (f x) \<le> e"
-      by (rule_tac x="\<delta>/2" in exI) (simp add: \<open>\<delta> > 0\<close>)
-  qed
-qed
-
-lemma continuous_on_closure_sequentially:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b :: metric_space"
-  shows
-   "continuous_on (closure S) f \<longleftrightarrow>
-    (\<forall>x a. a \<in> closure S \<and> (\<forall>n. x n \<in> S) \<and> x \<longlonglongrightarrow> a \<longrightarrow> (f \<circ> x) \<longlonglongrightarrow> f a)"
-   (is "?lhs = ?rhs")
-proof -
-  have "continuous_on (closure S) f \<longleftrightarrow>
-           (\<forall>x \<in> closure S. continuous (at x within S) f)"
-    by (force simp: continuous_on_closure Topology_Euclidean_Space.continuous_within_eps_delta)
-  also have "... = ?rhs"
-    by (force simp: continuous_within_sequentially)
-  finally show ?thesis .
-qed
-
-lemma uniformly_continuous_on_closure:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::metric_space"
-  assumes ucont: "uniformly_continuous_on S f"
-      and cont: "continuous_on (closure S) f"
-    shows "uniformly_continuous_on (closure S) f"
-unfolding uniformly_continuous_on_def
-proof (intro allI impI)
-  fix e::real
-  assume "0 < e"
-  then obtain d::real
-    where "d>0"
-      and d: "\<And>x x'. \<lbrakk>x\<in>S; x'\<in>S; dist x' x < d\<rbrakk> \<Longrightarrow> dist (f x') (f x) < e/3"
-    using ucont [unfolded uniformly_continuous_on_def, rule_format, of "e/3"] by auto
-  show "\<exists>d>0. \<forall>x\<in>closure S. \<forall>x'\<in>closure S. dist x' x < d \<longrightarrow> dist (f x') (f x) < e"
-  proof (rule exI [where x="d/3"], clarsimp simp: \<open>d > 0\<close>)
-    fix x y
-    assume x: "x \<in> closure S" and y: "y \<in> closure S" and dyx: "dist y x * 3 < d"
-    obtain d1::real where "d1 > 0"
-           and d1: "\<And>w. \<lbrakk>w \<in> closure S; dist w x < d1\<rbrakk> \<Longrightarrow> dist (f w) (f x) < e/3"
-      using cont [unfolded continuous_on_iff, rule_format, of "x" "e/3"] \<open>0 < e\<close> x by auto
-     obtain x' where "x' \<in> S" and x': "dist x' x < min d1 (d / 3)"
-        using closure_approachable [of x S]
-        by (metis \<open>0 < d1\<close> \<open>0 < d\<close> divide_pos_pos min_less_iff_conj x zero_less_numeral)
-    obtain d2::real where "d2 > 0"
-           and d2: "\<forall>w \<in> closure S. dist w y < d2 \<longrightarrow> dist (f w) (f y) < e/3"
-      using cont [unfolded continuous_on_iff, rule_format, of "y" "e/3"] \<open>0 < e\<close> y by auto
-     obtain y' where "y' \<in> S" and y': "dist y' y < min d2 (d / 3)"
-        using closure_approachable [of y S]
-        by (metis \<open>0 < d2\<close> \<open>0 < d\<close> divide_pos_pos min_less_iff_conj y zero_less_numeral)
-     have "dist x' x < d/3" using x' by auto
-     moreover have "dist x y < d/3"
-       by (metis dist_commute dyx less_divide_eq_numeral1(1))
-     moreover have "dist y y' < d/3"
-       by (metis (no_types) dist_commute min_less_iff_conj y')
-     ultimately have "dist x' y' < d/3 + d/3 + d/3"
-       by (meson dist_commute_lessI dist_triangle_lt add_strict_mono)
-     then have "dist x' y' < d" by simp
-     then have "dist (f x') (f y') < e/3"
-       by (rule d [OF \<open>y' \<in> S\<close> \<open>x' \<in> S\<close>])
-     moreover have "dist (f x') (f x) < e/3" using \<open>x' \<in> S\<close> closure_subset x' d1
-       by (simp add: closure_def)
-     moreover have "dist (f y') (f y) < e/3" using \<open>y' \<in> S\<close> closure_subset y' d2
-       by (simp add: closure_def)
-     ultimately have "dist (f y) (f x) < e/3 + e/3 + e/3"
-       by (meson dist_commute_lessI dist_triangle_lt add_strict_mono)
-    then show "dist (f y) (f x) < e" by simp
-  qed
-qed
-
-lemma uniformly_continuous_on_extension_at_closure:
-  fixes f::"'a::metric_space \<Rightarrow> 'b::complete_space"
-  assumes uc: "uniformly_continuous_on X f"
-  assumes "x \<in> closure X"
-  obtains l where "(f \<longlongrightarrow> l) (at x within X)"
-proof -
-  from assms obtain xs where xs: "xs \<longlonglongrightarrow> x" "\<And>n. xs n \<in> X"
-    by (auto simp: closure_sequential)
-
-  from uniformly_continuous_on_Cauchy[OF uc LIMSEQ_imp_Cauchy, OF xs]
-  obtain l where l: "(\<lambda>n. f (xs n)) \<longlonglongrightarrow> l"
-    by atomize_elim (simp only: convergent_eq_cauchy)
-
-  have "(f \<longlongrightarrow> l) (at x within X)"
-  proof (safe intro!: Lim_within_LIMSEQ)
-    fix xs'
-    assume "\<forall>n. xs' n \<noteq> x \<and> xs' n \<in> X"
-      and xs': "xs' \<longlonglongrightarrow> x"
-    then have "xs' n \<noteq> x" "xs' n \<in> X" for n by auto
-
-    from uniformly_continuous_on_Cauchy[OF uc LIMSEQ_imp_Cauchy, OF \<open>xs' \<longlonglongrightarrow> x\<close> \<open>xs' _ \<in> X\<close>]
-    obtain l' where l': "(\<lambda>n. f (xs' n)) \<longlonglongrightarrow> l'"
-      by atomize_elim (simp only: convergent_eq_cauchy)
-
-    show "(\<lambda>n. f (xs' n)) \<longlonglongrightarrow> l"
-    proof (rule tendstoI)
-      fix e::real assume "e > 0"
-      define e' where "e' \<equiv> e / 2"
-      have "e' > 0" using \<open>e > 0\<close> by (simp add: e'_def)
-
-      have "\<forall>\<^sub>F n in sequentially. dist (f (xs n)) l < e'"
-        by (simp add: \<open>0 < e'\<close> l tendstoD)
-      moreover
-      from uc[unfolded uniformly_continuous_on_def, rule_format, OF \<open>e' > 0\<close>]
-      obtain d where d: "d > 0" "\<And>x x'. x \<in> X \<Longrightarrow> x' \<in> X \<Longrightarrow> dist x x' < d \<Longrightarrow> dist (f x) (f x') < e'"
-        by auto
-      have "\<forall>\<^sub>F n in sequentially. dist (xs n) (xs' n) < d"
-        by (auto intro!: \<open>0 < d\<close> order_tendstoD tendsto_eq_intros xs xs')
-      ultimately
-      show "\<forall>\<^sub>F n in sequentially. dist (f (xs' n)) l < e"
-      proof eventually_elim
-        case (elim n)
-        have "dist (f (xs' n)) l \<le> dist (f (xs n)) (f (xs' n)) + dist (f (xs n)) l"
-          by (metis dist_triangle dist_commute)
-        also have "dist (f (xs n)) (f (xs' n)) < e'"
-          by (auto intro!: d xs \<open>xs' _ \<in> _\<close> elim)
-        also note \<open>dist (f (xs n)) l < e'\<close>
-        also have "e' + e' = e" by (simp add: e'_def)
-        finally show ?case by simp
-      qed
-    qed
-  qed
-  thus ?thesis ..
-qed
-
-lemma uniformly_continuous_on_extension_on_closure:
-  fixes f::"'a::metric_space \<Rightarrow> 'b::complete_space"
-  assumes uc: "uniformly_continuous_on X f"
-  obtains g where "uniformly_continuous_on (closure X) g" "\<And>x. x \<in> X \<Longrightarrow> f x = g x"
-    "\<And>Y h x. X \<subseteq> Y \<Longrightarrow> Y \<subseteq> closure X \<Longrightarrow> continuous_on Y h \<Longrightarrow> (\<And>x. x \<in> X \<Longrightarrow> f x = h x) \<Longrightarrow> x \<in> Y \<Longrightarrow> h x = g x"
-proof -
-  from uc have cont_f: "continuous_on X f"
-    by (simp add: uniformly_continuous_imp_continuous)
-  obtain y where y: "(f \<longlongrightarrow> y x) (at x within X)" if "x \<in> closure X" for x
-    apply atomize_elim
-    apply (rule choice)
-    using uniformly_continuous_on_extension_at_closure[OF assms]
-    by metis
-  let ?g = "\<lambda>x. if x \<in> X then f x else y x"
-
-  have "uniformly_continuous_on (closure X) ?g"
-    unfolding uniformly_continuous_on_def
-  proof safe
-    fix e::real assume "e > 0"
-    define e' where "e' \<equiv> e / 3"
-    have "e' > 0" using \<open>e > 0\<close> by (simp add: e'_def)
-    from uc[unfolded uniformly_continuous_on_def, rule_format, OF \<open>0 < e'\<close>]
-    obtain d where "d > 0" and d: "\<And>x x'. x \<in> X \<Longrightarrow> x' \<in> X \<Longrightarrow> dist x' x < d \<Longrightarrow> dist (f x') (f x) < e'"
-      by auto
-    define d' where "d' = d / 3"
-    have "d' > 0" using \<open>d > 0\<close> by (simp add: d'_def)
-    show "\<exists>d>0. \<forall>x\<in>closure X. \<forall>x'\<in>closure X. dist x' x < d \<longrightarrow> dist (?g x') (?g x) < e"
-    proof (safe intro!: exI[where x=d'] \<open>d' > 0\<close>)
-      fix x x' assume x: "x \<in> closure X" and x': "x' \<in> closure X" and dist: "dist x' x < d'"
-      then obtain xs xs' where xs: "xs \<longlonglongrightarrow> x" "\<And>n. xs n \<in> X"
-        and xs': "xs' \<longlonglongrightarrow> x'" "\<And>n. xs' n \<in> X"
-        by (auto simp: closure_sequential)
-      have "\<forall>\<^sub>F n in sequentially. dist (xs' n) x' < d'"
-        and "\<forall>\<^sub>F n in sequentially. dist (xs n) x < d'"
-        by (auto intro!: \<open>0 < d'\<close> order_tendstoD tendsto_eq_intros xs xs')
-      moreover
-      have "(\<lambda>x. f (xs x)) \<longlonglongrightarrow> y x" if "x \<in> closure X" "x \<notin> X" "xs \<longlonglongrightarrow> x" "\<And>n. xs n \<in> X" for xs x
-        using that not_eventuallyD
-        by (force intro!: filterlim_compose[OF y[OF \<open>x \<in> closure X\<close>]] simp: filterlim_at)
-      then have "(\<lambda>x. f (xs' x)) \<longlonglongrightarrow> ?g x'" "(\<lambda>x. f (xs x)) \<longlonglongrightarrow> ?g x"
-        using x x'
-        by (auto intro!: continuous_on_tendsto_compose[OF cont_f] simp: xs' xs)
-      then have "\<forall>\<^sub>F n in sequentially. dist (f (xs' n)) (?g x') < e'"
-        "\<forall>\<^sub>F n in sequentially. dist (f (xs n)) (?g x) < e'"
-        by (auto intro!: \<open>0 < e'\<close> order_tendstoD tendsto_eq_intros)
-      ultimately
-      have "\<forall>\<^sub>F n in sequentially. dist (?g x') (?g x) < e"
-      proof eventually_elim
-        case (elim n)
-        have "dist (?g x') (?g x) \<le>
-          dist (f (xs' n)) (?g x') + dist (f (xs' n)) (f (xs n)) + dist (f (xs n)) (?g x)"
-          by (metis add.commute add_le_cancel_left dist_commute dist_triangle dist_triangle_le)
-        also
-        {
-          have "dist (xs' n) (xs n) \<le> dist (xs' n) x' + dist x' x + dist (xs n) x"
-            by (metis add.commute add_le_cancel_left  dist_triangle dist_triangle_le)
-          also note \<open>dist (xs' n) x' < d'\<close>
-          also note \<open>dist x' x < d'\<close>
-          also note \<open>dist (xs n) x < d'\<close>
-          finally have "dist (xs' n) (xs n) < d" by (simp add: d'_def)
-        }
-        with \<open>xs _ \<in> X\<close> \<open>xs' _ \<in> X\<close> have "dist (f (xs' n)) (f (xs n)) < e'"
-          by (rule d)
-        also note \<open>dist (f (xs' n)) (?g x') < e'\<close>
-        also note \<open>dist (f (xs n)) (?g x) < e'\<close>
-        finally show ?case by (simp add: e'_def)
-      qed
-      then show "dist (?g x') (?g x) < e" by simp
-    qed
-  qed
-  moreover have "f x = ?g x" if "x \<in> X" for x using that by simp
-  moreover
-  {
-    fix Y h x
-    assume Y: "x \<in> Y" "X \<subseteq> Y" "Y \<subseteq> closure X" and cont_h: "continuous_on Y h"
-      and extension: "(\<And>x. x \<in> X \<Longrightarrow> f x = h x)"
-    {
-      assume "x \<notin> X"
-      have "x \<in> closure X" using Y by auto
-      then obtain xs where xs: "xs \<longlonglongrightarrow> x" "\<And>n. xs n \<in> X"
-        by (auto simp: closure_sequential)
-      from continuous_on_tendsto_compose[OF cont_h xs(1)] xs(2) Y
-      have hx: "(\<lambda>x. f (xs x)) \<longlonglongrightarrow> h x"
-        by (auto simp: set_mp extension)
-      then have "(\<lambda>x. f (xs x)) \<longlonglongrightarrow> y x"
-        using \<open>x \<notin> X\<close> not_eventuallyD xs(2)
-        by (force intro!: filterlim_compose[OF y[OF \<open>x \<in> closure X\<close>]] simp: filterlim_at xs)
-      with hx have "h x = y x" by (rule LIMSEQ_unique)
-    } then
-    have "h x = ?g x"
-      using extension by auto
-  }
-  ultimately show ?thesis ..
-qed
-
-
-subsection\<open>Quotient maps\<close>
-
-lemma quotient_map_imp_continuous_open:
-  assumes t: "f ` s \<subseteq> t"
-      and ope: "\<And>u. u \<subseteq> t
-              \<Longrightarrow> (openin (subtopology euclidean s) {x. x \<in> s \<and> f x \<in> u} \<longleftrightarrow>
-                   openin (subtopology euclidean t) u)"
-    shows "continuous_on s f"
-proof -
-  have [simp]: "{x \<in> s. f x \<in> f ` s} = s" by auto
-  show ?thesis
-    using ope [OF t]
-    apply (simp add: continuous_on_open)
-    by (metis (no_types, lifting) "ope"  openin_imp_subset openin_trans)
-qed
-
-lemma quotient_map_imp_continuous_closed:
-  assumes t: "f ` s \<subseteq> t"
-      and ope: "\<And>u. u \<subseteq> t
-                  \<Longrightarrow> (closedin (subtopology euclidean s) {x. x \<in> s \<and> f x \<in> u} \<longleftrightarrow>
-                       closedin (subtopology euclidean t) u)"
-    shows "continuous_on s f"
-proof -
-  have [simp]: "{x \<in> s. f x \<in> f ` s} = s" by auto
-  show ?thesis
-    using ope [OF t]
-    apply (simp add: continuous_on_closed)
-    by (metis (no_types, lifting) "ope" closedin_imp_subset closedin_subtopology_refl closedin_trans openin_subtopology_refl openin_subtopology_self)
-qed
-
-lemma open_map_imp_quotient_map:
-  assumes contf: "continuous_on s f"
-      and t: "t \<subseteq> f ` s"
-      and ope: "\<And>t. openin (subtopology euclidean s) t
-                   \<Longrightarrow> openin (subtopology euclidean (f ` s)) (f ` t)"
-    shows "openin (subtopology euclidean s) {x \<in> s. f x \<in> t} =
-           openin (subtopology euclidean (f ` s)) t"
-proof -
-  have "t = image f {x. x \<in> s \<and> f x \<in> t}"
-    using t by blast
-  then show ?thesis
-    using "ope" contf continuous_on_open by fastforce
-qed
-
-lemma closed_map_imp_quotient_map:
-  assumes contf: "continuous_on s f"
-      and t: "t \<subseteq> f ` s"
-      and ope: "\<And>t. closedin (subtopology euclidean s) t
-              \<Longrightarrow> closedin (subtopology euclidean (f ` s)) (f ` t)"
-    shows "openin (subtopology euclidean s) {x \<in> s. f x \<in> t} \<longleftrightarrow>
-           openin (subtopology euclidean (f ` s)) t"
-          (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then have *: "closedin (subtopology euclidean s) (s - {x \<in> s. f x \<in> t})"
-    using closedin_diff by fastforce
-  have [simp]: "(f ` s - f ` (s - {x \<in> s. f x \<in> t})) = t"
-    using t by blast
-  show ?rhs
-    using ope [OF *, unfolded closedin_def] by auto
-next
-  assume ?rhs
-  with contf show ?lhs
-    by (auto simp: continuous_on_open)
-qed
-
-lemma continuous_right_inverse_imp_quotient_map:
-  assumes contf: "continuous_on s f" and imf: "f ` s \<subseteq> t"
-      and contg: "continuous_on t g" and img: "g ` t \<subseteq> s"
-      and fg [simp]: "\<And>y. y \<in> t \<Longrightarrow> f(g y) = y"
-      and u: "u \<subseteq> t"
-    shows "openin (subtopology euclidean s) {x. x \<in> s \<and> f x \<in> u} \<longleftrightarrow>
-           openin (subtopology euclidean t) u"
-          (is "?lhs = ?rhs")
-proof -
-  have f: "\<And>z. openin (subtopology euclidean (f ` s)) z \<Longrightarrow>
-                openin (subtopology euclidean s) {x \<in> s. f x \<in> z}"
-  and  g: "\<And>z. openin (subtopology euclidean (g ` t)) z \<Longrightarrow>
-                openin (subtopology euclidean t) {x \<in> t. g x \<in> z}"
-    using contf contg by (auto simp: continuous_on_open)
-  show ?thesis
-  proof
-    have "{x \<in> t. g x \<in> g ` t \<and> g x \<in> s \<and> f (g x) \<in> u} = {x \<in> t. f (g x) \<in> u}"
-      using imf img by blast
-    also have "... = u"
-      using u by auto
-    finally have [simp]: "{x \<in> t. g x \<in> g ` t \<and> g x \<in> s \<and> f (g x) \<in> u} = u" .
-    assume ?lhs
-    then have *: "openin (subtopology euclidean (g ` t)) (g ` t \<inter> {x \<in> s. f x \<in> u})"
-      by (meson img openin_Int openin_subtopology_Int_subset openin_subtopology_self)
-    show ?rhs
-      using g [OF *] by simp
-  next
-    assume rhs: ?rhs
-    show ?lhs
-      apply (rule f)
-      by (metis fg image_eqI image_subset_iff imf img openin_subopen openin_subtopology_self openin_trans rhs)
-  qed
-qed
-
-lemma continuous_left_inverse_imp_quotient_map:
-  assumes "continuous_on s f"
-      and "continuous_on (f ` s) g"
-      and  "\<And>x. x \<in> s \<Longrightarrow> g(f x) = x"
-      and "u \<subseteq> f ` s"
-    shows "openin (subtopology euclidean s) {x. x \<in> s \<and> f x \<in> u} \<longleftrightarrow>
-           openin (subtopology euclidean (f ` s)) u"
-apply (rule continuous_right_inverse_imp_quotient_map)
-using assms
-apply force+
-done
-
-subsection \<open>A function constant on a set\<close>
-
-definition constant_on  (infixl "(constant'_on)" 50)
-  where "f constant_on A \<equiv> \<exists>y. \<forall>x\<in>A. f x = y"
-
-lemma constant_on_subset: "\<lbrakk>f constant_on A; B \<subseteq> A\<rbrakk> \<Longrightarrow> f constant_on B"
-  unfolding constant_on_def by blast
-
-lemma injective_not_constant:
-  fixes S :: "'a::{perfect_space} set"
-  shows "\<lbrakk>open S; inj_on f S; f constant_on S\<rbrakk> \<Longrightarrow> S = {}"
-unfolding constant_on_def
-by (metis equals0I inj_on_contraD islimpt_UNIV islimpt_def)
-
-lemma constant_on_closureI:
-  fixes f :: "_ \<Rightarrow> 'b::t1_space"
-  assumes cof: "f constant_on S" and contf: "continuous_on (closure S) f"
-    shows "f constant_on (closure S)"
-using continuous_constant_on_closure [OF contf] cof unfolding constant_on_def
-by metis
-
-text \<open>Making a continuous function avoid some value in a neighbourhood.\<close>
-
-lemma continuous_within_avoid:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::t1_space"
-  assumes "continuous (at x within s) f"
-    and "f x \<noteq> a"
-  shows "\<exists>e>0. \<forall>y \<in> s. dist x y < e --> f y \<noteq> a"
-proof -
-  obtain U where "open U" and "f x \<in> U" and "a \<notin> U"
-    using t1_space [OF \<open>f x \<noteq> a\<close>] by fast
-  have "(f \<longlongrightarrow> f x) (at x within s)"
-    using assms(1) by (simp add: continuous_within)
-  then have "eventually (\<lambda>y. f y \<in> U) (at x within s)"
-    using \<open>open U\<close> and \<open>f x \<in> U\<close>
-    unfolding tendsto_def by fast
-  then have "eventually (\<lambda>y. f y \<noteq> a) (at x within s)"
-    using \<open>a \<notin> U\<close> by (fast elim: eventually_mono)
-  then show ?thesis
-    using \<open>f x \<noteq> a\<close> by (auto simp: dist_commute zero_less_dist_iff eventually_at)
-qed
-
-lemma continuous_at_avoid:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::t1_space"
-  assumes "continuous (at x) f"
-    and "f x \<noteq> a"
-  shows "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> f y \<noteq> a"
-  using assms continuous_within_avoid[of x UNIV f a] by simp
-
-lemma continuous_on_avoid:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::t1_space"
-  assumes "continuous_on s f"
-    and "x \<in> s"
-    and "f x \<noteq> a"
-  shows "\<exists>e>0. \<forall>y \<in> s. dist x y < e \<longrightarrow> f y \<noteq> a"
-  using assms(1)[unfolded continuous_on_eq_continuous_within, THEN bspec[where x=x],
-    OF assms(2)] continuous_within_avoid[of x s f a]
-  using assms(3)
-  by auto
-
-lemma continuous_on_open_avoid:
-  fixes f :: "'a::metric_space \<Rightarrow> 'b::t1_space"
-  assumes "continuous_on s f"
-    and "open s"
-    and "x \<in> s"
-    and "f x \<noteq> a"
-  shows "\<exists>e>0. \<forall>y. dist x y < e \<longrightarrow> f y \<noteq> a"
-  using assms(1)[unfolded continuous_on_eq_continuous_at[OF assms(2)], THEN bspec[where x=x], OF assms(3)]
-  using continuous_at_avoid[of x f a] assms(4)
-  by auto
-
-text \<open>Proving a function is constant by proving open-ness of level set.\<close>
-
-lemma continuous_levelset_openin_cases:
-  fixes f :: "_ \<Rightarrow> 'b::t1_space"
-  shows "connected s \<Longrightarrow> continuous_on s f \<Longrightarrow>
-        openin (subtopology euclidean s) {x \<in> s. f x = a}
-        \<Longrightarrow> (\<forall>x \<in> s. f x \<noteq> a) \<or> (\<forall>x \<in> s. f x = a)"
-  unfolding connected_clopen
-  using continuous_closedin_preimage_constant by auto
-
-lemma continuous_levelset_openin:
-  fixes f :: "_ \<Rightarrow> 'b::t1_space"
-  shows "connected s \<Longrightarrow> continuous_on s f \<Longrightarrow>
-        openin (subtopology euclidean s) {x \<in> s. f x = a} \<Longrightarrow>
-        (\<exists>x \<in> s. f x = a)  \<Longrightarrow> (\<forall>x \<in> s. f x = a)"
-  using continuous_levelset_openin_cases[of s f ]
-  by meson
-
-lemma continuous_levelset_open:
-  fixes f :: "_ \<Rightarrow> 'b::t1_space"
-  assumes "connected s"
-    and "continuous_on s f"
-    and "open {x \<in> s. f x = a}"
-    and "\<exists>x \<in> s.  f x = a"
-  shows "\<forall>x \<in> s. f x = a"
-  using continuous_levelset_openin[OF assms(1,2), of a, unfolded openin_open]
-  using assms (3,4)
-  by fast
-
-text \<open>Some arithmetical combinations (more to prove).\<close>
-
-lemma open_scaling[intro]:
-  fixes s :: "'a::real_normed_vector set"
-  assumes "c \<noteq> 0"
-    and "open s"
-  shows "open((\<lambda>x. c *\<^sub>R x) ` s)"
-proof -
-  {
-    fix x
-    assume "x \<in> s"
-    then obtain e where "e>0"
-      and e:"\<forall>x'. dist x' x < e \<longrightarrow> x' \<in> s" using assms(2)[unfolded open_dist, THEN bspec[where x=x]]
-      by auto
-    have "e * \<bar>c\<bar> > 0"
-      using assms(1)[unfolded zero_less_abs_iff[symmetric]] \<open>e>0\<close> by auto
-    moreover
-    {
-      fix y
-      assume "dist y (c *\<^sub>R x) < e * \<bar>c\<bar>"
-      then have "norm ((1 / c) *\<^sub>R y - x) < e"
-        unfolding dist_norm
-        using norm_scaleR[of c "(1 / c) *\<^sub>R y - x", unfolded scaleR_right_diff_distrib, unfolded scaleR_scaleR] assms(1)
-          assms(1)[unfolded zero_less_abs_iff[symmetric]] by (simp del:zero_less_abs_iff)
-      then have "y \<in> op *\<^sub>R c ` s"
-        using rev_image_eqI[of "(1 / c) *\<^sub>R y" s y "op *\<^sub>R c"]
-        using e[THEN spec[where x="(1 / c) *\<^sub>R y"]]
-        using assms(1)
-        unfolding dist_norm scaleR_scaleR
-        by auto
-    }
-    ultimately have "\<exists>e>0. \<forall>x'. dist x' (c *\<^sub>R x) < e \<longrightarrow> x' \<in> op *\<^sub>R c ` s"
-      apply (rule_tac x="e * \<bar>c\<bar>" in exI)
-      apply auto
-      done
-  }
-  then show ?thesis unfolding open_dist by auto
-qed
-
-lemma minus_image_eq_vimage:
-  fixes A :: "'a::ab_group_add set"
-  shows "(\<lambda>x. - x) ` A = (\<lambda>x. - x) -` A"
-  by (auto intro!: image_eqI [where f="\<lambda>x. - x"])
-
-lemma open_negations:
-  fixes s :: "'a::real_normed_vector set"
-  shows "open s \<Longrightarrow> open ((\<lambda>x. - x) ` s)"
-  using open_scaling [of "- 1" s] by simp
-
-lemma open_translation:
-  fixes s :: "'a::real_normed_vector set"
-  assumes "open s"
-  shows "open((\<lambda>x. a + x) ` s)"
-proof -
-  {
-    fix x
-    have "continuous (at x) (\<lambda>x. x - a)"
-      by (intro continuous_diff continuous_ident continuous_const)
-  }
-  moreover have "{x. x - a \<in> s} = op + a ` s"
-    by force
-  ultimately show ?thesis using continuous_open_preimage_univ[of "\<lambda>x. x - a" s]
-    using assms by auto
-qed
-
-lemma open_affinity:
-  fixes s :: "'a::real_normed_vector set"
-  assumes "open s"  "c \<noteq> 0"
-  shows "open ((\<lambda>x. a + c *\<^sub>R x) ` s)"
-proof -
-  have *: "(\<lambda>x. a + c *\<^sub>R x) = (\<lambda>x. a + x) \<circ> (\<lambda>x. c *\<^sub>R x)"
-    unfolding o_def ..
-  have "op + a ` op *\<^sub>R c ` s = (op + a \<circ> op *\<^sub>R c) ` s"
-    by auto
-  then show ?thesis
-    using assms open_translation[of "op *\<^sub>R c ` s" a]
-    unfolding *
-    by auto
-qed
-
-lemma interior_translation:
-  fixes s :: "'a::real_normed_vector set"
-  shows "interior ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (interior s)"
-proof (rule set_eqI, rule)
-  fix x
-  assume "x \<in> interior (op + a ` s)"
-  then obtain e where "e > 0" and e: "ball x e \<subseteq> op + a ` s"
-    unfolding mem_interior by auto
-  then have "ball (x - a) e \<subseteq> s"
-    unfolding subset_eq Ball_def mem_ball dist_norm
-    by (auto simp add: diff_diff_eq)
-  then show "x \<in> op + a ` interior s"
-    unfolding image_iff
-    apply (rule_tac x="x - a" in bexI)
-    unfolding mem_interior
-    using \<open>e > 0\<close>
-    apply auto
-    done
-next
-  fix x
-  assume "x \<in> op + a ` interior s"
-  then obtain y e where "e > 0" and e: "ball y e \<subseteq> s" and y: "x = a + y"
-    unfolding image_iff Bex_def mem_interior by auto
-  {
-    fix z
-    have *: "a + y - z = y + a - z" by auto
-    assume "z \<in> ball x e"
-    then have "z - a \<in> s"
-      using e[unfolded subset_eq, THEN bspec[where x="z - a"]]
-      unfolding mem_ball dist_norm y group_add_class.diff_diff_eq2 *
-      by auto
-    then have "z \<in> op + a ` s"
-      unfolding image_iff by (auto intro!: bexI[where x="z - a"])
-  }
-  then have "ball x e \<subseteq> op + a ` s"
-    unfolding subset_eq by auto
-  then show "x \<in> interior (op + a ` s)"
-    unfolding mem_interior using \<open>e > 0\<close> by auto
-qed
-
-text \<open>Topological properties of linear functions.\<close>
-
-lemma linear_lim_0:
-  assumes "bounded_linear f"
-  shows "(f \<longlongrightarrow> 0) (at (0))"
-proof -
-  interpret f: bounded_linear f by fact
-  have "(f \<longlongrightarrow> f 0) (at 0)"
-    using tendsto_ident_at by (rule f.tendsto)
-  then show ?thesis unfolding f.zero .
-qed
-
-lemma linear_continuous_at:
-  assumes "bounded_linear f"
-  shows "continuous (at a) f"
-  unfolding continuous_at using assms
-  apply (rule bounded_linear.tendsto)
-  apply (rule tendsto_ident_at)
-  done
-
-lemma linear_continuous_within:
-  "bounded_linear f \<Longrightarrow> continuous (at x within s) f"
-  using continuous_at_imp_continuous_within[of x f s] using linear_continuous_at[of f] by auto
-
-lemma linear_continuous_on:
-  "bounded_linear f \<Longrightarrow> continuous_on s f"
-  using continuous_at_imp_continuous_on[of s f] using linear_continuous_at[of f] by auto
-
-text \<open>Also bilinear functions, in composition form.\<close>
-
-lemma bilinear_continuous_at_compose:
-  "continuous (at x) f \<Longrightarrow> continuous (at x) g \<Longrightarrow> bounded_bilinear h \<Longrightarrow>
-    continuous (at x) (\<lambda>x. h (f x) (g x))"
-  unfolding continuous_at
-  using Lim_bilinear[of f "f x" "(at x)" g "g x" h]
-  by auto
-
-lemma bilinear_continuous_within_compose:
-  "continuous (at x within s) f \<Longrightarrow> continuous (at x within s) g \<Longrightarrow> bounded_bilinear h \<Longrightarrow>
-    continuous (at x within s) (\<lambda>x. h (f x) (g x))"
-  by (rule Limits.bounded_bilinear.continuous)
-
-lemma bilinear_continuous_on_compose:
-  "continuous_on s f \<Longrightarrow> continuous_on s g \<Longrightarrow> bounded_bilinear h \<Longrightarrow>
-    continuous_on s (\<lambda>x. h (f x) (g x))"
-  by (rule Limits.bounded_bilinear.continuous_on)
-
-text \<open>Preservation of compactness and connectedness under continuous function.\<close>
-
-lemma compact_eq_openin_cover:
-  "compact S \<longleftrightarrow>
-    (\<forall>C. (\<forall>c\<in>C. openin (subtopology euclidean S) c) \<and> S \<subseteq> \<Union>C \<longrightarrow>
-      (\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D))"
-proof safe
-  fix C
-  assume "compact S" and "\<forall>c\<in>C. openin (subtopology euclidean S) c" and "S \<subseteq> \<Union>C"
-  then have "\<forall>c\<in>{T. open T \<and> S \<inter> T \<in> C}. open c" and "S \<subseteq> \<Union>{T. open T \<and> S \<inter> T \<in> C}"
-    unfolding openin_open by force+
-  with \<open>compact S\<close> obtain D where "D \<subseteq> {T. open T \<and> S \<inter> T \<in> C}" and "finite D" and "S \<subseteq> \<Union>D"
-    by (rule compactE)
-  then have "image (\<lambda>T. S \<inter> T) D \<subseteq> C \<and> finite (image (\<lambda>T. S \<inter> T) D) \<and> S \<subseteq> \<Union>(image (\<lambda>T. S \<inter> T) D)"
-    by auto
-  then show "\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D" ..
-next
-  assume 1: "\<forall>C. (\<forall>c\<in>C. openin (subtopology euclidean S) c) \<and> S \<subseteq> \<Union>C \<longrightarrow>
-        (\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D)"
-  show "compact S"
-  proof (rule compactI)
-    fix C
-    let ?C = "image (\<lambda>T. S \<inter> T) C"
-    assume "\<forall>t\<in>C. open t" and "S \<subseteq> \<Union>C"
-    then have "(\<forall>c\<in>?C. openin (subtopology euclidean S) c) \<and> S \<subseteq> \<Union>?C"
-      unfolding openin_open by auto
-    with 1 obtain D where "D \<subseteq> ?C" and "finite D" and "S \<subseteq> \<Union>D"
-      by metis
-    let ?D = "inv_into C (\<lambda>T. S \<inter> T) ` D"
-    have "?D \<subseteq> C \<and> finite ?D \<and> S \<subseteq> \<Union>?D"
-    proof (intro conjI)
-      from \<open>D \<subseteq> ?C\<close> show "?D \<subseteq> C"
-        by (fast intro: inv_into_into)
-      from \<open>finite D\<close> show "finite ?D"
-        by (rule finite_imageI)
-      from \<open>S \<subseteq> \<Union>D\<close> show "S \<subseteq> \<Union>?D"
-        apply (rule subset_trans)
-        apply clarsimp
-        apply (frule subsetD [OF \<open>D \<subseteq> ?C\<close>, THEN f_inv_into_f])
-        apply (erule rev_bexI, fast)
-        done
-    qed
-    then show "\<exists>D\<subseteq>C. finite D \<and> S \<subseteq> \<Union>D" ..
-  qed
-qed
-
-lemma connected_continuous_image:
-  assumes "continuous_on s f"
-    and "connected s"
-  shows "connected(f ` s)"
-proof -
-  {
-    fix T
-    assume as:
-      "T \<noteq> {}"
-      "T \<noteq> f ` s"
-      "openin (subtopology euclidean (f ` s)) T"
-      "closedin (subtopology euclidean (f ` s)) T"
-    have "{x \<in> s. f x \<in> T} = {} \<or> {x \<in> s. f x \<in> T} = s"
-      using assms(1)[unfolded continuous_on_open, THEN spec[where x=T]]
-      using assms(1)[unfolded continuous_on_closed, THEN spec[where x=T]]
-      using assms(2)[unfolded connected_clopen, THEN spec[where x="{x \<in> s. f x \<in> T}"]] as(3,4) by auto
-    then have False using as(1,2)
-      using as(4)[unfolded closedin_def topspace_euclidean_subtopology] by auto
-  }
-  then show ?thesis
-    unfolding connected_clopen by auto
-qed
-
-lemma connected_linear_image:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::real_normed_vector"
-  assumes "linear f" and "connected s"
-  shows "connected (f ` s)"
-using connected_continuous_image assms linear_continuous_on linear_conv_bounded_linear by blast
-
-text \<open>Continuity implies uniform continuity on a compact domain.\<close>
-
-lemma compact_uniformly_continuous:
-  fixes f :: "'a :: metric_space \<Rightarrow> 'b :: metric_space"
-  assumes f: "continuous_on s f"
-    and s: "compact s"
-  shows "uniformly_continuous_on s f"
-  unfolding uniformly_continuous_on_def
-proof (cases, safe)
-  fix e :: real
-  assume "0 < e" "s \<noteq> {}"
-  define R where [simp]:
-    "R = {(y, d). y \<in> s \<and> 0 < d \<and> ball y d \<inter> s \<subseteq> {x \<in> s. f x \<in> ball (f y) (e/2)}}"
-  let ?b = "(\<lambda>(y, d). ball y (d/2))"
-  have "(\<forall>r\<in>R. open (?b r))" "s \<subseteq> (\<Union>r\<in>R. ?b r)"
-  proof safe
-    fix y
-    assume "y \<in> s"
-    from continuous_openin_preimage_gen[OF f open_ball]
-    obtain T where "open T" and T: "{x \<in> s. f x \<in> ball (f y) (e/2)} = T \<inter> s"
-      unfolding openin_subtopology open_openin by metis
-    then obtain d where "ball y d \<subseteq> T" "0 < d"
-      using \<open>0 < e\<close> \<open>y \<in> s\<close> by (auto elim!: openE)
-    with T \<open>y \<in> s\<close> show "y \<in> (\<Union>r\<in>R. ?b r)"
-      by (intro UN_I[of "(y, d)"]) auto
-  qed auto
-  with s obtain D where D: "finite D" "D \<subseteq> R" "s \<subseteq> (\<Union>(y, d)\<in>D. ball y (d/2))"
-    by (rule compactE_image)
-  with \<open>s \<noteq> {}\<close> have [simp]: "\<And>x. x < Min (snd ` D) \<longleftrightarrow> (\<forall>(y, d)\<in>D. x < d)"
-    by (subst Min_gr_iff) auto
-  show "\<exists>d>0. \<forall>x\<in>s. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f x') (f x) < e"
-  proof (rule, safe)
-    fix x x'
-    assume in_s: "x' \<in> s" "x \<in> s"
-    with D obtain y d where x: "x \<in> ball y (d/2)" "(y, d) \<in> D"
-      by blast
-    moreover assume "dist x x' < Min (snd`D) / 2"
-    ultimately have "dist y x' < d"
-      by (intro dist_triangle_half_r[of x _ d]) (auto simp: dist_commute)
-    with D x in_s show  "dist (f x) (f x') < e"
-      by (intro dist_triangle_half_r[of "f y" _ e]) (auto simp: dist_commute subset_eq)
-  qed (insert D, auto)
-qed auto
-
-text \<open>A uniformly convergent limit of continuous functions is continuous.\<close>
-
-lemma continuous_uniform_limit:
-  fixes f :: "'a \<Rightarrow> 'b::metric_space \<Rightarrow> 'c::metric_space"
-  assumes "\<not> trivial_limit F"
-    and "eventually (\<lambda>n. continuous_on s (f n)) F"
-    and "\<forall>e>0. eventually (\<lambda>n. \<forall>x\<in>s. dist (f n x) (g x) < e) F"
-  shows "continuous_on s g"
-proof -
-  {
-    fix x and e :: real
-    assume "x\<in>s" "e>0"
-    have "eventually (\<lambda>n. \<forall>x\<in>s. dist (f n x) (g x) < e / 3) F"
-      using \<open>e>0\<close> assms(3)[THEN spec[where x="e/3"]] by auto
-    from eventually_happens [OF eventually_conj [OF this assms(2)]]
-    obtain n where n:"\<forall>x\<in>s. dist (f n x) (g x) < e / 3"  "continuous_on s (f n)"
-      using assms(1) by blast
-    have "e / 3 > 0" using \<open>e>0\<close> by auto
-    then obtain d where "d>0" and d:"\<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (f n x') (f n x) < e / 3"
-      using n(2)[unfolded continuous_on_iff, THEN bspec[where x=x], OF \<open>x\<in>s\<close>, THEN spec[where x="e/3"]] by blast
-    {
-      fix y
-      assume "y \<in> s" and "dist y x < d"
-      then have "dist (f n y) (f n x) < e / 3"
-        by (rule d [rule_format])
-      then have "dist (f n y) (g x) < 2 * e / 3"
-        using dist_triangle [of "f n y" "g x" "f n x"]
-        using n(1)[THEN bspec[where x=x], OF \<open>x\<in>s\<close>]
-        by auto
-      then have "dist (g y) (g x) < e"
-        using n(1)[THEN bspec[where x=y], OF \<open>y\<in>s\<close>]
-        using dist_triangle3 [of "g y" "g x" "f n y"]
-        by auto
-    }
-    then have "\<exists>d>0. \<forall>x'\<in>s. dist x' x < d \<longrightarrow> dist (g x') (g x) < e"
-      using \<open>d>0\<close> by auto
-  }
-  then show ?thesis
-    unfolding continuous_on_iff by auto
-qed
-
-
-subsection \<open>Topological stuff lifted from and dropped to R\<close>
-
-lemma open_real:
-  fixes s :: "real set"
-  shows "open s \<longleftrightarrow> (\<forall>x \<in> s. \<exists>e>0. \<forall>x'. \<bar>x' - x\<bar> < e --> x' \<in> s)"
-  unfolding open_dist dist_norm by simp
-
-lemma islimpt_approachable_real:
-  fixes s :: "real set"
-  shows "x islimpt s \<longleftrightarrow> (\<forall>e>0. \<exists>x'\<in> s. x' \<noteq> x \<and> \<bar>x' - x\<bar> < e)"
-  unfolding islimpt_approachable dist_norm by simp
-
-lemma closed_real:
-  fixes s :: "real set"
-  shows "closed s \<longleftrightarrow> (\<forall>x. (\<forall>e>0.  \<exists>x' \<in> s. x' \<noteq> x \<and> \<bar>x' - x\<bar> < e) \<longrightarrow> x \<in> s)"
-  unfolding closed_limpt islimpt_approachable dist_norm by simp
-
-lemma continuous_at_real_range:
-  fixes f :: "'a::real_normed_vector \<Rightarrow> real"
-  shows "continuous (at x) f \<longleftrightarrow> (\<forall>e>0. \<exists>d>0. \<forall>x'. norm(x' - x) < d --> \<bar>f x' - f x\<bar> < e)"
-  unfolding continuous_at
-  unfolding Lim_at
-  unfolding dist_norm
-  apply auto
-  apply (erule_tac x=e in allE)
-  apply auto
-  apply (rule_tac x=d in exI)
-  apply auto
-  apply (erule_tac x=x' in allE)
-  apply auto
-  apply (erule_tac x=e in allE)
-  apply auto
-  done
-
-lemma continuous_on_real_range:
-  fixes f :: "'a::real_normed_vector \<Rightarrow> real"
-  shows "continuous_on s f \<longleftrightarrow>
-    (\<forall>x \<in> s. \<forall>e>0. \<exists>d>0. (\<forall>x' \<in> s. norm(x' - x) < d \<longrightarrow> \<bar>f x' - f x\<bar> < e))"
-  unfolding continuous_on_iff dist_norm by simp
-
-text \<open>Hence some handy theorems on distance, diameter etc. of/from a set.\<close>
-
-lemma distance_attains_sup:
-  assumes "compact s" "s \<noteq> {}"
-  shows "\<exists>x\<in>s. \<forall>y\<in>s. dist a y \<le> dist a x"
-proof (rule continuous_attains_sup [OF assms])
-  {
-    fix x
-    assume "x\<in>s"
-    have "(dist a \<longlongrightarrow> dist a x) (at x within s)"
-      by (intro tendsto_dist tendsto_const tendsto_ident_at)
-  }
-  then show "continuous_on s (dist a)"
-    unfolding continuous_on ..
-qed
-
-text \<open>For \emph{minimal} distance, we only need closure, not compactness.\<close>
-
-lemma distance_attains_inf:
-  fixes a :: "'a::heine_borel"
-  assumes "closed s" and "s \<noteq> {}"
-  obtains x where "x\<in>s" "\<And>y. y \<in> s \<Longrightarrow> dist a x \<le> dist a y"
-proof -
-  from assms obtain b where "b \<in> s" by auto
-  let ?B = "s \<inter> cball a (dist b a)"
-  have "?B \<noteq> {}" using \<open>b \<in> s\<close>
-    by (auto simp: dist_commute)
-  moreover have "continuous_on ?B (dist a)"
-    by (auto intro!: continuous_at_imp_continuous_on continuous_dist continuous_ident continuous_const)
-  moreover have "compact ?B"
-    by (intro closed_Int_compact \<open>closed s\<close> compact_cball)
-  ultimately obtain x where "x \<in> ?B" "\<forall>y\<in>?B. dist a x \<le> dist a y"
-    by (metis continuous_attains_inf)
-  with that show ?thesis by fastforce
-qed
-
-
-subsection \<open>Cartesian products\<close>
-
-lemma bounded_Times:
-  assumes "bounded s" "bounded t"
-  shows "bounded (s \<times> t)"
-proof -
-  obtain x y a b where "\<forall>z\<in>s. dist x z \<le> a" "\<forall>z\<in>t. dist y z \<le> b"
-    using assms [unfolded bounded_def] by auto
-  then have "\<forall>z\<in>s \<times> t. dist (x, y) z \<le> sqrt (a\<^sup>2 + b\<^sup>2)"
-    by (auto simp add: dist_Pair_Pair real_sqrt_le_mono add_mono power_mono)
-  then show ?thesis unfolding bounded_any_center [where a="(x, y)"] by auto
-qed
-
-lemma mem_Times_iff: "x \<in> A \<times> B \<longleftrightarrow> fst x \<in> A \<and> snd x \<in> B"
-  by (induct x) simp
-
-lemma seq_compact_Times: "seq_compact s \<Longrightarrow> seq_compact t \<Longrightarrow> seq_compact (s \<times> t)"
-  unfolding seq_compact_def
-  apply clarify
-  apply (drule_tac x="fst \<circ> f" in spec)
-  apply (drule mp, simp add: mem_Times_iff)
-  apply (clarify, rename_tac l1 r1)
-  apply (drule_tac x="snd \<circ> f \<circ> r1" in spec)
-  apply (drule mp, simp add: mem_Times_iff)
-  apply (clarify, rename_tac l2 r2)
-  apply (rule_tac x="(l1, l2)" in rev_bexI, simp)
-  apply (rule_tac x="r1 \<circ> r2" in exI)
-  apply (rule conjI, simp add: subseq_def)
-  apply (drule_tac f=r2 in LIMSEQ_subseq_LIMSEQ, assumption)
-  apply (drule (1) tendsto_Pair) back
-  apply (simp add: o_def)
-  done
-
-lemma compact_Times:
-  assumes "compact s" "compact t"
-  shows "compact (s \<times> t)"
-proof (rule compactI)
-  fix C
-  assume C: "\<forall>t\<in>C. open t" "s \<times> t \<subseteq> \<Union>C"
-  have "\<forall>x\<in>s. \<exists>a. open a \<and> x \<in> a \<and> (\<exists>d\<subseteq>C. finite d \<and> a \<times> t \<subseteq> \<Union>d)"
-  proof
-    fix x
-    assume "x \<in> s"
-    have "\<forall>y\<in>t. \<exists>a b c. c \<in> C \<and> open a \<and> open b \<and> x \<in> a \<and> y \<in> b \<and> a \<times> b \<subseteq> c" (is "\<forall>y\<in>t. ?P y")
-    proof
-      fix y
-      assume "y \<in> t"
-      with \<open>x \<in> s\<close> C obtain c where "c \<in> C" "(x, y) \<in> c" "open c" by auto
-      then show "?P y" by (auto elim!: open_prod_elim)
-    qed
-    then obtain a b c where b: "\<And>y. y \<in> t \<Longrightarrow> open (b y)"
-      and c: "\<And>y. y \<in> t \<Longrightarrow> c y \<in> C \<and> open (a y) \<and> open (b y) \<and> x \<in> a y \<and> y \<in> b y \<and> a y \<times> b y \<subseteq> c y"
-      by metis
-    then have "\<forall>y\<in>t. open (b y)" "t \<subseteq> (\<Union>y\<in>t. b y)" by auto
-    from compactE_image[OF \<open>compact t\<close> this] obtain D where D: "D \<subseteq> t" "finite D" "t \<subseteq> (\<Union>y\<in>D. b y)"
-      by auto
-    moreover from D c have "(\<Inter>y\<in>D. a y) \<times> t \<subseteq> (\<Union>y\<in>D. c y)"
-      by (fastforce simp: subset_eq)
-    ultimately show "\<exists>a. open a \<and> x \<in> a \<and> (\<exists>d\<subseteq>C. finite d \<and> a \<times> t \<subseteq> \<Union>d)"
-      using c by (intro exI[of _ "c`D"] exI[of _ "\<Inter>(a`D)"] conjI) (auto intro!: open_INT)
-  qed
-  then obtain a d where a: "\<forall>x\<in>s. open (a x)" "s \<subseteq> (\<Union>x\<in>s. a x)"
-    and d: "\<And>x. x \<in> s \<Longrightarrow> d x \<subseteq> C \<and> finite (d x) \<and> a x \<times> t \<subseteq> \<Union>d x"
-    unfolding subset_eq UN_iff by metis
-  moreover
-  from compactE_image[OF \<open>compact s\<close> a]
-  obtain e where e: "e \<subseteq> s" "finite e" and s: "s \<subseteq> (\<Union>x\<in>e. a x)"
-    by auto
-  moreover
-  {
-    from s have "s \<times> t \<subseteq> (\<Union>x\<in>e. a x \<times> t)"
-      by auto
-    also have "\<dots> \<subseteq> (\<Union>x\<in>e. \<Union>d x)"
-      using d \<open>e \<subseteq> s\<close> by (intro UN_mono) auto
-    finally have "s \<times> t \<subseteq> (\<Union>x\<in>e. \<Union>d x)" .
-  }
-  ultimately show "\<exists>C'\<subseteq>C. finite C' \<and> s \<times> t \<subseteq> \<Union>C'"
-    by (intro exI[of _ "(\<Union>x\<in>e. d x)"]) (auto simp add: subset_eq)
-qed
-
-text\<open>Hence some useful properties follow quite easily.\<close>
-
-lemma compact_scaling:
-  fixes s :: "'a::real_normed_vector set"
-  assumes "compact s"
-  shows "compact ((\<lambda>x. c *\<^sub>R x) ` s)"
-proof -
-  let ?f = "\<lambda>x. scaleR c x"
-  have *: "bounded_linear ?f" by (rule bounded_linear_scaleR_right)
-  show ?thesis
-    using compact_continuous_image[of s ?f] continuous_at_imp_continuous_on[of s ?f]
-    using linear_continuous_at[OF *] assms
-    by auto
-qed
-
-lemma compact_negations:
-  fixes s :: "'a::real_normed_vector set"
-  assumes "compact s"
-  shows "compact ((\<lambda>x. - x) ` s)"
-  using compact_scaling [OF assms, of "- 1"] by auto
-
-lemma compact_sums:
-  fixes s t :: "'a::real_normed_vector set"
-  assumes "compact s"
-    and "compact t"
-  shows "compact {x + y | x y. x \<in> s \<and> y \<in> t}"
-proof -
-  have *: "{x + y | x y. x \<in> s \<and> y \<in> t} = (\<lambda>z. fst z + snd z) ` (s \<times> t)"
-    apply auto
-    unfolding image_iff
-    apply (rule_tac x="(xa, y)" in bexI)
-    apply auto
-    done
-  have "continuous_on (s \<times> t) (\<lambda>z. fst z + snd z)"
-    unfolding continuous_on by (rule ballI) (intro tendsto_intros)
-  then show ?thesis
-    unfolding * using compact_continuous_image compact_Times [OF assms] by auto
-qed
-
-lemma compact_differences:
-  fixes s t :: "'a::real_normed_vector set"
-  assumes "compact s"
-    and "compact t"
-  shows "compact {x - y | x y. x \<in> s \<and> y \<in> t}"
-proof-
-  have "{x - y | x y. x\<in>s \<and> y \<in> t} =  {x + y | x y. x \<in> s \<and> y \<in> (uminus ` t)}"
-    apply auto
-    apply (rule_tac x= xa in exI)
-    apply auto
-    done
-  then show ?thesis
-    using compact_sums[OF assms(1) compact_negations[OF assms(2)]] by auto
-qed
-
-lemma compact_translation:
-  fixes s :: "'a::real_normed_vector set"
-  assumes "compact s"
-  shows "compact ((\<lambda>x. a + x) ` s)"
-proof -
-  have "{x + y |x y. x \<in> s \<and> y \<in> {a}} = (\<lambda>x. a + x) ` s"
-    by auto
-  then show ?thesis
-    using compact_sums[OF assms compact_sing[of a]] by auto
-qed
-
-lemma compact_affinity:
-  fixes s :: "'a::real_normed_vector set"
-  assumes "compact s"
-  shows "compact ((\<lambda>x. a + c *\<^sub>R x) ` s)"
-proof -
-  have "op + a ` op *\<^sub>R c ` s = (\<lambda>x. a + c *\<^sub>R x) ` s"
-    by auto
-  then show ?thesis
-    using compact_translation[OF compact_scaling[OF assms], of a c] by auto
-qed
-
-text \<open>Hence we get the following.\<close>
-
-lemma compact_sup_maxdistance:
-  fixes s :: "'a::metric_space set"
-  assumes "compact s"
-    and "s \<noteq> {}"
-  shows "\<exists>x\<in>s. \<exists>y\<in>s. \<forall>u\<in>s. \<forall>v\<in>s. dist u v \<le> dist x y"
-proof -
-  have "compact (s \<times> s)"
-    using \<open>compact s\<close> by (intro compact_Times)
-  moreover have "s \<times> s \<noteq> {}"
-    using \<open>s \<noteq> {}\<close> by auto
-  moreover have "continuous_on (s \<times> s) (\<lambda>x. dist (fst x) (snd x))"
-    by (intro continuous_at_imp_continuous_on ballI continuous_intros)
-  ultimately show ?thesis
-    using continuous_attains_sup[of "s \<times> s" "\<lambda>x. dist (fst x) (snd x)"] by auto
-qed
-
-text \<open>We can state this in terms of diameter of a set.\<close>
-
-definition diameter :: "'a::metric_space set \<Rightarrow> real" where
-  "diameter S = (if S = {} then 0 else SUP (x,y):S\<times>S. dist x y)"
-
-lemma diameter_bounded_bound:
-  fixes s :: "'a :: metric_space set"
-  assumes s: "bounded s" "x \<in> s" "y \<in> s"
-  shows "dist x y \<le> diameter s"
-proof -
-  from s obtain z d where z: "\<And>x. x \<in> s \<Longrightarrow> dist z x \<le> d"
-    unfolding bounded_def by auto
-  have "bdd_above (case_prod dist ` (s\<times>s))"
-  proof (intro bdd_aboveI, safe)
-    fix a b
-    assume "a \<in> s" "b \<in> s"
-    with z[of a] z[of b] dist_triangle[of a b z]
-    show "dist a b \<le> 2 * d"
-      by (simp add: dist_commute)
-  qed
-  moreover have "(x,y) \<in> s\<times>s" using s by auto
-  ultimately have "dist x y \<le> (SUP (x,y):s\<times>s. dist x y)"
-    by (rule cSUP_upper2) simp
-  with \<open>x \<in> s\<close> show ?thesis
-    by (auto simp add: diameter_def)
-qed
-
-lemma diameter_lower_bounded:
-  fixes s :: "'a :: metric_space set"
-  assumes s: "bounded s"
-    and d: "0 < d" "d < diameter s"
-  shows "\<exists>x\<in>s. \<exists>y\<in>s. d < dist x y"
-proof (rule ccontr)
-  assume contr: "\<not> ?thesis"
-  moreover have "s \<noteq> {}"
-    using d by (auto simp add: diameter_def)
-  ultimately have "diameter s \<le> d"
-    by (auto simp: not_less diameter_def intro!: cSUP_least)
-  with \<open>d < diameter s\<close> show False by auto
-qed
-
-lemma diameter_bounded:
-  assumes "bounded s"
-  shows "\<forall>x\<in>s. \<forall>y\<in>s. dist x y \<le> diameter s"
-    and "\<forall>d>0. d < diameter s \<longrightarrow> (\<exists>x\<in>s. \<exists>y\<in>s. dist x y > d)"
-  using diameter_bounded_bound[of s] diameter_lower_bounded[of s] assms
-  by auto
-
-lemma diameter_compact_attained:
-  assumes "compact s"
-    and "s \<noteq> {}"
-  shows "\<exists>x\<in>s. \<exists>y\<in>s. dist x y = diameter s"
-proof -
-  have b: "bounded s" using assms(1)
-    by (rule compact_imp_bounded)
-  then obtain x y where xys: "x\<in>s" "y\<in>s"
-    and xy: "\<forall>u\<in>s. \<forall>v\<in>s. dist u v \<le> dist x y"
-    using compact_sup_maxdistance[OF assms] by auto
-  then have "diameter s \<le> dist x y"
-    unfolding diameter_def
-    apply clarsimp
-    apply (rule cSUP_least)
-    apply fast+
-    done
-  then show ?thesis
-    by (metis b diameter_bounded_bound order_antisym xys)
-qed
-
-text \<open>Related results with closure as the conclusion.\<close>
-
-lemma closed_scaling:
-  fixes s :: "'a::real_normed_vector set"
-  assumes "closed s"
-  shows "closed ((\<lambda>x. c *\<^sub>R x) ` s)"
-proof (cases "c = 0")
-  case True then show ?thesis
-    by (auto simp add: image_constant_conv)
-next
-  case False
-  from assms have "closed ((\<lambda>x. inverse c *\<^sub>R x) -` s)"
-    by (simp add: continuous_closed_vimage)
-  also have "(\<lambda>x. inverse c *\<^sub>R x) -` s = (\<lambda>x. c *\<^sub>R x) ` s"
-    using \<open>c \<noteq> 0\<close> by (auto elim: image_eqI [rotated])
-  finally show ?thesis .
-qed
-
-lemma closed_negations:
-  fixes s :: "'a::real_normed_vector set"
-  assumes "closed s"
-  shows "closed ((\<lambda>x. -x) ` s)"
-  using closed_scaling[OF assms, of "- 1"] by simp
-
-lemma compact_closed_sums:
-  fixes s :: "'a::real_normed_vector set"
-  assumes "compact s" and "closed t"
-  shows "closed {x + y | x y. x \<in> s \<and> y \<in> t}"
-proof -
-  let ?S = "{x + y |x y. x \<in> s \<and> y \<in> t}"
-  {
-    fix x l
-    assume as: "\<forall>n. x n \<in> ?S"  "(x \<longlongrightarrow> l) sequentially"
-    from as(1) obtain f where f: "\<forall>n. x n = fst (f n) + snd (f n)"  "\<forall>n. fst (f n) \<in> s"  "\<forall>n. snd (f n) \<in> t"
-      using choice[of "\<lambda>n y. x n = (fst y) + (snd y) \<and> fst y \<in> s \<and> snd y \<in> t"] by auto
-    obtain l' r where "l'\<in>s" and r: "subseq r" and lr: "(((\<lambda>n. fst (f n)) \<circ> r) \<longlongrightarrow> l') sequentially"
-      using assms(1)[unfolded compact_def, THEN spec[where x="\<lambda> n. fst (f n)"]] using f(2) by auto
-    have "((\<lambda>n. snd (f (r n))) \<longlongrightarrow> l - l') sequentially"
-      using tendsto_diff[OF LIMSEQ_subseq_LIMSEQ[OF as(2) r] lr] and f(1)
-      unfolding o_def
-      by auto
-    then have "l - l' \<in> t"
-      using assms(2)[unfolded closed_sequential_limits,
-        THEN spec[where x="\<lambda> n. snd (f (r n))"],
-        THEN spec[where x="l - l'"]]
-      using f(3)
-      by auto
-    then have "l \<in> ?S"
-      using \<open>l' \<in> s\<close>
-      apply auto
-      apply (rule_tac x=l' in exI)
-      apply (rule_tac x="l - l'" in exI)
-      apply auto
-      done
-  }
-  then show ?thesis
-    unfolding closed_sequential_limits by fast
-qed
-
-lemma closed_compact_sums:
-  fixes s t :: "'a::real_normed_vector set"
-  assumes "closed s"
-    and "compact t"
-  shows "closed {x + y | x y. x \<in> s \<and> y \<in> t}"
-proof -
-  have "{x + y |x y. x \<in> t \<and> y \<in> s} = {x + y |x y. x \<in> s \<and> y \<in> t}"
-    apply auto
-    apply (rule_tac x=y in exI)
-    apply auto
-    apply (rule_tac x=y in exI)
-    apply auto
-    done
-  then show ?thesis
-    using compact_closed_sums[OF assms(2,1)] by simp
-qed
-
-lemma compact_closed_differences:
-  fixes s t :: "'a::real_normed_vector set"
-  assumes "compact s"
-    and "closed t"
-  shows "closed {x - y | x y. x \<in> s \<and> y \<in> t}"
-proof -
-  have "{x + y |x y. x \<in> s \<and> y \<in> uminus ` t} =  {x - y |x y. x \<in> s \<and> y \<in> t}"
-    apply auto
-    apply (rule_tac x=xa in exI)
-    apply auto
-    apply (rule_tac x=xa in exI)
-    apply auto
-    done
-  then show ?thesis
-    using compact_closed_sums[OF assms(1) closed_negations[OF assms(2)]] by auto
-qed
-
-lemma closed_compact_differences:
-  fixes s t :: "'a::real_normed_vector set"
-  assumes "closed s"
-    and "compact t"
-  shows "closed {x - y | x y. x \<in> s \<and> y \<in> t}"
-proof -
-  have "{x + y |x y. x \<in> s \<and> y \<in> uminus ` t} = {x - y |x y. x \<in> s \<and> y \<in> t}"
-    apply auto
-    apply (rule_tac x=xa in exI)
-    apply auto
-    apply (rule_tac x=xa in exI)
-    apply auto
-    done
- then show ?thesis
-  using closed_compact_sums[OF assms(1) compact_negations[OF assms(2)]] by simp
-qed
-
-lemma closed_translation:
-  fixes a :: "'a::real_normed_vector"
-  assumes "closed s"
-  shows "closed ((\<lambda>x. a + x) ` s)"
-proof -
-  have "{a + y |y. y \<in> s} = (op + a ` s)" by auto
-  then show ?thesis
-    using compact_closed_sums[OF compact_sing[of a] assms] by auto
-qed
-
-lemma translation_Compl:
-  fixes a :: "'a::ab_group_add"
-  shows "(\<lambda>x. a + x) ` (- t) = - ((\<lambda>x. a + x) ` t)"
-  apply (auto simp add: image_iff)
-  apply (rule_tac x="x - a" in bexI)
-  apply auto
-  done
-
-lemma translation_UNIV:
-  fixes a :: "'a::ab_group_add"
-  shows "range (\<lambda>x. a + x) = UNIV"
-  apply (auto simp add: image_iff)
-  apply (rule_tac x="x - a" in exI)
-  apply auto
-  done
-
-lemma translation_diff:
-  fixes a :: "'a::ab_group_add"
-  shows "(\<lambda>x. a + x) ` (s - t) = ((\<lambda>x. a + x) ` s) - ((\<lambda>x. a + x) ` t)"
-  by auto
-
-lemma translation_Int:
-  fixes a :: "'a::ab_group_add"
-  shows "(\<lambda>x. a + x) ` (s \<inter> t) = ((\<lambda>x. a + x) ` s) \<inter> ((\<lambda>x. a + x) ` t)"
-  by auto
-
-lemma closure_translation:
-  fixes a :: "'a::real_normed_vector"
-  shows "closure ((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (closure s)"
-proof -
-  have *: "op + a ` (- s) = - op + a ` s"
-    apply auto
-    unfolding image_iff
-    apply (rule_tac x="x - a" in bexI)
-    apply auto
-    done
-  show ?thesis
-    unfolding closure_interior translation_Compl
-    using interior_translation[of a "- s"]
-    unfolding *
-    by auto
-qed
-
-lemma frontier_translation:
-  fixes a :: "'a::real_normed_vector"
-  shows "frontier((\<lambda>x. a + x) ` s) = (\<lambda>x. a + x) ` (frontier s)"
-  unfolding frontier_def translation_diff interior_translation closure_translation
-  by auto
-
-lemma sphere_translation:
-  fixes a :: "'n::euclidean_space"
-  shows "sphere (a+c) r = op+a ` sphere c r"
-apply safe
-apply (rule_tac x="x-a" in image_eqI)
-apply (auto simp: dist_norm algebra_simps)
-done
-
-lemma cball_translation:
-  fixes a :: "'n::euclidean_space"
-  shows "cball (a+c) r = op+a ` cball c r"
-apply safe
-apply (rule_tac x="x-a" in image_eqI)
-apply (auto simp: dist_norm algebra_simps)
-done
-
-lemma ball_translation:
-  fixes a :: "'n::euclidean_space"
-  shows "ball (a+c) r = op+a ` ball c r"
-apply safe
-apply (rule_tac x="x-a" in image_eqI)
-apply (auto simp: dist_norm algebra_simps)
-done
-
-
-subsection \<open>Separation between points and sets\<close>
-
-lemma separate_point_closed:
-  fixes s :: "'a::heine_borel set"
-  assumes "closed s" and "a \<notin> s"
-  shows "\<exists>d>0. \<forall>x\<in>s. d \<le> dist a x"
-proof (cases "s = {}")
-  case True
-  then show ?thesis by(auto intro!: exI[where x=1])
-next
-  case False
-  from assms obtain x where "x\<in>s" "\<forall>y\<in>s. dist a x \<le> dist a y"
-    using \<open>s \<noteq> {}\<close> by (blast intro: distance_attains_inf [of s a])
-  with \<open>x\<in>s\<close> show ?thesis using dist_pos_lt[of a x] and\<open>a \<notin> s\<close>
-    by blast
-qed
-
-lemma separate_compact_closed:
-  fixes s t :: "'a::heine_borel set"
-  assumes "compact s"
-    and t: "closed t" "s \<inter> t = {}"
-  shows "\<exists>d>0. \<forall>x\<in>s. \<forall>y\<in>t. d \<le> dist x y"
-proof cases
-  assume "s \<noteq> {} \<and> t \<noteq> {}"
-  then have "s \<noteq> {}" "t \<noteq> {}" by auto
-  let ?inf = "\<lambda>x. infdist x t"
-  have "continuous_on s ?inf"
-    by (auto intro!: continuous_at_imp_continuous_on continuous_infdist continuous_ident)
-  then obtain x where x: "x \<in> s" "\<forall>y\<in>s. ?inf x \<le> ?inf y"
-    using continuous_attains_inf[OF \<open>compact s\<close> \<open>s \<noteq> {}\<close>] by auto
-  then have "0 < ?inf x"
-    using t \<open>t \<noteq> {}\<close> in_closed_iff_infdist_zero by (auto simp: less_le infdist_nonneg)
-  moreover have "\<forall>x'\<in>s. \<forall>y\<in>t. ?inf x \<le> dist x' y"
-    using x by (auto intro: order_trans infdist_le)
-  ultimately show ?thesis by auto
-qed (auto intro!: exI[of _ 1])
-
-lemma separate_closed_compact:
-  fixes s t :: "'a::heine_borel set"
-  assumes "closed s"
-    and "compact t"
-    and "s \<inter> t = {}"
-  shows "\<exists>d>0. \<forall>x\<in>s. \<forall>y\<in>t. d \<le> dist x y"
-proof -
-  have *: "t \<inter> s = {}"
-    using assms(3) by auto
-  show ?thesis
-    using separate_compact_closed[OF assms(2,1) *]
-    apply auto
-    apply (rule_tac x=d in exI)
-    apply auto
-    apply (erule_tac x=y in ballE)
-    apply (auto simp add: dist_commute)
-    done
-qed
-
-
-subsection \<open>Closure of halfspaces and hyperplanes\<close>
-
-lemma isCont_open_vimage:
-  assumes "\<And>x. isCont f x"
-    and "open s"
-  shows "open (f -` s)"
-proof -
-  from assms(1) have "continuous_on UNIV f"
-    unfolding isCont_def continuous_on_def by simp
-  then have "open {x \<in> UNIV. f x \<in> s}"
-    using open_UNIV \<open>open s\<close> by (rule continuous_open_preimage)
-  then show "open (f -` s)"
-    by (simp add: vimage_def)
-qed
-
-lemma isCont_closed_vimage:
-  assumes "\<And>x. isCont f x"
-    and "closed s"
-  shows "closed (f -` s)"
-  using assms unfolding closed_def vimage_Compl [symmetric]
-  by (rule isCont_open_vimage)
-
-lemma continuous_on_closed_Collect_le:
-  fixes f g :: "'a::t2_space \<Rightarrow> real"
-  assumes f: "continuous_on s f" and g: "continuous_on s g" and s: "closed s"
-  shows "closed {x \<in> s. f x \<le> g x}"
-proof -
-  have "closed ((\<lambda>x. g x - f x) -` {0..} \<inter> s)"
-    using closed_real_atLeast continuous_on_diff [OF g f]
-    by (simp add: continuous_on_closed_vimage [OF s])
-  also have "((\<lambda>x. g x - f x) -` {0..} \<inter> s) = {x\<in>s. f x \<le> g x}"
-    by auto
-  finally show ?thesis .
-qed
-
-lemma continuous_at_inner: "continuous (at x) (inner a)"
-  unfolding continuous_at by (intro tendsto_intros)
-
-lemma closed_halfspace_le: "closed {x. inner a x \<le> b}"
-  by (simp add: closed_Collect_le continuous_on_inner continuous_on_const continuous_on_id)
-
-lemma closed_halfspace_ge: "closed {x. inner a x \<ge> b}"
-  by (simp add: closed_Collect_le continuous_on_inner continuous_on_const continuous_on_id)
-
-lemma closed_hyperplane: "closed {x. inner a x = b}"
-  by (simp add: closed_Collect_eq continuous_on_inner continuous_on_const continuous_on_id)
-
-lemma closed_halfspace_component_le: "closed {x::'a::euclidean_space. x\<bullet>i \<le> a}"
-  by (simp add: closed_Collect_le continuous_on_inner continuous_on_const continuous_on_id)
-
-lemma closed_halfspace_component_ge: "closed {x::'a::euclidean_space. x\<bullet>i \<ge> a}"
-  by (simp add: closed_Collect_le continuous_on_inner continuous_on_const continuous_on_id)
-
-lemma closed_interval_left:
-  fixes b :: "'a::euclidean_space"
-  shows "closed {x::'a. \<forall>i\<in>Basis. x\<bullet>i \<le> b\<bullet>i}"
-  by (simp add: Collect_ball_eq closed_INT closed_Collect_le continuous_on_inner continuous_on_const continuous_on_id)
-
-lemma closed_interval_right:
-  fixes a :: "'a::euclidean_space"
-  shows "closed {x::'a. \<forall>i\<in>Basis. a\<bullet>i \<le> x\<bullet>i}"
-  by (simp add: Collect_ball_eq closed_INT closed_Collect_le continuous_on_inner continuous_on_const continuous_on_id)
-
-lemma continuous_le_on_closure:
-  fixes a::real
-  assumes f: "continuous_on (closure s) f"
-      and x: "x \<in> closure(s)"
-      and xlo: "\<And>x. x \<in> s ==> f(x) \<le> a"
-    shows "f(x) \<le> a"
-    using image_closure_subset [OF f]
-  using image_closure_subset [OF f] closed_halfspace_le [of "1::real" a] assms
-  by force
-
-lemma continuous_ge_on_closure:
-  fixes a::real
-  assumes f: "continuous_on (closure s) f"
-      and x: "x \<in> closure(s)"
-      and xlo: "\<And>x. x \<in> s ==> f(x) \<ge> a"
-    shows "f(x) \<ge> a"
-  using image_closure_subset [OF f] closed_halfspace_ge [of a "1::real"] assms
-  by force
-
-text \<open>Openness of halfspaces.\<close>
-
-lemma open_halfspace_lt: "open {x. inner a x < b}"
-  by (simp add: open_Collect_less continuous_on_inner continuous_on_const continuous_on_id)
-
-lemma open_halfspace_gt: "open {x. inner a x > b}"
-  by (simp add: open_Collect_less continuous_on_inner continuous_on_const continuous_on_id)
-
-lemma open_halfspace_component_lt: "open {x::'a::euclidean_space. x\<bullet>i < a}"
-  by (simp add: open_Collect_less continuous_on_inner continuous_on_const continuous_on_id)
-
-lemma open_halfspace_component_gt: "open {x::'a::euclidean_space. x\<bullet>i > a}"
-  by (simp add: open_Collect_less continuous_on_inner continuous_on_const continuous_on_id)
-
-text \<open>This gives a simple derivation of limit component bounds.\<close>
-
-lemma Lim_component_le:
-  fixes f :: "'a \<Rightarrow> 'b::euclidean_space"
-  assumes "(f \<longlongrightarrow> l) net"
-    and "\<not> (trivial_limit net)"
-    and "eventually (\<lambda>x. f(x)\<bullet>i \<le> b) net"
-  shows "l\<bullet>i \<le> b"
-  by (rule tendsto_le[OF assms(2) tendsto_const tendsto_inner[OF assms(1) tendsto_const] assms(3)])
-
-lemma Lim_component_ge:
-  fixes f :: "'a \<Rightarrow> 'b::euclidean_space"
-  assumes "(f \<longlongrightarrow> l) net"
-    and "\<not> (trivial_limit net)"
-    and "eventually (\<lambda>x. b \<le> (f x)\<bullet>i) net"
-  shows "b \<le> l\<bullet>i"
-  by (rule tendsto_le[OF assms(2) tendsto_inner[OF assms(1) tendsto_const] tendsto_const assms(3)])
-
-lemma Lim_component_eq:
-  fixes f :: "'a \<Rightarrow> 'b::euclidean_space"
-  assumes net: "(f \<longlongrightarrow> l) net" "\<not> trivial_limit net"
-    and ev:"eventually (\<lambda>x. f(x)\<bullet>i = b) net"
-  shows "l\<bullet>i = b"
-  using ev[unfolded order_eq_iff eventually_conj_iff]
-  using Lim_component_ge[OF net, of b i]
-  using Lim_component_le[OF net, of i b]
-  by auto
-
-text \<open>Limits relative to a union.\<close>
-
-lemma eventually_within_Un:
-  "eventually P (at x within (s \<union> t)) \<longleftrightarrow>
-    eventually P (at x within s) \<and> eventually P (at x within t)"
-  unfolding eventually_at_filter
-  by (auto elim!: eventually_rev_mp)
-
-lemma Lim_within_union:
- "(f \<longlongrightarrow> l) (at x within (s \<union> t)) \<longleftrightarrow>
-  (f \<longlongrightarrow> l) (at x within s) \<and> (f \<longlongrightarrow> l) (at x within t)"
-  unfolding tendsto_def
-  by (auto simp add: eventually_within_Un)
-
-lemma Lim_topological:
-  "(f \<longlongrightarrow> l) net \<longleftrightarrow>
-    trivial_limit net \<or> (\<forall>S. open S \<longrightarrow> l \<in> S \<longrightarrow> eventually (\<lambda>x. f x \<in> S) net)"
-  unfolding tendsto_def trivial_limit_eq by auto
-
-text \<open>Continuity relative to a union.\<close>
-
-lemma continuous_on_Un_local:
-    "\<lbrakk>closedin (subtopology euclidean (s \<union> t)) s; closedin (subtopology euclidean (s \<union> t)) t;
-      continuous_on s f; continuous_on t f\<rbrakk>
-     \<Longrightarrow> continuous_on (s \<union> t) f"
-  unfolding continuous_on closedin_limpt
-  by (metis Lim_trivial_limit Lim_within_union Un_iff trivial_limit_within)
-
-lemma continuous_on_cases_local:
-     "\<lbrakk>closedin (subtopology euclidean (s \<union> t)) s; closedin (subtopology euclidean (s \<union> t)) t;
-       continuous_on s f; continuous_on t g;
-       \<And>x. \<lbrakk>x \<in> s \<and> ~P x \<or> x \<in> t \<and> P x\<rbrakk> \<Longrightarrow> f x = g x\<rbrakk>
-      \<Longrightarrow> continuous_on (s \<union> t) (\<lambda>x. if P x then f x else g x)"
-  by (rule continuous_on_Un_local) (auto intro: continuous_on_eq)
-
-lemma continuous_on_cases_le:
-  fixes h :: "'a :: topological_space \<Rightarrow> real"
-  assumes "continuous_on {t \<in> s. h t \<le> a} f"
-      and "continuous_on {t \<in> s. a \<le> h t} g"
-      and h: "continuous_on s h"
-      and "\<And>t. \<lbrakk>t \<in> s; h t = a\<rbrakk> \<Longrightarrow> f t = g t"
-    shows "continuous_on s (\<lambda>t. if h t \<le> a then f(t) else g(t))"
-proof -
-  have s: "s = {t \<in> s. h t \<in> atMost a} \<union> {t \<in> s. h t \<in> atLeast a}"
-    by force
-  have 1: "closedin (subtopology euclidean s) {t \<in> s. h t \<in> atMost a}"
-    by (rule continuous_closedin_preimage [OF h closed_atMost])
-  have 2: "closedin (subtopology euclidean s) {t \<in> s. h t \<in> atLeast a}"
-    by (rule continuous_closedin_preimage [OF h closed_atLeast])
-  show ?thesis
-    apply (rule continuous_on_subset [of s, OF _ order_refl])
-    apply (subst s)
-    apply (rule continuous_on_cases_local)
-    using 1 2 s assms apply auto
-    done
-qed
-
-lemma continuous_on_cases_1:
-  fixes s :: "real set"
-  assumes "continuous_on {t \<in> s. t \<le> a} f"
-      and "continuous_on {t \<in> s. a \<le> t} g"
-      and "a \<in> s \<Longrightarrow> f a = g a"
-    shows "continuous_on s (\<lambda>t. if t \<le> a then f(t) else g(t))"
-using assms
-by (auto simp: continuous_on_id intro: continuous_on_cases_le [where h = id, simplified])
-
-text\<open>Some more convenient intermediate-value theorem formulations.\<close>
-
-lemma connected_ivt_hyperplane:
-  assumes "connected s"
-    and "x \<in> s"
-    and "y \<in> s"
-    and "inner a x \<le> b"
-    and "b \<le> inner a y"
-  shows "\<exists>z \<in> s. inner a z = b"
-proof (rule ccontr)
-  assume as:"\<not> (\<exists>z\<in>s. inner a z = b)"
-  let ?A = "{x. inner a x < b}"
-  let ?B = "{x. inner a x > b}"
-  have "open ?A" "open ?B"
-    using open_halfspace_lt and open_halfspace_gt by auto
-  moreover
-  have "?A \<inter> ?B = {}" by auto
-  moreover
-  have "s \<subseteq> ?A \<union> ?B" using as by auto
-  ultimately
-  show False
-    using assms(1)[unfolded connected_def not_ex,
-      THEN spec[where x="?A"], THEN spec[where x="?B"]]
-    using assms(2-5)
-    by auto
-qed
-
-lemma connected_ivt_component:
-  fixes x::"'a::euclidean_space"
-  shows "connected s \<Longrightarrow>
-    x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow>
-    x\<bullet>k \<le> a \<Longrightarrow> a \<le> y\<bullet>k \<Longrightarrow> (\<exists>z\<in>s.  z\<bullet>k = a)"
-  using connected_ivt_hyperplane[of s x y "k::'a" a]
-  by (auto simp: inner_commute)
-
-
-subsection \<open>Intervals\<close>
-
-lemma open_box[intro]: "open (box a b)"
-proof -
-  have "open (\<Inter>i\<in>Basis. (op \<bullet> i) -` {a \<bullet> i <..< b \<bullet> i})"
-    by (auto intro!: continuous_open_vimage continuous_inner continuous_ident continuous_const)
-  also have "(\<Inter>i\<in>Basis. (op \<bullet> i) -` {a \<bullet> i <..< b \<bullet> i}) = box a b"
-    by (auto simp add: box_def inner_commute)
-  finally show ?thesis .
-qed
-
-instance euclidean_space \<subseteq> second_countable_topology
-proof
-  define a where "a f = (\<Sum>i\<in>Basis. fst (f i) *\<^sub>R i)" for f :: "'a \<Rightarrow> real \<times> real"
-  then have a: "\<And>f. (\<Sum>i\<in>Basis. fst (f i) *\<^sub>R i) = a f"
-    by simp
-  define b where "b f = (\<Sum>i\<in>Basis. snd (f i) *\<^sub>R i)" for f :: "'a \<Rightarrow> real \<times> real"
-  then have b: "\<And>f. (\<Sum>i\<in>Basis. snd (f i) *\<^sub>R i) = b f"
-    by simp
-  define B where "B = (\<lambda>f. box (a f) (b f)) ` (Basis \<rightarrow>\<^sub>E (\<rat> \<times> \<rat>))"
-
-  have "Ball B open" by (simp add: B_def open_box)
-  moreover have "(\<forall>A. open A \<longrightarrow> (\<exists>B'\<subseteq>B. \<Union>B' = A))"
-  proof safe
-    fix A::"'a set"
-    assume "open A"
-    show "\<exists>B'\<subseteq>B. \<Union>B' = A"
-      apply (rule exI[of _ "{b\<in>B. b \<subseteq> A}"])
-      apply (subst (3) open_UNION_box[OF \<open>open A\<close>])
-      apply (auto simp add: a b B_def)
-      done
-  qed
-  ultimately
-  have "topological_basis B"
-    unfolding topological_basis_def by blast
-  moreover
-  have "countable B"
-    unfolding B_def
-    by (intro countable_image countable_PiE finite_Basis countable_SIGMA countable_rat)
-  ultimately show "\<exists>B::'a set set. countable B \<and> open = generate_topology B"
-    by (blast intro: topological_basis_imp_subbasis)
-qed
-
-instance euclidean_space \<subseteq> polish_space ..
-
-lemma closed_cbox[intro]:
-  fixes a b :: "'a::euclidean_space"
-  shows "closed (cbox a b)"
-proof -
-  have "closed (\<Inter>i\<in>Basis. (\<lambda>x. x\<bullet>i) -` {a\<bullet>i .. b\<bullet>i})"
-    by (intro closed_INT ballI continuous_closed_vimage allI
-      linear_continuous_at closed_real_atLeastAtMost finite_Basis bounded_linear_inner_left)
-  also have "(\<Inter>i\<in>Basis. (\<lambda>x. x\<bullet>i) -` {a\<bullet>i .. b\<bullet>i}) = cbox a b"
-    by (auto simp add: cbox_def)
-  finally show "closed (cbox a b)" .
-qed
-
-lemma interior_cbox [simp]:
-  fixes a b :: "'a::euclidean_space"
-  shows "interior (cbox a b) = box a b" (is "?L = ?R")
-proof(rule subset_antisym)
-  show "?R \<subseteq> ?L"
-    using box_subset_cbox open_box
-    by (rule interior_maximal)
-  {
-    fix x
-    assume "x \<in> interior (cbox a b)"
-    then obtain s where s: "open s" "x \<in> s" "s \<subseteq> cbox a b" ..
-    then obtain e where "e>0" and e:"\<forall>x'. dist x' x < e \<longrightarrow> x' \<in> cbox a b"
-      unfolding open_dist and subset_eq by auto
-    {
-      fix i :: 'a
-      assume i: "i \<in> Basis"
-      have "dist (x - (e / 2) *\<^sub>R i) x < e"
-        and "dist (x + (e / 2) *\<^sub>R i) x < e"
-        unfolding dist_norm
-        apply auto
-        unfolding norm_minus_cancel
-        using norm_Basis[OF i] \<open>e>0\<close>
-        apply auto
-        done
-      then have "a \<bullet> i \<le> (x - (e / 2) *\<^sub>R i) \<bullet> i" and "(x + (e / 2) *\<^sub>R i) \<bullet> i \<le> b \<bullet> i"
-        using e[THEN spec[where x="x - (e/2) *\<^sub>R i"]]
-          and e[THEN spec[where x="x + (e/2) *\<^sub>R i"]]
-        unfolding mem_box
-        using i
-        by blast+
-      then have "a \<bullet> i < x \<bullet> i" and "x \<bullet> i < b \<bullet> i"
-        using \<open>e>0\<close> i
-        by (auto simp: inner_diff_left inner_Basis inner_add_left)
-    }
-    then have "x \<in> box a b"
-      unfolding mem_box by auto
-  }
-  then show "?L \<subseteq> ?R" ..
-qed
-
-lemma bounded_cbox:
-  fixes a :: "'a::euclidean_space"
-  shows "bounded (cbox a b)"
-proof -
-  let ?b = "\<Sum>i\<in>Basis. \<bar>a\<bullet>i\<bar> + \<bar>b\<bullet>i\<bar>"
-  {
-    fix x :: "'a"
-    assume x: "\<forall>i\<in>Basis. a \<bullet> i \<le> x \<bullet> i \<and> x \<bullet> i \<le> b \<bullet> i"
-    {
-      fix i :: 'a
-      assume "i \<in> Basis"
-      then have "\<bar>x\<bullet>i\<bar> \<le> \<bar>a\<bullet>i\<bar> + \<bar>b\<bullet>i\<bar>"
-        using x[THEN bspec[where x=i]] by auto
-    }
-    then have "(\<Sum>i\<in>Basis. \<bar>x \<bullet> i\<bar>) \<le> ?b"
-      apply -
-      apply (rule setsum_mono)
-      apply auto
-      done
-    then have "norm x \<le> ?b"
-      using norm_le_l1[of x] by auto
-  }
-  then show ?thesis
-    unfolding cbox_def bounded_iff by auto
-qed
-
-lemma bounded_box [simp]:
-  fixes a :: "'a::euclidean_space"
-  shows "bounded (box a b)"
-  using bounded_cbox[of a b]
-  using box_subset_cbox[of a b]
-  using bounded_subset[of "cbox a b" "box a b"]
-  by simp
-
-lemma not_interval_UNIV [simp]:
-  fixes a :: "'a::euclidean_space"
-  shows "cbox a b \<noteq> UNIV" "box a b \<noteq> UNIV"
-  using bounded_box[of a b] bounded_cbox[of a b] by force+
-
-lemma compact_cbox [simp]:
-  fixes a :: "'a::euclidean_space"
-  shows "compact (cbox a b)"
-  using bounded_closed_imp_seq_compact[of "cbox a b"] using bounded_cbox[of a b]
-  by (auto simp: compact_eq_seq_compact_metric)
-
-lemma box_midpoint:
-  fixes a :: "'a::euclidean_space"
-  assumes "box a b \<noteq> {}"
-  shows "((1/2) *\<^sub>R (a + b)) \<in> box a b"
-proof -
-  {
-    fix i :: 'a
-    assume "i \<in> Basis"
-    then have "a \<bullet> i < ((1 / 2) *\<^sub>R (a + b)) \<bullet> i \<and> ((1 / 2) *\<^sub>R (a + b)) \<bullet> i < b \<bullet> i"
-      using assms[unfolded box_ne_empty, THEN bspec[where x=i]] by (auto simp: inner_add_left)
-  }
-  then show ?thesis unfolding mem_box by auto
-qed
-
-lemma open_cbox_convex:
-  fixes x :: "'a::euclidean_space"
-  assumes x: "x \<in> box a b"
-    and y: "y \<in> cbox a b"
-    and e: "0 < e" "e \<le> 1"
-  shows "(e *\<^sub>R x + (1 - e) *\<^sub>R y) \<in> box a b"
-proof -
-  {
-    fix i :: 'a
-    assume i: "i \<in> Basis"
-    have "a \<bullet> i = e * (a \<bullet> i) + (1 - e) * (a \<bullet> i)"
-      unfolding left_diff_distrib by simp
-    also have "\<dots> < e * (x \<bullet> i) + (1 - e) * (y \<bullet> i)"
-      apply (rule add_less_le_mono)
-      using e unfolding mult_less_cancel_left and mult_le_cancel_left
-      apply simp_all
-      using x unfolding mem_box using i
-      apply simp
-      using y unfolding mem_box using i
-      apply simp
-      done
-    finally have "a \<bullet> i < (e *\<^sub>R x + (1 - e) *\<^sub>R y) \<bullet> i"
-      unfolding inner_simps by auto
-    moreover
-    {
-      have "b \<bullet> i = e * (b\<bullet>i) + (1 - e) * (b\<bullet>i)"
-        unfolding left_diff_distrib by simp
-      also have "\<dots> > e * (x \<bullet> i) + (1 - e) * (y \<bullet> i)"
-        apply (rule add_less_le_mono)
-        using e unfolding mult_less_cancel_left and mult_le_cancel_left
-        apply simp_all
-        using x
-        unfolding mem_box
-        using i
-        apply simp
-        using y
-        unfolding mem_box
-        using i
-        apply simp
-        done
-      finally have "(e *\<^sub>R x + (1 - e) *\<^sub>R y) \<bullet> i < b \<bullet> i"
-        unfolding inner_simps by auto
-    }
-    ultimately have "a \<bullet> i < (e *\<^sub>R x + (1 - e) *\<^sub>R y) \<bullet> i \<and> (e *\<^sub>R x + (1 - e) *\<^sub>R y) \<bullet> i < b \<bullet> i"
-      by auto
-  }
-  then show ?thesis
-    unfolding mem_box by auto
-qed
-
-lemma closure_box:
-  fixes a :: "'a::euclidean_space"
-   assumes "box a b \<noteq> {}"
-  shows "closure (box a b) = cbox a b"
-proof -
-  have ab: "a <e b"
-    using assms by (simp add: eucl_less_def box_ne_empty)
-  let ?c = "(1 / 2) *\<^sub>R (a + b)"
-  {
-    fix x
-    assume as:"x \<in> cbox a b"
-    define f where [abs_def]: "f n = x + (inverse (real n + 1)) *\<^sub>R (?c - x)" for n
-    {
-      fix n
-      assume fn: "f n <e b \<longrightarrow> a <e f n \<longrightarrow> f n = x" and xc: "x \<noteq> ?c"
-      have *: "0 < inverse (real n + 1)" "inverse (real n + 1) \<le> 1"
-        unfolding inverse_le_1_iff by auto
-      have "(inverse (real n + 1)) *\<^sub>R ((1 / 2) *\<^sub>R (a + b)) + (1 - inverse (real n + 1)) *\<^sub>R x =
-        x + (inverse (real n + 1)) *\<^sub>R (((1 / 2) *\<^sub>R (a + b)) - x)"
-        by (auto simp add: algebra_simps)
-      then have "f n <e b" and "a <e f n"
-        using open_cbox_convex[OF box_midpoint[OF assms] as *]
-        unfolding f_def by (auto simp: box_def eucl_less_def)
-      then have False
-        using fn unfolding f_def using xc by auto
-    }
-    moreover
-    {
-      assume "\<not> (f \<longlongrightarrow> x) sequentially"
-      {
-        fix e :: real
-        assume "e > 0"
-        then have "\<exists>N::nat. inverse (real (N + 1)) < e"
-          using real_arch_inverse[of e]
-          apply (auto simp add: Suc_pred')
-          apply (metis Suc_pred' of_nat_Suc)
-          done
-        then obtain N :: nat where N: "inverse (real (N + 1)) < e"
-          by auto
-        have "inverse (real n + 1) < e" if "N \<le> n" for n
-          by (auto intro!: that le_less_trans [OF _ N])
-        then have "\<exists>N::nat. \<forall>n\<ge>N. inverse (real n + 1) < e" by auto
-      }
-      then have "((\<lambda>n. inverse (real n + 1)) \<longlongrightarrow> 0) sequentially"
-        unfolding lim_sequentially by(auto simp add: dist_norm)
-      then have "(f \<longlongrightarrow> x) sequentially"
-        unfolding f_def
-        using tendsto_add[OF tendsto_const, of "\<lambda>n::nat. (inverse (real n + 1)) *\<^sub>R ((1 / 2) *\<^sub>R (a + b) - x)" 0 sequentially x]
-        using tendsto_scaleR [OF _ tendsto_const, of "\<lambda>n::nat. inverse (real n + 1)" 0 sequentially "((1 / 2) *\<^sub>R (a + b) - x)"]
-        by auto
-    }
-    ultimately have "x \<in> closure (box a b)"
-      using as and box_midpoint[OF assms]
-      unfolding closure_def
-      unfolding islimpt_sequential
-      by (cases "x=?c") (auto simp: in_box_eucl_less)
-  }
-  then show ?thesis
-    using closure_minimal[OF box_subset_cbox, of a b] by blast
-qed
-
-lemma bounded_subset_box_symmetric:
-  fixes s::"('a::euclidean_space) set"
-  assumes "bounded s"
-  shows "\<exists>a. s \<subseteq> box (-a) a"
-proof -
-  obtain b where "b>0" and b: "\<forall>x\<in>s. norm x \<le> b"
-    using assms[unfolded bounded_pos] by auto
-  define a :: 'a where "a = (\<Sum>i\<in>Basis. (b + 1) *\<^sub>R i)"
-  {
-    fix x
-    assume "x \<in> s"
-    fix i :: 'a
-    assume i: "i \<in> Basis"
-    then have "(-a)\<bullet>i < x\<bullet>i" and "x\<bullet>i < a\<bullet>i"
-      using b[THEN bspec[where x=x], OF \<open>x\<in>s\<close>]
-      using Basis_le_norm[OF i, of x]
-      unfolding inner_simps and a_def
-      by auto
-  }
-  then show ?thesis
-    by (auto intro: exI[where x=a] simp add: box_def)
-qed
-
-lemma bounded_subset_open_interval:
-  fixes s :: "('a::euclidean_space) set"
-  shows "bounded s \<Longrightarrow> (\<exists>a b. s \<subseteq> box a b)"
-  by (auto dest!: bounded_subset_box_symmetric)
-
-lemma bounded_subset_cbox_symmetric:
-  fixes s :: "('a::euclidean_space) set"
-   assumes "bounded s"
-  shows "\<exists>a. s \<subseteq> cbox (-a) a"
-proof -
-  obtain a where "s \<subseteq> box (-a) a"
-    using bounded_subset_box_symmetric[OF assms] by auto
-  then show ?thesis
-    using box_subset_cbox[of "-a" a] by auto
-qed
-
-lemma bounded_subset_cbox:
-  fixes s :: "('a::euclidean_space) set"
-  shows "bounded s \<Longrightarrow> \<exists>a b. s \<subseteq> cbox a b"
-  using bounded_subset_cbox_symmetric[of s] by auto
-
-lemma frontier_cbox:
-  fixes a b :: "'a::euclidean_space"
-  shows "frontier (cbox a b) = cbox a b - box a b"
-  unfolding frontier_def unfolding interior_cbox and closure_closed[OF closed_cbox] ..
-
-lemma frontier_box:
-  fixes a b :: "'a::euclidean_space"
-  shows "frontier (box a b) = (if box a b = {} then {} else cbox a b - box a b)"
-proof (cases "box a b = {}")
-  case True
-  then show ?thesis
-    using frontier_empty by auto
-next
-  case False
-  then show ?thesis
-    unfolding frontier_def and closure_box[OF False] and interior_open[OF open_box]
-    by auto
-qed
-
-lemma inter_interval_mixed_eq_empty:
-  fixes a :: "'a::euclidean_space"
-   assumes "box c d \<noteq> {}"
-  shows "box a b \<inter> cbox c d = {} \<longleftrightarrow> box a b \<inter> box c d = {}"
-  unfolding closure_box[OF assms, symmetric]
-  unfolding open_Int_closure_eq_empty[OF open_box] ..
-
-lemma diameter_cbox:
-  fixes a b::"'a::euclidean_space"
-  shows "(\<forall>i \<in> Basis. a \<bullet> i \<le> b \<bullet> i) \<Longrightarrow> diameter (cbox a b) = dist a b"
-  by (force simp add: diameter_def intro!: cSup_eq_maximum setL2_mono
-     simp: euclidean_dist_l2[where 'a='a] cbox_def dist_norm)
-
-lemma eucl_less_eq_halfspaces:
-  fixes a :: "'a::euclidean_space"
-  shows "{x. x <e a} = (\<Inter>i\<in>Basis. {x. x \<bullet> i < a \<bullet> i})"
-    "{x. a <e x} = (\<Inter>i\<in>Basis. {x. a \<bullet> i < x \<bullet> i})"
-  by (auto simp: eucl_less_def)
-
-lemma eucl_le_eq_halfspaces:
-  fixes a :: "'a::euclidean_space"
-  shows "{x. \<forall>i\<in>Basis. x \<bullet> i \<le> a \<bullet> i} = (\<Inter>i\<in>Basis. {x. x \<bullet> i \<le> a \<bullet> i})"
-    "{x. \<forall>i\<in>Basis. a \<bullet> i \<le> x \<bullet> i} = (\<Inter>i\<in>Basis. {x. a \<bullet> i \<le> x \<bullet> i})"
-  by auto
-
-lemma open_Collect_eucl_less[simp, intro]:
-  fixes a :: "'a::euclidean_space"
-  shows "open {x. x <e a}"
-    "open {x. a <e x}"
-  by (auto simp: eucl_less_eq_halfspaces open_halfspace_component_lt open_halfspace_component_gt)
-
-lemma closed_Collect_eucl_le[simp, intro]:
-  fixes a :: "'a::euclidean_space"
-  shows "closed {x. \<forall>i\<in>Basis. a \<bullet> i \<le> x \<bullet> i}"
-    "closed {x. \<forall>i\<in>Basis. x \<bullet> i \<le> a \<bullet> i}"
-  unfolding eucl_le_eq_halfspaces
-  by (simp_all add: closed_INT closed_Collect_le  continuous_on_inner continuous_on_const continuous_on_id)
-
-lemma image_affinity_cbox: fixes m::real
-  fixes a b c :: "'a::euclidean_space"
-  shows "(\<lambda>x. m *\<^sub>R x + c) ` cbox a b =
-    (if cbox a b = {} then {}
-     else (if 0 \<le> m then cbox (m *\<^sub>R a + c) (m *\<^sub>R b + c)
-     else cbox (m *\<^sub>R b + c) (m *\<^sub>R a + c)))"
-proof (cases "m = 0")
-  case True
-  {
-    fix x
-    assume "\<forall>i\<in>Basis. x \<bullet> i \<le> c \<bullet> i" "\<forall>i\<in>Basis. c \<bullet> i \<le> x \<bullet> i"
-    then have "x = c"
-      apply -
-      apply (subst euclidean_eq_iff)
-      apply (auto intro: order_antisym)
-      done
-  }
-  moreover have "c \<in> cbox (m *\<^sub>R a + c) (m *\<^sub>R b + c)"
-    unfolding True by (auto simp add: cbox_sing)
-  ultimately show ?thesis using True by (auto simp: cbox_def)
-next
-  case False
-  {
-    fix y
-    assume "\<forall>i\<in>Basis. a \<bullet> i \<le> y \<bullet> i" "\<forall>i\<in>Basis. y \<bullet> i \<le> b \<bullet> i" "m > 0"
-    then have "\<forall>i\<in>Basis. (m *\<^sub>R a + c) \<bullet> i \<le> (m *\<^sub>R y + c) \<bullet> i" and "\<forall>i\<in>Basis. (m *\<^sub>R y + c) \<bullet> i \<le> (m *\<^sub>R b + c) \<bullet> i"
-      by (auto simp: inner_distrib)
-  }
-  moreover
-  {
-    fix y
-    assume "\<forall>i\<in>Basis. a \<bullet> i \<le> y \<bullet> i" "\<forall>i\<in>Basis. y \<bullet> i \<le> b \<bullet> i" "m < 0"
-    then have "\<forall>i\<in>Basis. (m *\<^sub>R b + c) \<bullet> i \<le> (m *\<^sub>R y + c) \<bullet> i" and "\<forall>i\<in>Basis. (m *\<^sub>R y + c) \<bullet> i \<le> (m *\<^sub>R a + c) \<bullet> i"
-      by (auto simp add: mult_left_mono_neg inner_distrib)
-  }
-  moreover
-  {
-    fix y
-    assume "m > 0" and "\<forall>i\<in>Basis. (m *\<^sub>R a + c) \<bullet> i \<le> y \<bullet> i" and "\<forall>i\<in>Basis. y \<bullet> i \<le> (m *\<^sub>R b + c) \<bullet> i"
-    then have "y \<in> (\<lambda>x. m *\<^sub>R x + c) ` cbox a b"
-      unfolding image_iff Bex_def mem_box
-      apply (intro exI[where x="(1 / m) *\<^sub>R (y - c)"])
-      apply (auto simp add: pos_le_divide_eq pos_divide_le_eq mult.commute inner_distrib inner_diff_left)
-      done
-  }
-  moreover
-  {
-    fix y
-    assume "\<forall>i\<in>Basis. (m *\<^sub>R b + c) \<bullet> i \<le> y \<bullet> i" "\<forall>i\<in>Basis. y \<bullet> i \<le> (m *\<^sub>R a + c) \<bullet> i" "m < 0"
-    then have "y \<in> (\<lambda>x. m *\<^sub>R x + c) ` cbox a b"
-      unfolding image_iff Bex_def mem_box
-      apply (intro exI[where x="(1 / m) *\<^sub>R (y - c)"])
-      apply (auto simp add: neg_le_divide_eq neg_divide_le_eq mult.commute inner_distrib inner_diff_left)
-      done
-  }
-  ultimately show ?thesis using False by (auto simp: cbox_def)
-qed
-
-lemma image_smult_cbox:"(\<lambda>x. m *\<^sub>R (x::_::euclidean_space)) ` cbox a b =
-  (if cbox a b = {} then {} else if 0 \<le> m then cbox (m *\<^sub>R a) (m *\<^sub>R b) else cbox (m *\<^sub>R b) (m *\<^sub>R a))"
-  using image_affinity_cbox[of m 0 a b] by auto
-
-lemma islimpt_greaterThanLessThan1:
-  fixes a b::"'a::{linorder_topology, dense_order}"
-  assumes "a < b"
-  shows  "a islimpt {a<..<b}"
-proof (rule islimptI)
-  fix T
-  assume "open T" "a \<in> T"
-  from open_right[OF this \<open>a < b\<close>]
-  obtain c where c: "a < c" "{a..<c} \<subseteq> T" by auto
-  with assms dense[of a "min c b"]
-  show "\<exists>y\<in>{a<..<b}. y \<in> T \<and> y \<noteq> a"
-    by (metis atLeastLessThan_iff greaterThanLessThan_iff min_less_iff_conj
-      not_le order.strict_implies_order subset_eq)
-qed
-
-lemma islimpt_greaterThanLessThan2:
-  fixes a b::"'a::{linorder_topology, dense_order}"
-  assumes "a < b"
-  shows  "b islimpt {a<..<b}"
-proof (rule islimptI)
-  fix T
-  assume "open T" "b \<in> T"
-  from open_left[OF this \<open>a < b\<close>]
-  obtain c where c: "c < b" "{c<..b} \<subseteq> T" by auto
-  with assms dense[of "max a c" b]
-  show "\<exists>y\<in>{a<..<b}. y \<in> T \<and> y \<noteq> b"
-    by (metis greaterThanAtMost_iff greaterThanLessThan_iff max_less_iff_conj
-      not_le order.strict_implies_order subset_eq)
-qed
-
-lemma closure_greaterThanLessThan[simp]:
-  fixes a b::"'a::{linorder_topology, dense_order}"
-  shows "a < b \<Longrightarrow> closure {a <..< b} = {a .. b}" (is "_ \<Longrightarrow> ?l = ?r")
-proof
-  have "?l \<subseteq> closure ?r"
-    by (rule closure_mono) auto
-  thus "closure {a<..<b} \<subseteq> {a..b}" by simp
-qed (auto simp: closure_def order.order_iff_strict islimpt_greaterThanLessThan1
-  islimpt_greaterThanLessThan2)
-
-lemma closure_greaterThan[simp]:
-  fixes a b::"'a::{no_top, linorder_topology, dense_order}"
-  shows "closure {a<..} = {a..}"
-proof -
-  from gt_ex obtain b where "a < b" by auto
-  hence "{a<..} = {a<..<b} \<union> {b..}" by auto
-  also have "closure \<dots> = {a..}" using \<open>a < b\<close> unfolding closure_union
-    by auto
-  finally show ?thesis .
-qed
-
-lemma closure_lessThan[simp]:
-  fixes b::"'a::{no_bot, linorder_topology, dense_order}"
-  shows "closure {..<b} = {..b}"
-proof -
-  from lt_ex obtain a where "a < b" by auto
-  hence "{..<b} = {a<..<b} \<union> {..a}" by auto
-  also have "closure \<dots> = {..b}" using \<open>a < b\<close> unfolding closure_union
-    by auto
-  finally show ?thesis .
-qed
-
-lemma closure_atLeastLessThan[simp]:
-  fixes a b::"'a::{linorder_topology, dense_order}"
-  assumes "a < b"
-  shows "closure {a ..< b} = {a .. b}"
-proof -
-  from assms have "{a ..< b} = {a} \<union> {a <..< b}" by auto
-  also have "closure \<dots> = {a .. b}" unfolding closure_union
-    by (auto simp add: assms less_imp_le)
-  finally show ?thesis .
-qed
-
-lemma closure_greaterThanAtMost[simp]:
-  fixes a b::"'a::{linorder_topology, dense_order}"
-  assumes "a < b"
-  shows "closure {a <.. b} = {a .. b}"
-proof -
-  from assms have "{a <.. b} = {b} \<union> {a <..< b}" by auto
-  also have "closure \<dots> = {a .. b}" unfolding closure_union
-    by (auto simp add: assms less_imp_le)
-  finally show ?thesis .
-qed
-
-
-subsection \<open>Homeomorphisms\<close>
-
-definition "homeomorphism s t f g \<longleftrightarrow>
-  (\<forall>x\<in>s. (g(f x) = x)) \<and> (f ` s = t) \<and> continuous_on s f \<and>
-  (\<forall>y\<in>t. (f(g y) = y)) \<and> (g ` t = s) \<and> continuous_on t g"
-
-lemma homeomorphism_translation:
-  fixes a :: "'a :: real_normed_vector"
-  shows "homeomorphism (op + a ` S) S (op + (- a)) (op + a)"
-unfolding homeomorphism_def by (auto simp: algebra_simps continuous_intros)
-
-lemma homeomorphism_symD: "homeomorphism S t f g \<Longrightarrow> homeomorphism t S g f"
-  by (simp add: homeomorphism_def)
-
-lemma homeomorphism_sym: "homeomorphism S t f g = homeomorphism t S g f"
-  by (force simp: homeomorphism_def)
-
-definition homeomorphic :: "'a::topological_space set \<Rightarrow> 'b::topological_space set \<Rightarrow> bool"
-    (infixr "homeomorphic" 60)
-  where "s homeomorphic t \<equiv> (\<exists>f g. homeomorphism s t f g)"
-
-lemma homeomorphic_empty [iff]:
-     "S homeomorphic {} \<longleftrightarrow> S = {}" "{} homeomorphic S \<longleftrightarrow> S = {}"
-  by (auto simp add: homeomorphic_def homeomorphism_def)
-
-lemma homeomorphic_refl: "s homeomorphic s"
-  unfolding homeomorphic_def homeomorphism_def
-  using continuous_on_id
-  apply (rule_tac x = "(\<lambda>x. x)" in exI)
-  apply (rule_tac x = "(\<lambda>x. x)" in exI)
-  apply blast
-  done
-
-lemma homeomorphic_sym: "s homeomorphic t \<longleftrightarrow> t homeomorphic s"
-  unfolding homeomorphic_def homeomorphism_def
-  by blast
-
-lemma homeomorphic_trans [trans]:
-  assumes "s homeomorphic t"
-      and "t homeomorphic u"
-    shows "s homeomorphic u"
-proof -
-  obtain f1 g1 where fg1: "\<forall>x\<in>s. g1 (f1 x) = x"  "f1 ` s = t"
-    "continuous_on s f1" "\<forall>y\<in>t. f1 (g1 y) = y" "g1 ` t = s" "continuous_on t g1"
-    using assms(1) unfolding homeomorphic_def homeomorphism_def by auto
-  obtain f2 g2 where fg2: "\<forall>x\<in>t. g2 (f2 x) = x"  "f2 ` t = u" "continuous_on t f2"
-    "\<forall>y\<in>u. f2 (g2 y) = y" "g2 ` u = t" "continuous_on u g2"
-    using assms(2) unfolding homeomorphic_def homeomorphism_def by auto
-  {
-    fix x
-    assume "x\<in>s"
-    then have "(g1 \<circ> g2) ((f2 \<circ> f1) x) = x"
-      using fg1(1)[THEN bspec[where x=x]] and fg2(1)[THEN bspec[where x="f1 x"]] and fg1(2)
-      by auto
-  }
-  moreover have "(f2 \<circ> f1) ` s = u"
-    using fg1(2) fg2(2) by auto
-  moreover have "continuous_on s (f2 \<circ> f1)"
-    using continuous_on_compose[OF fg1(3)] and fg2(3) unfolding fg1(2) by auto
-  moreover
-  {
-    fix y
-    assume "y\<in>u"
-    then have "(f2 \<circ> f1) ((g1 \<circ> g2) y) = y"
-      using fg2(4)[THEN bspec[where x=y]] and fg1(4)[THEN bspec[where x="g2 y"]] and fg2(5)
-      by auto
-  }
-  moreover have "(g1 \<circ> g2) ` u = s" using fg1(5) fg2(5) by auto
-  moreover have "continuous_on u (g1 \<circ> g2)"
-    using continuous_on_compose[OF fg2(6)] and fg1(6)
-    unfolding fg2(5)
-    by auto
-  ultimately show ?thesis
-    unfolding homeomorphic_def homeomorphism_def
-    apply (rule_tac x="f2 \<circ> f1" in exI)
-    apply (rule_tac x="g1 \<circ> g2" in exI)
-    apply auto
-    done
-qed
-
-lemma homeomorphic_minimal:
-  "s homeomorphic t \<longleftrightarrow>
-    (\<exists>f g. (\<forall>x\<in>s. f(x) \<in> t \<and> (g(f(x)) = x)) \<and>
-           (\<forall>y\<in>t. g(y) \<in> s \<and> (f(g(y)) = y)) \<and>
-           continuous_on s f \<and> continuous_on t g)"
-  unfolding homeomorphic_def homeomorphism_def
-  apply auto
-  apply (rule_tac x=f in exI)
-  apply (rule_tac x=g in exI)
-  apply auto
-  apply (rule_tac x=f in exI)
-  apply (rule_tac x=g in exI)
-  apply auto
-  unfolding image_iff
-  apply (erule_tac x="g x" in ballE)
-  apply (erule_tac x="x" in ballE)
-  apply auto
-  apply (rule_tac x="g x" in bexI)
-  apply auto
-  apply (erule_tac x="f x" in ballE)
-  apply (erule_tac x="x" in ballE)
-  apply auto
-  apply (rule_tac x="f x" in bexI)
-  apply auto
-  done
-
-lemma homeomorphicI [intro?]:
-   "\<lbrakk>f ` S = T; g ` T = S;
-     continuous_on S f; continuous_on T g;
-     \<And>x. x \<in> S \<Longrightarrow> g(f(x)) = x;
-     \<And>y. y \<in> T \<Longrightarrow> f(g(y)) = y\<rbrakk> \<Longrightarrow> S homeomorphic T"
-unfolding homeomorphic_def homeomorphism_def by metis
-
-lemma homeomorphism_of_subsets:
-   "\<lbrakk>homeomorphism S T f g; S' \<subseteq> S; T'' \<subseteq> T; f ` S' = T'\<rbrakk>
-    \<Longrightarrow> homeomorphism S' T' f g"
-apply (auto simp: homeomorphism_def elim!: continuous_on_subset)
-by (metis contra_subsetD imageI)
-
-lemma homeomorphism_apply1: "\<lbrakk>homeomorphism S T f g; x \<in> S\<rbrakk> \<Longrightarrow> g(f x) = x"
-  by (simp add: homeomorphism_def)
-
-lemma homeomorphism_apply2: "\<lbrakk>homeomorphism S T f g; x \<in> T\<rbrakk> \<Longrightarrow> f(g x) = x"
-  by (simp add: homeomorphism_def)
-
-lemma homeomorphism_image1: "homeomorphism S T f g \<Longrightarrow> f ` S = T"
-  by (simp add: homeomorphism_def)
-
-lemma homeomorphism_image2: "homeomorphism S T f g \<Longrightarrow> g ` T = S"
-  by (simp add: homeomorphism_def)
-
-lemma homeomorphism_cont1: "homeomorphism S T f g \<Longrightarrow> continuous_on S f"
-  by (simp add: homeomorphism_def)
-
-lemma homeomorphism_cont2: "homeomorphism S T f g \<Longrightarrow> continuous_on T g"
-  by (simp add: homeomorphism_def)
-
-text \<open>Relatively weak hypotheses if a set is compact.\<close>
-
-lemma homeomorphism_compact:
-  fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space"
-  assumes "compact s" "continuous_on s f"  "f ` s = t"  "inj_on f s"
-  shows "\<exists>g. homeomorphism s t f g"
-proof -
-  define g where "g x = (SOME y. y\<in>s \<and> f y = x)" for x
-  have g: "\<forall>x\<in>s. g (f x) = x"
-    using assms(3) assms(4)[unfolded inj_on_def] unfolding g_def by auto
-  {
-    fix y
-    assume "y \<in> t"
-    then obtain x where x:"f x = y" "x\<in>s"
-      using assms(3) by auto
-    then have "g (f x) = x" using g by auto
-    then have "f (g y) = y" unfolding x(1)[symmetric] by auto
-  }
-  then have g':"\<forall>x\<in>t. f (g x) = x" by auto
-  moreover
-  {
-    fix x
-    have "x\<in>s \<Longrightarrow> x \<in> g ` t"
-      using g[THEN bspec[where x=x]]
-      unfolding image_iff
-      using assms(3)
-      by (auto intro!: bexI[where x="f x"])
-    moreover
-    {
-      assume "x\<in>g ` t"
-      then obtain y where y:"y\<in>t" "g y = x" by auto
-      then obtain x' where x':"x'\<in>s" "f x' = y"
-        using assms(3) by auto
-      then have "x \<in> s"
-        unfolding g_def
-        using someI2[of "\<lambda>b. b\<in>s \<and> f b = y" x' "\<lambda>x. x\<in>s"]
-        unfolding y(2)[symmetric] and g_def
-        by auto
-    }
-    ultimately have "x\<in>s \<longleftrightarrow> x \<in> g ` t" ..
-  }
-  then have "g ` t = s" by auto
-  ultimately show ?thesis
-    unfolding homeomorphism_def homeomorphic_def
-    apply (rule_tac x=g in exI)
-    using g and assms(3) and continuous_on_inv[OF assms(2,1), of g, unfolded assms(3)] and assms(2)
-    apply auto
-    done
-qed
-
-lemma homeomorphic_compact:
-  fixes f :: "'a::topological_space \<Rightarrow> 'b::t2_space"
-  shows "compact s \<Longrightarrow> continuous_on s f \<Longrightarrow> (f ` s = t) \<Longrightarrow> inj_on f s \<Longrightarrow> s homeomorphic t"
-  unfolding homeomorphic_def by (metis homeomorphism_compact)
-
-text\<open>Preservation of topological properties.\<close>
-
-lemma homeomorphic_compactness: "s homeomorphic t \<Longrightarrow> (compact s \<longleftrightarrow> compact t)"
-  unfolding homeomorphic_def homeomorphism_def
-  by (metis compact_continuous_image)
-
-text\<open>Results on translation, scaling etc.\<close>
-
-lemma homeomorphic_scaling:
-  fixes s :: "'a::real_normed_vector set"
-  assumes "c \<noteq> 0"
-  shows "s homeomorphic ((\<lambda>x. c *\<^sub>R x) ` s)"
-  unfolding homeomorphic_minimal
-  apply (rule_tac x="\<lambda>x. c *\<^sub>R x" in exI)
-  apply (rule_tac x="\<lambda>x. (1 / c) *\<^sub>R x" in exI)
-  using assms
-  apply (auto simp add: continuous_intros)
-  done
-
-lemma homeomorphic_translation:
-  fixes s :: "'a::real_normed_vector set"
-  shows "s homeomorphic ((\<lambda>x. a + x) ` s)"
-  unfolding homeomorphic_minimal
-  apply (rule_tac x="\<lambda>x. a + x" in exI)
-  apply (rule_tac x="\<lambda>x. -a + x" in exI)
-  using continuous_on_add [OF continuous_on_const continuous_on_id, of s a]
-    continuous_on_add [OF continuous_on_const continuous_on_id, of "plus a ` s" "- a"]
-  apply auto
-  done
-
-lemma homeomorphic_affinity:
-  fixes s :: "'a::real_normed_vector set"
-  assumes "c \<noteq> 0"
-  shows "s homeomorphic ((\<lambda>x. a + c *\<^sub>R x) ` s)"
-proof -
-  have *: "op + a ` op *\<^sub>R c ` s = (\<lambda>x. a + c *\<^sub>R x) ` s" by auto
-  show ?thesis
-    using homeomorphic_trans
-    using homeomorphic_scaling[OF assms, of s]
-    using homeomorphic_translation[of "(\<lambda>x. c *\<^sub>R x) ` s" a]
-    unfolding *
-    by auto
-qed
-
-lemma homeomorphic_balls:
-  fixes a b ::"'a::real_normed_vector"
-  assumes "0 < d"  "0 < e"
-  shows "(ball a d) homeomorphic  (ball b e)" (is ?th)
-    and "(cball a d) homeomorphic (cball b e)" (is ?cth)
-proof -
-  show ?th unfolding homeomorphic_minimal
-    apply(rule_tac x="\<lambda>x. b + (e/d) *\<^sub>R (x - a)" in exI)
-    apply(rule_tac x="\<lambda>x. a + (d/e) *\<^sub>R (x - b)" in exI)
-    using assms
-    apply (auto intro!: continuous_intros
-      simp: dist_commute dist_norm pos_divide_less_eq mult_strict_left_mono)
-    done
-  show ?cth unfolding homeomorphic_minimal
-    apply(rule_tac x="\<lambda>x. b + (e/d) *\<^sub>R (x - a)" in exI)
-    apply(rule_tac x="\<lambda>x. a + (d/e) *\<^sub>R (x - b)" in exI)
-    using assms
-    apply (auto intro!: continuous_intros
-      simp: dist_commute dist_norm pos_divide_le_eq mult_strict_left_mono)
-    done
-qed
-
-subsection\<open>Inverse function property for open/closed maps\<close>
-
-lemma continuous_on_inverse_open_map:
-  assumes contf: "continuous_on S f"
-      and imf: "f ` S = T"
-      and injf: "\<And>x. x \<in> S \<Longrightarrow> g(f x) = x"
-      and oo: "\<And>U. openin (subtopology euclidean S) U
-                    \<Longrightarrow> openin (subtopology euclidean T) (f ` U)"
-    shows "continuous_on T g"
-proof -
-  have gTS: "g ` T = S"
-    using imf injf by force
-  have fU: "U \<subseteq> S \<Longrightarrow> (f ` U) = {x \<in> T. g x \<in> U}" for U
-    using imf injf by force
-  show ?thesis
-    apply (simp add: continuous_on_open [of T g] gTS)
-    apply (metis openin_imp_subset fU oo)
-    done
-qed
-
-lemma continuous_on_inverse_closed_map:
-  assumes contf: "continuous_on S f"
-      and imf: "f ` S = T"
-      and injf: "\<And>x. x \<in> S \<Longrightarrow> g(f x) = x"
-      and oo: "\<And>U. closedin (subtopology euclidean S) U
-                    \<Longrightarrow> closedin (subtopology euclidean T) (f ` U)"
-    shows "continuous_on T g"
-proof -
-  have gTS: "g ` T = S"
-    using imf injf by force
-  have fU: "U \<subseteq> S \<Longrightarrow> (f ` U) = {x \<in> T. g x \<in> U}" for U
-    using imf injf by force
-  show ?thesis
-    apply (simp add: continuous_on_closed [of T g] gTS)
-    apply (metis closedin_imp_subset fU oo)
-    done
-qed
-
-lemma homeomorphism_injective_open_map:
-  assumes contf: "continuous_on S f"
-      and imf: "f ` S = T"
-      and injf: "inj_on f S"
-      and oo: "\<And>U. openin (subtopology euclidean S) U
-                    \<Longrightarrow> openin (subtopology euclidean T) (f ` U)"
-  obtains g where "homeomorphism S T f g"
-proof -
-  have "continuous_on T (inv_into S f)"
-    by (metis contf continuous_on_inverse_open_map imf injf inv_into_f_f oo)
-  then show ?thesis
-    apply (rule_tac g = "inv_into S f" in that)
-    using imf injf contf apply (auto simp: homeomorphism_def)
-    done
-qed
-
-lemma homeomorphism_injective_closed_map:
-  assumes contf: "continuous_on S f"
-      and imf: "f ` S = T"
-      and injf: "inj_on f S"
-      and oo: "\<And>U. closedin (subtopology euclidean S) U
-                    \<Longrightarrow> closedin (subtopology euclidean T) (f ` U)"
-  obtains g where "homeomorphism S T f g"
-proof -
-  have "continuous_on T (inv_into S f)"
-    by (metis contf continuous_on_inverse_closed_map imf injf inv_into_f_f oo)
-  then show ?thesis
-    apply (rule_tac g = "inv_into S f" in that)
-    using imf injf contf apply (auto simp: homeomorphism_def)
-    done
-qed
-
-lemma homeomorphism_imp_open_map:
-  assumes hom: "homeomorphism S T f g"
-      and oo: "openin (subtopology euclidean S) U"
-    shows "openin (subtopology euclidean T) (f ` U)"
-proof -
-  have [simp]: "f ` U = {y. y \<in> T \<and> g y \<in> U}"
-    using assms openin_subset
-    by (fastforce simp: homeomorphism_def rev_image_eqI)
-  have "continuous_on T g"
-    using hom homeomorphism_def by blast
-  moreover have "g ` T = S"
-    by (metis hom homeomorphism_def)
-  ultimately show ?thesis
-    by (simp add: continuous_on_open oo)
-qed
-
-lemma homeomorphism_imp_closed_map:
-  assumes hom: "homeomorphism S T f g"
-      and oo: "closedin (subtopology euclidean S) U"
-    shows "closedin (subtopology euclidean T) (f ` U)"
-proof -
-  have [simp]: "f ` U = {y. y \<in> T \<and> g y \<in> U}"
-    using assms closedin_subset
-    by (fastforce simp: homeomorphism_def rev_image_eqI)
-  have "continuous_on T g"
-    using hom homeomorphism_def by blast
-  moreover have "g ` T = S"
-    by (metis hom homeomorphism_def)
-  ultimately show ?thesis
-    by (simp add: continuous_on_closed oo)
-qed
-
-subsection\<open>"Isometry" (up to constant bounds) of injective linear map etc.\<close>
-
-lemma cauchy_isometric:
-  assumes e: "e > 0"
-    and s: "subspace s"
-    and f: "bounded_linear f"
-    and normf: "\<forall>x\<in>s. norm (f x) \<ge> e * norm x"
-    and xs: "\<forall>n. x n \<in> s"
-    and cf: "Cauchy (f \<circ> x)"
-  shows "Cauchy x"
-proof -
-  interpret f: bounded_linear f by fact
-  {
-    fix d :: real
-    assume "d > 0"
-    then obtain N where N:"\<forall>n\<ge>N. norm (f (x n) - f (x N)) < e * d"
-      using cf[unfolded cauchy o_def dist_norm, THEN spec[where x="e*d"]] e
-      by auto
-    {
-      fix n
-      assume "n\<ge>N"
-      have "e * norm (x n - x N) \<le> norm (f (x n - x N))"
-        using subspace_diff[OF s, of "x n" "x N"]
-        using xs[THEN spec[where x=N]] and xs[THEN spec[where x=n]]
-        using normf[THEN bspec[where x="x n - x N"]]
-        by auto
-      also have "norm (f (x n - x N)) < e * d"
-        using \<open>N \<le> n\<close> N unfolding f.diff[symmetric] by auto
-      finally have "norm (x n - x N) < d" using \<open>e>0\<close> by simp
-    }
-    then have "\<exists>N. \<forall>n\<ge>N. norm (x n - x N) < d" by auto
-  }
-  then show ?thesis unfolding cauchy and dist_norm by auto
-qed
-
-lemma complete_isometric_image:
-  assumes "0 < e"
-    and s: "subspace s"
-    and f: "bounded_linear f"
-    and normf: "\<forall>x\<in>s. norm(f x) \<ge> e * norm(x)"
-    and cs: "complete s"
-  shows "complete (f ` s)"
-proof -
-  {
-    fix g
-    assume as:"\<forall>n::nat. g n \<in> f ` s" and cfg:"Cauchy g"
-    then obtain x where "\<forall>n. x n \<in> s \<and> g n = f (x n)"
-      using choice[of "\<lambda> n xa. xa \<in> s \<and> g n = f xa"]
-      by auto
-    then have x:"\<forall>n. x n \<in> s"  "\<forall>n. g n = f (x n)"
-      by auto
-    then have "f \<circ> x = g"
-      unfolding fun_eq_iff
-      by auto
-    then obtain l where "l\<in>s" and l:"(x \<longlongrightarrow> l) sequentially"
-      using cs[unfolded complete_def, THEN spec[where x="x"]]
-      using cauchy_isometric[OF \<open>0 < e\<close> s f normf] and cfg and x(1)
-      by auto
-    then have "\<exists>l\<in>f ` s. (g \<longlongrightarrow> l) sequentially"
-      using linear_continuous_at[OF f, unfolded continuous_at_sequentially, THEN spec[where x=x], of l]
-      unfolding \<open>f \<circ> x = g\<close>
-      by auto
-  }
-  then show ?thesis
-    unfolding complete_def by auto
-qed
-
-lemma injective_imp_isometric:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes s: "closed s" "subspace s"
-    and f: "bounded_linear f" "\<forall>x\<in>s. f x = 0 \<longrightarrow> x = 0"
-  shows "\<exists>e>0. \<forall>x\<in>s. norm (f x) \<ge> e * norm x"
-proof (cases "s \<subseteq> {0::'a}")
-  case True
-  {
-    fix x
-    assume "x \<in> s"
-    then have "x = 0" using True by auto
-    then have "norm x \<le> norm (f x)" by auto
-  }
-  then show ?thesis by (auto intro!: exI[where x=1])
-next
-  interpret f: bounded_linear f by fact
-  case False
-  then obtain a where a: "a \<noteq> 0" "a \<in> s"
-    by auto
-  from False have "s \<noteq> {}"
-    by auto
-  let ?S = "{f x| x. (x \<in> s \<and> norm x = norm a)}"
-  let ?S' = "{x::'a. x\<in>s \<and> norm x = norm a}"
-  let ?S'' = "{x::'a. norm x = norm a}"
-
-  have "?S'' = frontier(cball 0 (norm a))"
-    by (simp add: sphere_def dist_norm)
-  then have "compact ?S''" by (metis compact_cball compact_frontier)
-  moreover have "?S' = s \<inter> ?S''" by auto
-  ultimately have "compact ?S'"
-    using closed_Int_compact[of s ?S''] using s(1) by auto
-  moreover have *:"f ` ?S' = ?S" by auto
-  ultimately have "compact ?S"
-    using compact_continuous_image[OF linear_continuous_on[OF f(1)], of ?S'] by auto
-  then have "closed ?S" using compact_imp_closed by auto
-  moreover have "?S \<noteq> {}" using a by auto
-  ultimately obtain b' where "b'\<in>?S" "\<forall>y\<in>?S. norm b' \<le> norm y"
-    using distance_attains_inf[of ?S 0] unfolding dist_0_norm by auto
-  then obtain b where "b\<in>s"
-    and ba: "norm b = norm a"
-    and b: "\<forall>x\<in>{x \<in> s. norm x = norm a}. norm (f b) \<le> norm (f x)"
-    unfolding *[symmetric] unfolding image_iff by auto
-
-  let ?e = "norm (f b) / norm b"
-  have "norm b > 0" using ba and a and norm_ge_zero by auto
-  moreover have "norm (f b) > 0"
-    using f(2)[THEN bspec[where x=b], OF \<open>b\<in>s\<close>]
-    using \<open>norm b >0\<close>
-    unfolding zero_less_norm_iff
-    by auto
-  ultimately have "0 < norm (f b) / norm b" by simp
-  moreover
-  {
-    fix x
-    assume "x\<in>s"
-    then have "norm (f b) / norm b * norm x \<le> norm (f x)"
-    proof (cases "x=0")
-      case True
-      then show "norm (f b) / norm b * norm x \<le> norm (f x)" by auto
-    next
-      case False
-      then have *: "0 < norm a / norm x"
-        using \<open>a\<noteq>0\<close>
-        unfolding zero_less_norm_iff[symmetric] by simp
-      have "\<forall>c. \<forall>x\<in>s. c *\<^sub>R x \<in> s"
-        using s[unfolded subspace_def] by auto
-      then have "(norm a / norm x) *\<^sub>R x \<in> {x \<in> s. norm x = norm a}"
-        using \<open>x\<in>s\<close> and \<open>x\<noteq>0\<close> by auto
-      then show "norm (f b) / norm b * norm x \<le> norm (f x)"
-        using b[THEN bspec[where x="(norm a / norm x) *\<^sub>R x"]]
-        unfolding f.scaleR and ba using \<open>x\<noteq>0\<close> \<open>a\<noteq>0\<close>
-        by (auto simp add: mult.commute pos_le_divide_eq pos_divide_le_eq)
-    qed
-  }
-  ultimately show ?thesis by auto
-qed
-
-lemma closed_injective_image_subspace:
-  fixes f :: "'a::euclidean_space \<Rightarrow> 'b::euclidean_space"
-  assumes "subspace s" "bounded_linear f" "\<forall>x\<in>s. f x = 0 \<longrightarrow> x = 0" "closed s"
-  shows "closed(f ` s)"
-proof -
-  obtain e where "e > 0" and e: "\<forall>x\<in>s. e * norm x \<le> norm (f x)"
-    using injective_imp_isometric[OF assms(4,1,2,3)] by auto
-  show ?thesis
-    using complete_isometric_image[OF \<open>e>0\<close> assms(1,2) e] and assms(4)
-    unfolding complete_eq_closed[symmetric] by auto
-qed
-
-
-subsection \<open>Some properties of a canonical subspace\<close>
-
-lemma subspace_substandard:
-  "subspace {x::'a::euclidean_space. (\<forall>i\<in>Basis. P i \<longrightarrow> x\<bullet>i = 0)}"
-  unfolding subspace_def by (auto simp: inner_add_left)
-
-lemma closed_substandard:
-  "closed {x::'a::euclidean_space. \<forall>i\<in>Basis. P i --> x\<bullet>i = 0}" (is "closed ?A")
-proof -
-  let ?D = "{i\<in>Basis. P i}"
-  have "closed (\<Inter>i\<in>?D. {x::'a. x\<bullet>i = 0})"
-    by (simp add: closed_INT closed_Collect_eq continuous_on_inner continuous_on_const continuous_on_id)
-  also have "(\<Inter>i\<in>?D. {x::'a. x\<bullet>i = 0}) = ?A"
-    by auto
-  finally show "closed ?A" .
-qed
-
-lemma dim_substandard:
-  assumes d: "d \<subseteq> Basis"
-  shows "dim {x::'a::euclidean_space. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x\<bullet>i = 0} = card d" (is "dim ?A = _")
-proof (rule dim_unique)
-  show "d \<subseteq> ?A"
-    using d by (auto simp: inner_Basis)
-  show "independent d"
-    using independent_mono [OF independent_Basis d] .
-  show "?A \<subseteq> span d"
-  proof (clarify)
-    fix x assume x: "\<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x \<bullet> i = 0"
-    have "finite d"
-      using finite_subset [OF d finite_Basis] .
-    then have "(\<Sum>i\<in>d. (x \<bullet> i) *\<^sub>R i) \<in> span d"
-      by (simp add: span_setsum span_clauses)
-    also have "(\<Sum>i\<in>d. (x \<bullet> i) *\<^sub>R i) = (\<Sum>i\<in>Basis. (x \<bullet> i) *\<^sub>R i)"
-      by (rule setsum.mono_neutral_cong_left [OF finite_Basis d]) (auto simp add: x)
-    finally show "x \<in> span d"
-      unfolding euclidean_representation .
-  qed
-qed simp
-
-text\<open>Hence closure and completeness of all subspaces.\<close>
-
-lemma ex_card:
-  assumes "n \<le> card A"
-  shows "\<exists>S\<subseteq>A. card S = n"
-proof cases
-  assume "finite A"
-  from ex_bij_betw_nat_finite[OF this] obtain f where f: "bij_betw f {0..<card A} A" ..
-  moreover from f \<open>n \<le> card A\<close> have "{..< n} \<subseteq> {..< card A}" "inj_on f {..< n}"
-    by (auto simp: bij_betw_def intro: subset_inj_on)
-  ultimately have "f ` {..< n} \<subseteq> A" "card (f ` {..< n}) = n"
-    by (auto simp: bij_betw_def card_image)
-  then show ?thesis by blast
-next
-  assume "\<not> finite A"
-  with \<open>n \<le> card A\<close> show ?thesis by force
-qed
-
-lemma closed_subspace:
-  fixes s :: "'a::euclidean_space set"
-  assumes "subspace s"
-  shows "closed s"
-proof -
-  have "dim s \<le> card (Basis :: 'a set)"
-    using dim_subset_UNIV by auto
-  with ex_card[OF this] obtain d :: "'a set" where t: "card d = dim s" and d: "d \<subseteq> Basis"
-    by auto
-  let ?t = "{x::'a. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x\<bullet>i = 0}"
-  have "\<exists>f. linear f \<and> f ` {x::'a. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x \<bullet> i = 0} = s \<and>
-      inj_on f {x::'a. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x \<bullet> i = 0}"
-    using dim_substandard[of d] t d assms
-    by (intro subspace_isomorphism[OF subspace_substandard[of "\<lambda>i. i \<notin> d"]]) (auto simp: inner_Basis)
-  then obtain f where f:
-      "linear f"
-      "f ` {x. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x \<bullet> i = 0} = s"
-      "inj_on f {x. \<forall>i\<in>Basis. i \<notin> d \<longrightarrow> x \<bullet> i = 0}"
-    by blast
-  interpret f: bounded_linear f
-    using f unfolding linear_conv_bounded_linear by auto
-  {
-    fix x
-    have "x\<in>?t \<Longrightarrow> f x = 0 \<Longrightarrow> x = 0"
-      using f.zero d f(3)[THEN inj_onD, of x 0] by auto
-  }
-  moreover have "closed ?t" using closed_substandard .
-  moreover have "subspace ?t" using subspace_substandard .
-  ultimately show ?thesis
-    using closed_injective_image_subspace[of ?t f]
-    unfolding f(2) using f(1) unfolding linear_conv_bounded_linear by auto
-qed
-
-lemma complete_subspace:
-  fixes s :: "('a::euclidean_space) set"
-  shows "subspace s \<Longrightarrow> complete s"
-  using complete_eq_closed closed_subspace by auto
-
-lemma closed_span [iff]:
-  fixes s :: "'a::euclidean_space set"
-  shows "closed (span s)"
-by (simp add: closed_subspace subspace_span)
-
-lemma dim_closure:
-  fixes s :: "('a::euclidean_space) set"
-  shows "dim(closure s) = dim s" (is "?dc = ?d")
-proof -
-  have "?dc \<le> ?d" using closure_minimal[OF span_inc, of s]
-    using closed_subspace[OF subspace_span, of s]
-    using dim_subset[of "closure s" "span s"]
-    unfolding dim_span
-    by auto
-  then show ?thesis using dim_subset[OF closure_subset, of s]
-    by auto
-qed
-
-
-subsection \<open>Affine transformations of intervals\<close>
-
-lemma real_affinity_le:
- "0 < (m::'a::linordered_field) \<Longrightarrow> (m * x + c \<le> y \<longleftrightarrow> x \<le> inverse(m) * y + -(c / m))"
-  by (simp add: field_simps)
-
-lemma real_le_affinity:
- "0 < (m::'a::linordered_field) \<Longrightarrow> (y \<le> m * x + c \<longleftrightarrow> inverse(m) * y + -(c / m) \<le> x)"
-  by (simp add: field_simps)
-
-lemma real_affinity_lt:
- "0 < (m::'a::linordered_field) \<Longrightarrow> (m * x + c < y \<longleftrightarrow> x < inverse(m) * y + -(c / m))"
-  by (simp add: field_simps)
-
-lemma real_lt_affinity:
- "0 < (m::'a::linordered_field) \<Longrightarrow> (y < m * x + c \<longleftrightarrow> inverse(m) * y + -(c / m) < x)"
-  by (simp add: field_simps)
-
-lemma real_affinity_eq:
- "(m::'a::linordered_field) \<noteq> 0 \<Longrightarrow> (m * x + c = y \<longleftrightarrow> x = inverse(m) * y + -(c / m))"
-  by (simp add: field_simps)
-
-lemma real_eq_affinity:
- "(m::'a::linordered_field) \<noteq> 0 \<Longrightarrow> (y = m * x + c  \<longleftrightarrow> inverse(m) * y + -(c / m) = x)"
-  by (simp add: field_simps)
-
-
-subsection \<open>Banach fixed point theorem (not really topological...)\<close>
-
-theorem banach_fix:
-  assumes s: "complete s" "s \<noteq> {}"
-    and c: "0 \<le> c" "c < 1"
-    and f: "(f ` s) \<subseteq> s"
-    and lipschitz: "\<forall>x\<in>s. \<forall>y\<in>s. dist (f x) (f y) \<le> c * dist x y"
-  shows "\<exists>!x\<in>s. f x = x"
-proof -
-  have "1 - c > 0" using c by auto
-
-  from s(2) obtain z0 where "z0 \<in> s" by auto
-  define z where "z n = (f ^^ n) z0" for n
-  {
-    fix n :: nat
-    have "z n \<in> s" unfolding z_def
-    proof (induct n)
-      case 0
-      then show ?case using \<open>z0 \<in> s\<close> by auto
-    next
-      case Suc
-      then show ?case using f by auto qed
-  } note z_in_s = this
-
-  define d where "d = dist (z 0) (z 1)"
-
-  have fzn:"\<And>n. f (z n) = z (Suc n)" unfolding z_def by auto
-  {
-    fix n :: nat
-    have "dist (z n) (z (Suc n)) \<le> (c ^ n) * d"
-    proof (induct n)
-      case 0
-      then show ?case
-        unfolding d_def by auto
-    next
-      case (Suc m)
-      then have "c * dist (z m) (z (Suc m)) \<le> c ^ Suc m * d"
-        using \<open>0 \<le> c\<close>
-        using mult_left_mono[of "dist (z m) (z (Suc m))" "c ^ m * d" c]
-        by auto
-      then show ?case
-        using lipschitz[THEN bspec[where x="z m"], OF z_in_s, THEN bspec[where x="z (Suc m)"], OF z_in_s]
-        unfolding fzn and mult_le_cancel_left
-        by auto
-    qed
-  } note cf_z = this
-
-  {
-    fix n m :: nat
-    have "(1 - c) * dist (z m) (z (m+n)) \<le> (c ^ m) * d * (1 - c ^ n)"
-    proof (induct n)
-      case 0
-      show ?case by auto
-    next
-      case (Suc k)
-      have "(1 - c) * dist (z m) (z (m + Suc k)) \<le>
-          (1 - c) * (dist (z m) (z (m + k)) + dist (z (m + k)) (z (Suc (m + k))))"
-        using dist_triangle and c by (auto simp add: dist_triangle)
-      also have "\<dots> \<le> (1 - c) * (dist (z m) (z (m + k)) + c ^ (m + k) * d)"
-        using cf_z[of "m + k"] and c by auto
-      also have "\<dots> \<le> c ^ m * d * (1 - c ^ k) + (1 - c) * c ^ (m + k) * d"
-        using Suc by (auto simp add: field_simps)
-      also have "\<dots> = (c ^ m) * (d * (1 - c ^ k) + (1 - c) * c ^ k * d)"
-        unfolding power_add by (auto simp add: field_simps)
-      also have "\<dots> \<le> (c ^ m) * d * (1 - c ^ Suc k)"
-        using c by (auto simp add: field_simps)
-      finally show ?case by auto
-    qed
-  } note cf_z2 = this
-  {
-    fix e :: real
-    assume "e > 0"
-    then have "\<exists>N. \<forall>m n. N \<le> m \<and> N \<le> n \<longrightarrow> dist (z m) (z n) < e"
-    proof (cases "d = 0")
-      case True
-      have *: "\<And>x. ((1 - c) * x \<le> 0) = (x \<le> 0)" using \<open>1 - c > 0\<close>
-        by (metis mult_zero_left mult.commute real_mult_le_cancel_iff1)
-      from True have "\<And>n. z n = z0" using cf_z2[of 0] and c unfolding z_def
-        by (simp add: *)
-      then show ?thesis using \<open>e>0\<close> by auto
-    next
-      case False
-      then have "d>0" unfolding d_def using zero_le_dist[of "z 0" "z 1"]
-        by (metis False d_def less_le)
-      hence "0 < e * (1 - c) / d"
-        using \<open>e>0\<close> and \<open>1-c>0\<close> by auto
-      then obtain N where N:"c ^ N < e * (1 - c) / d"
-        using real_arch_pow_inv[of "e * (1 - c) / d" c] and c by auto
-      {
-        fix m n::nat
-        assume "m>n" and as:"m\<ge>N" "n\<ge>N"
-        have *:"c ^ n \<le> c ^ N" using \<open>n\<ge>N\<close> and c
-          using power_decreasing[OF \<open>n\<ge>N\<close>, of c] by auto
-        have "1 - c ^ (m - n) > 0"
-          using c and power_strict_mono[of c 1 "m - n"] using \<open>m>n\<close> by auto
-        hence **: "d * (1 - c ^ (m - n)) / (1 - c) > 0"
-          using \<open>d>0\<close> \<open>0 < 1 - c\<close> by auto
-
-        have "dist (z m) (z n) \<le> c ^ n * d * (1 - c ^ (m - n)) / (1 - c)"
-          using cf_z2[of n "m - n"] and \<open>m>n\<close>
-          unfolding pos_le_divide_eq[OF \<open>1-c>0\<close>]
-          by (auto simp add: mult.commute dist_commute)
-        also have "\<dots> \<le> c ^ N * d * (1 - c ^ (m - n)) / (1 - c)"
-          using mult_right_mono[OF * order_less_imp_le[OF **]]
-          unfolding mult.assoc by auto
-        also have "\<dots> < (e * (1 - c) / d) * d * (1 - c ^ (m - n)) / (1 - c)"
-          using mult_strict_right_mono[OF N **] unfolding mult.assoc by auto
-        also have "\<dots> = e * (1 - c ^ (m - n))"
-          using c and \<open>d>0\<close> and \<open>1 - c > 0\<close> by auto
-        also have "\<dots> \<le> e" using c and \<open>1 - c ^ (m - n) > 0\<close> and \<open>e>0\<close>
-          using mult_right_le_one_le[of e "1 - c ^ (m - n)"] by auto
-        finally have  "dist (z m) (z n) < e" by auto
-      } note * = this
-      {
-        fix m n :: nat
-        assume as: "N \<le> m" "N \<le> n"
-        then have "dist (z n) (z m) < e"
-        proof (cases "n = m")
-          case True
-          then show ?thesis using \<open>e>0\<close> by auto
-        next
-          case False
-          then show ?thesis using as and *[of n m] *[of m n]
-            unfolding nat_neq_iff by (auto simp add: dist_commute)
-        qed
-      }
-      then show ?thesis by auto
-    qed
-  }
-  then have "Cauchy z"
-    unfolding cauchy_def by auto
-  then obtain x where "x\<in>s" and x:"(z \<longlongrightarrow> x) sequentially"
-    using s(1)[unfolded compact_def complete_def, THEN spec[where x=z]] and z_in_s by auto
-
-  define e where "e = dist (f x) x"
-  have "e = 0"
-  proof (rule ccontr)
-    assume "e \<noteq> 0"
-    then have "e > 0"
-      unfolding e_def using zero_le_dist[of "f x" x]
-      by (metis dist_eq_0_iff dist_nz e_def)
-    then obtain N where N:"\<forall>n\<ge>N. dist (z n) x < e / 2"
-      using x[unfolded lim_sequentially, THEN spec[where x="e/2"]] by auto
-    then have N':"dist (z N) x < e / 2" by auto
-
-    have *: "c * dist (z N) x \<le> dist (z N) x"
-      unfolding mult_le_cancel_right2
-      using zero_le_dist[of "z N" x] and c
-      by (metis dist_eq_0_iff dist_nz order_less_asym less_le)
-    have "dist (f (z N)) (f x) \<le> c * dist (z N) x"
-      using lipschitz[THEN bspec[where x="z N"], THEN bspec[where x=x]]
-      using z_in_s[of N] \<open>x\<in>s\<close>
-      using c
-      by auto
-    also have "\<dots> < e / 2"
-      using N' and c using * by auto
-    finally show False
-      unfolding fzn
-      using N[THEN spec[where x="Suc N"]] and dist_triangle_half_r[of "z (Suc N)" "f x" e x]
-      unfolding e_def
-      by auto
-  qed
-  then have "f x = x" unfolding e_def by auto
-  moreover
-  {
-    fix y
-    assume "f y = y" "y\<in>s"
-    then have "dist x y \<le> c * dist x y"
-      using lipschitz[THEN bspec[where x=x], THEN bspec[where x=y]]
-      using \<open>x\<in>s\<close> and \<open>f x = x\<close>
-      by auto
-    then have "dist x y = 0"
-      unfolding mult_le_cancel_right1
-      using c and zero_le_dist[of x y]
-      by auto
-    then have "y = x" by auto
-  }
-  ultimately show ?thesis using \<open>x\<in>s\<close> by blast+
-qed
-
-
-subsection \<open>Edelstein fixed point theorem\<close>
-
-theorem edelstein_fix:
-  fixes s :: "'a::metric_space set"
-  assumes s: "compact s" "s \<noteq> {}"
-    and gs: "(g ` s) \<subseteq> s"
-    and dist: "\<forall>x\<in>s. \<forall>y\<in>s. x \<noteq> y \<longrightarrow> dist (g x) (g y) < dist x y"
-  shows "\<exists>!x\<in>s. g x = x"
-proof -
-  let ?D = "(\<lambda>x. (x, x)) ` s"
-  have D: "compact ?D" "?D \<noteq> {}"
-    by (rule compact_continuous_image)
-       (auto intro!: s continuous_Pair continuous_ident simp: continuous_on_eq_continuous_within)
-
-  have "\<And>x y e. x \<in> s \<Longrightarrow> y \<in> s \<Longrightarrow> 0 < e \<Longrightarrow> dist y x < e \<Longrightarrow> dist (g y) (g x) < e"
-    using dist by fastforce
-  then have "continuous_on s g"
-    unfolding continuous_on_iff by auto
-  then have cont: "continuous_on ?D (\<lambda>x. dist ((g \<circ> fst) x) (snd x))"
-    unfolding continuous_on_eq_continuous_within
-    by (intro continuous_dist ballI continuous_within_compose)
-       (auto intro!: continuous_fst continuous_snd continuous_ident simp: image_image)
-
-  obtain a where "a \<in> s" and le: "\<And>x. x \<in> s \<Longrightarrow> dist (g a) a \<le> dist (g x) x"
-    using continuous_attains_inf[OF D cont] by auto
-
-  have "g a = a"
-  proof (rule ccontr)
-    assume "g a \<noteq> a"
-    with \<open>a \<in> s\<close> gs have "dist (g (g a)) (g a) < dist (g a) a"
-      by (intro dist[rule_format]) auto
-    moreover have "dist (g a) a \<le> dist (g (g a)) (g a)"
-      using \<open>a \<in> s\<close> gs by (intro le) auto
-    ultimately show False by auto
-  qed
-  moreover have "\<And>x. x \<in> s \<Longrightarrow> g x = x \<Longrightarrow> x = a"
-    using dist[THEN bspec[where x=a]] \<open>g a = a\<close> and \<open>a\<in>s\<close> by auto
-  ultimately show "\<exists>!x\<in>s. g x = x" using \<open>a \<in> s\<close> by blast
-qed
-
-
-lemma cball_subset_cball_iff:
-  fixes a :: "'a :: euclidean_space"
-  shows "cball a r \<subseteq> cball a' r' \<longleftrightarrow> dist a a' + r \<le> r' \<or> r < 0"
-        (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then show ?rhs
-  proof (cases "r < 0")
-    case True then show ?rhs by simp
-  next
-    case False
-    then have [simp]: "r \<ge> 0" by simp
-    have "norm (a - a') + r \<le> r'"
-    proof (cases "a = a'")
-      case True then show ?thesis
-        using subsetD [where c = "a + r *\<^sub>R (SOME i. i \<in> Basis)", OF \<open>?lhs\<close>]  subsetD [where c = "a", OF \<open>?lhs\<close>]
-        by (force simp add: SOME_Basis dist_norm)
-    next
-      case False
-      have "norm (a' - (a + (r / norm (a - a')) *\<^sub>R (a - a'))) = norm (a' - a - (r / norm (a - a')) *\<^sub>R (a - a'))"
-        by (simp add: algebra_simps)
-      also have "... = norm ((-1 - (r / norm (a - a'))) *\<^sub>R (a - a'))"
-        by (simp add: algebra_simps)
-      also have "... = \<bar>- norm (a - a') - r\<bar>"
-        using  \<open>a \<noteq> a'\<close> by (simp add: abs_mult_pos field_simps)
-      finally have [simp]: "norm (a' - (a + (r / norm (a - a')) *\<^sub>R (a - a'))) = \<bar>norm (a - a') + r\<bar>" by linarith
-      show ?thesis
-        using subsetD [where c = "a' + (1 + r / norm(a - a')) *\<^sub>R (a - a')", OF \<open>?lhs\<close>] \<open>a \<noteq> a'\<close>
-        by (simp add: dist_norm scaleR_add_left)
-    qed
-    then show ?rhs by (simp add: dist_norm)
-  qed
-next
-  assume ?rhs then show ?lhs
-    apply (auto simp: ball_def dist_norm)
-    apply (metis add.commute add_le_cancel_right dist_norm dist_triangle3 order_trans)
-    done
-qed
-
-lemma cball_subset_ball_iff:
-  fixes a :: "'a :: euclidean_space"
-  shows "cball a r \<subseteq> ball a' r' \<longleftrightarrow> dist a a' + r < r' \<or> r < 0"
-        (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then show ?rhs
-  proof (cases "r < 0")
-    case True then show ?rhs by simp
-  next
-    case False
-    then have [simp]: "r \<ge> 0" by simp
-    have "norm (a - a') + r < r'"
-    proof (cases "a = a'")
-      case True then show ?thesis
-        using subsetD [where c = "a + r *\<^sub>R (SOME i. i \<in> Basis)", OF \<open>?lhs\<close>]  subsetD [where c = "a", OF \<open>?lhs\<close>]
-        by (force simp add: SOME_Basis dist_norm)
-    next
-      case False
-      { assume "norm (a - a') + r \<ge> r'"
-        then have "\<bar>r' - norm (a - a')\<bar> \<le> r"
-          apply (simp split: abs_split)
-          by (metis \<open>0 \<le> r\<close> \<open>?lhs\<close> centre_in_cball dist_commute dist_norm less_asym mem_ball subset_eq)
-        then have False
-        using subsetD [where c = "a + (r' / norm(a - a') - 1) *\<^sub>R (a - a')", OF \<open>?lhs\<close>] \<open>a \<noteq> a'\<close>
-        apply (simp add: dist_norm field_simps)
-        apply (simp add: diff_divide_distrib scaleR_left_diff_distrib)
-        done
-      }
-      then show ?thesis by force
-    qed
-    then show ?rhs by (simp add: dist_norm)
-  qed
-next
-  assume ?rhs then show ?lhs
-    apply (auto simp: ball_def dist_norm )
-    apply (metis add.commute add_le_cancel_right dist_norm dist_triangle3 le_less_trans)
-    done
-qed
-
-lemma ball_subset_cball_iff:
-  fixes a :: "'a :: euclidean_space"
-  shows "ball a r \<subseteq> cball a' r' \<longleftrightarrow> dist a a' + r \<le> r' \<or> r \<le> 0"
-        (is "?lhs = ?rhs")
-proof (cases "r \<le> 0")
-  case True then show ?thesis
-    using dist_not_less_zero less_le_trans by force
-next
-  case False show ?thesis
-  proof
-    assume ?lhs
-    then have "(cball a r \<subseteq> cball a' r')"
-      by (metis False closed_cball closure_ball closure_closed closure_mono not_less)
-    then show ?rhs
-      using False cball_subset_cball_iff by fastforce
-  next
-    assume ?rhs with False show ?lhs
-      using ball_subset_cball cball_subset_cball_iff by blast
-  qed
-qed
-
-lemma ball_subset_ball_iff:
-  fixes a :: "'a :: euclidean_space"
-  shows "ball a r \<subseteq> ball a' r' \<longleftrightarrow> dist a a' + r \<le> r' \<or> r \<le> 0"
-        (is "?lhs = ?rhs")
-proof (cases "r \<le> 0")
-  case True then show ?thesis
-    using dist_not_less_zero less_le_trans by force
-next
-  case False show ?thesis
-  proof
-    assume ?lhs
-    then have "0 < r'"
-      by (metis (no_types) False \<open>?lhs\<close> centre_in_ball dist_norm le_less_trans mem_ball norm_ge_zero not_less set_mp)
-    then have "(cball a r \<subseteq> cball a' r')"
-      by (metis False\<open>?lhs\<close> closure_ball closure_mono not_less)
-    then show ?rhs
-      using False cball_subset_cball_iff by fastforce
-  next
-  assume ?rhs then show ?lhs
-    apply (auto simp: ball_def)
-    apply (metis add.commute add_le_cancel_right dist_commute dist_triangle_lt not_le order_trans)
-    using dist_not_less_zero order.strict_trans2 apply blast
-    done
-  qed
-qed
-
-
-lemma ball_eq_ball_iff:
-  fixes x :: "'a :: euclidean_space"
-  shows "ball x d = ball y e \<longleftrightarrow> d \<le> 0 \<and> e \<le> 0 \<or> x=y \<and> d=e"
-        (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then show ?rhs
-  proof (cases "d \<le> 0 \<or> e \<le> 0")
-    case True
-      with \<open>?lhs\<close> show ?rhs
-        by safe (simp_all only: ball_eq_empty [of y e, symmetric] ball_eq_empty [of x d, symmetric])
-  next
-    case False
-    with \<open>?lhs\<close> show ?rhs
-      apply (auto simp add: set_eq_subset ball_subset_ball_iff dist_norm norm_minus_commute algebra_simps)
-      apply (metis add_le_same_cancel1 le_add_same_cancel1 norm_ge_zero norm_pths(2) order_trans)
-      apply (metis add_increasing2 add_le_imp_le_right eq_iff norm_ge_zero)
-      done
-  qed
-next
-  assume ?rhs then show ?lhs
-    by (auto simp add: set_eq_subset ball_subset_ball_iff)
-qed
-
-lemma cball_eq_cball_iff:
-  fixes x :: "'a :: euclidean_space"
-  shows "cball x d = cball y e \<longleftrightarrow> d < 0 \<and> e < 0 \<or> x=y \<and> d=e"
-        (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then show ?rhs
-  proof (cases "d < 0 \<or> e < 0")
-    case True
-      with \<open>?lhs\<close> show ?rhs
-        by safe (simp_all only: cball_eq_empty [of y e, symmetric] cball_eq_empty [of x d, symmetric])
-  next
-    case False
-    with \<open>?lhs\<close> show ?rhs
-      apply (auto simp add: set_eq_subset cball_subset_cball_iff dist_norm norm_minus_commute algebra_simps)
-      apply (metis add_le_same_cancel1 le_add_same_cancel1 norm_ge_zero norm_pths(2) order_trans)
-      apply (metis add_increasing2 add_le_imp_le_right eq_iff norm_ge_zero)
-      done
-  qed
-next
-  assume ?rhs then show ?lhs
-    by (auto simp add: set_eq_subset cball_subset_cball_iff)
-qed
-
-lemma ball_eq_cball_iff:
-  fixes x :: "'a :: euclidean_space"
-  shows "ball x d = cball y e \<longleftrightarrow> d \<le> 0 \<and> e < 0" (is "?lhs = ?rhs")
-proof
-  assume ?lhs
-  then show ?rhs
-    apply (auto simp add: set_eq_subset ball_subset_cball_iff cball_subset_ball_iff algebra_simps)
-    apply (metis add_increasing2 add_le_cancel_right add_less_same_cancel1 dist_not_less_zero less_le_trans zero_le_dist)
-    apply (metis add_less_same_cancel1 dist_not_less_zero less_le_trans not_le)
-    using \<open>?lhs\<close> ball_eq_empty cball_eq_empty apply blast+
-    done
-next
-  assume ?rhs then show ?lhs by auto
-qed
-
-lemma cball_eq_ball_iff:
-  fixes x :: "'a :: euclidean_space"
-  shows "cball x d = ball y e \<longleftrightarrow> d < 0 \<and> e \<le> 0"
-  using ball_eq_cball_iff by blast
-
-lemma finite_ball_avoid:
-  fixes S :: "'a :: euclidean_space set"
-  assumes "open S" "finite X" "p \<in> S"
-  shows "\<exists>e>0. \<forall>w\<in>ball p e. w\<in>S \<and> (w\<noteq>p \<longrightarrow> w\<notin>X)"
-proof -
-  obtain e1 where "0 < e1" and e1_b:"ball p e1 \<subseteq> S"
-    using open_contains_ball_eq[OF \<open>open S\<close>] assms by auto
-  obtain e2 where "0 < e2" and "\<forall>x\<in>X. x \<noteq> p \<longrightarrow> e2 \<le> dist p x"
-    using finite_set_avoid[OF \<open>finite X\<close>,of p] by auto
-  hence "\<forall>w\<in>ball p (min e1 e2). w\<in>S \<and> (w\<noteq>p \<longrightarrow> w\<notin>X)" using e1_b by auto
-  thus "\<exists>e>0. \<forall>w\<in>ball p e. w \<in> S \<and> (w \<noteq> p \<longrightarrow> w \<notin> X)" using \<open>e2>0\<close> \<open>e1>0\<close>
-    apply (rule_tac x="min e1 e2" in exI)
-    by auto
-qed
-
-lemma finite_cball_avoid:
-  fixes S :: "'a :: euclidean_space set"
-  assumes "open S" "finite X" "p \<in> S"
-  shows "\<exists>e>0. \<forall>w\<in>cball p e. w\<in>S \<and> (w\<noteq>p \<longrightarrow> w\<notin>X)"
-proof -
-  obtain e1 where "e1>0" and e1: "\<forall>w\<in>ball p e1. w\<in>S \<and> (w\<noteq>p \<longrightarrow> w\<notin>X)"
-    using finite_ball_avoid[OF assms] by auto
-  define e2 where "e2 \<equiv> e1/2"
-  have "e2>0" and "e2 < e1" unfolding e2_def using \<open>e1>0\<close> by auto
-  then have "cball p e2 \<subseteq> ball p e1" by (subst cball_subset_ball_iff,auto)
-  then show "\<exists>e>0. \<forall>w\<in>cball p e. w \<in> S \<and> (w \<noteq> p \<longrightarrow> w \<notin> X)" using \<open>e2>0\<close> e1 by auto
-qed
-
-subsection\<open>Various separability-type properties\<close>
-
-lemma univ_second_countable:
-  obtains \<B> :: "'a::euclidean_space set set"
-  where "countable \<B>" "\<And>C. C \<in> \<B> \<Longrightarrow> open C"
-       "\<And>S. open S \<Longrightarrow> \<exists>U. U \<subseteq> \<B> \<and> S = \<Union>U"
-by (metis ex_countable_basis topological_basis_def)
-
-lemma univ_second_countable_sequence:
-  obtains B :: "nat \<Rightarrow> 'a::euclidean_space set"
-    where "inj B" "\<And>n. open(B n)" "\<And>S. open S \<Longrightarrow> \<exists>k. S = \<Union>{B n |n. n \<in> k}"
-proof -
-  obtain \<B> :: "'a set set"
-  where "countable \<B>"
-    and op: "\<And>C. C \<in> \<B> \<Longrightarrow> open C"
-    and Un: "\<And>S. open S \<Longrightarrow> \<exists>U. U \<subseteq> \<B> \<and> S = \<Union>U"
-    using univ_second_countable by blast
-  have *: "infinite (range (\<lambda>n. ball (0::'a) (inverse(Suc n))))"
-    apply (rule Infinite_Set.range_inj_infinite)
-    apply (simp add: inj_on_def ball_eq_ball_iff)
-    done
-  have "infinite \<B>"
-  proof
-    assume "finite \<B>"
-    then have "finite (Union ` (Pow \<B>))"
-      by simp
-    then have "finite (range (\<lambda>n. ball (0::'a) (inverse(Suc n))))"
-      apply (rule rev_finite_subset)
-      by (metis (no_types, lifting) PowI image_eqI image_subset_iff Un [OF open_ball])
-    with * show False by simp
-  qed
-  obtain f :: "nat \<Rightarrow> 'a set" where "\<B> = range f" "inj f"
-    by (blast intro: countable_as_injective_image [OF \<open>countable \<B>\<close> \<open>infinite \<B>\<close>])
-  have *: "\<exists>k. S = \<Union>{f n |n. n \<in> k}" if "open S" for S
-    using Un [OF that]
-    apply clarify
-    apply (rule_tac x="f-`U" in exI)
-    using \<open>inj f\<close> \<open>\<B> = range f\<close> apply force
-    done
-  show ?thesis
-    apply (rule that [OF \<open>inj f\<close> _ *])
-    apply (auto simp: \<open>\<B> = range f\<close> op)
-    done
-qed
-
-proposition Lindelof:
-  fixes \<F> :: "'a::euclidean_space set set"
-  assumes \<F>: "\<And>S. S \<in> \<F> \<Longrightarrow> open S"
-  obtains \<F>' where "\<F>' \<subseteq> \<F>" "countable \<F>'" "\<Union>\<F>' = \<Union>\<F>"
-proof -
-  obtain \<B> :: "'a set set"
-    where "countable \<B>" "\<And>C. C \<in> \<B> \<Longrightarrow> open C"
-      and \<B>: "\<And>S. open S \<Longrightarrow> \<exists>U. U \<subseteq> \<B> \<and> S = \<Union>U"
-    using univ_second_countable by blast
-  define \<D> where "\<D> \<equiv> {S. S \<in> \<B> \<and> (\<exists>U. U \<in> \<F> \<and> S \<subseteq> U)}"
-  have "countable \<D>"
-    apply (rule countable_subset [OF _ \<open>countable \<B>\<close>])
-    apply (force simp: \<D>_def)
-    done
-  have "\<And>S. \<exists>U. S \<in> \<D> \<longrightarrow> U \<in> \<F> \<and> S \<subseteq> U"
-    by (simp add: \<D>_def)
-  then obtain G where G: "\<And>S. S \<in> \<D> \<longrightarrow> G S \<in> \<F> \<and> S \<subseteq> G S"
-    by metis
-  have "\<Union>\<F> \<subseteq> \<Union>\<D>"
-    unfolding \<D>_def by (blast dest: \<F> \<B>)
-  moreover have "\<Union>\<D> \<subseteq> \<Union>\<F>"
-    using \<D>_def by blast
-  ultimately have eq1: "\<Union>\<F> = \<Union>\<D>" ..
-  have eq2: "\<Union>\<D> = UNION \<D> G"
-    using G eq1 by auto
-  show ?thesis
-    apply (rule_tac \<F>' = "G ` \<D>" in that)
-    using G \<open>countable \<D>\<close>  apply (auto simp: eq1 eq2)
-    done
-qed
-
-lemma Lindelof_openin:
-  fixes \<F> :: "'a::euclidean_space set set"
-  assumes "\<And>S. S \<in> \<F> \<Longrightarrow> openin (subtopology euclidean U) S"
-  obtains \<F>' where "\<F>' \<subseteq> \<F>" "countable \<F>'" "\<Union>\<F>' = \<Union>\<F>"
-proof -
-  have "\<And>S. S \<in> \<F> \<Longrightarrow> \<exists>T. open T \<and> S = U \<inter> T"
-    using assms by (simp add: openin_open)
-  then obtain tf where tf: "\<And>S. S \<in> \<F> \<Longrightarrow> open (tf S) \<and> (S = U \<inter> tf S)"
-    by metis
-  have [simp]: "\<And>\<F>'. \<F>' \<subseteq> \<F> \<Longrightarrow> \<Union>\<F>' = U \<inter> \<Union>(tf ` \<F>')"
-    using tf by fastforce
-  obtain \<G> where "countable \<G> \<and> \<G> \<subseteq> tf ` \<F>" "\<Union>\<G> = UNION \<F> tf"
-    using tf by (force intro: Lindelof [of "tf ` \<F>"])
-  then obtain \<F>' where \<F>': "\<F>' \<subseteq> \<F>" "countable \<F>'" "\<Union>\<F>' = \<Union>\<F>"
-    by (clarsimp simp add: countable_subset_image)
-  then show ?thesis ..
-qed
-
-lemma countable_disjoint_open_subsets:
-  fixes \<F> :: "'a::euclidean_space set set"
-  assumes "\<And>S. S \<in> \<F> \<Longrightarrow> open S" and pw: "pairwise disjnt \<F>"
-    shows "countable \<F>"
-proof -
-  obtain \<F>' where "\<F>' \<subseteq> \<F>" "countable \<F>'" "\<Union>\<F>' = \<Union>\<F>"
-    by (meson assms Lindelof)
-  with pw have "\<F> \<subseteq> insert {} \<F>'"
-    by (fastforce simp add: pairwise_def disjnt_iff)
-  then show ?thesis
-    by (simp add: \<open>countable \<F>'\<close> countable_subset)
-qed
-
-lemma closedin_compact:
-   "\<lbrakk>compact S; closedin (subtopology euclidean S) T\<rbrakk> \<Longrightarrow> compact T"
-by (metis closedin_closed compact_Int_closed)
-
-lemma closedin_compact_eq:
-  fixes S :: "'a::t2_space set"
-  shows
-   "compact S
-         \<Longrightarrow> (closedin (subtopology euclidean S) T \<longleftrightarrow>
-              compact T \<and> T \<subseteq> S)"
-by (metis closedin_imp_subset closedin_compact closed_subset compact_imp_closed)
-
-subsection\<open> Finite intersection property\<close>
-
-text\<open>Also developed in HOL's toplogical spaces theory, but the Heine-Borel type class isn't available there.\<close>
-
-lemma closed_imp_fip:
-  fixes S :: "'a::heine_borel set"
-  assumes "closed S"
-      and T: "T \<in> \<F>" "bounded T"
-      and clof: "\<And>T. T \<in> \<F> \<Longrightarrow> closed T"
-      and none: "\<And>\<F>'. \<lbrakk>finite \<F>'; \<F>' \<subseteq> \<F>\<rbrakk> \<Longrightarrow> S \<inter> \<Inter>\<F>' \<noteq> {}"
-    shows "S \<inter> \<Inter>\<F> \<noteq> {}"
-proof -
-  have "compact (S \<inter> T)"
-    using \<open>closed S\<close> clof compact_eq_bounded_closed T by blast
-  then have "(S \<inter> T) \<inter> \<Inter>\<F> \<noteq> {}"
-    apply (rule compact_imp_fip)
-     apply (simp add: clof)
-    by (metis Int_assoc complete_lattice_class.Inf_insert finite_insert insert_subset none \<open>T \<in> \<F>\<close>)
-  then show ?thesis by blast
-qed
-
-lemma closed_imp_fip_compact:
-  fixes S :: "'a::heine_borel set"
-  shows
-   "\<lbrakk>closed S; \<And>T. T \<in> \<F> \<Longrightarrow> compact T;
-     \<And>\<F>'. \<lbrakk>finite \<F>'; \<F>' \<subseteq> \<F>\<rbrakk> \<Longrightarrow> S \<inter> \<Inter>\<F>' \<noteq> {}\<rbrakk>
-        \<Longrightarrow> S \<inter> \<Inter>\<F> \<noteq> {}"
-by (metis Inf_greatest closed_imp_fip compact_eq_bounded_closed empty_subsetI finite.emptyI inf.orderE)
-
-lemma closed_fip_heine_borel:
-  fixes \<F> :: "'a::heine_borel set set"
-  assumes "closed S" "T \<in> \<F>" "bounded T"
-      and "\<And>T. T \<in> \<F> \<Longrightarrow> closed T"
-      and "\<And>\<F>'. \<lbrakk>finite \<F>'; \<F>' \<subseteq> \<F>\<rbrakk> \<Longrightarrow> \<Inter>\<F>' \<noteq> {}"
-    shows "\<Inter>\<F> \<noteq> {}"
-proof -
-  have "UNIV \<inter> \<Inter>\<F> \<noteq> {}"
-    using assms closed_imp_fip [OF closed_UNIV] by auto
-  then show ?thesis by simp
-qed
-
-lemma compact_fip_heine_borel:
-  fixes \<F> :: "'a::heine_borel set set"
-  assumes clof: "\<And>T. T \<in> \<F> \<Longrightarrow> compact T"
-      and none: "\<And>\<F>'. \<lbrakk>finite \<F>'; \<F>' \<subseteq> \<F>\<rbrakk> \<Longrightarrow> \<Inter>\<F>' \<noteq> {}"
-    shows "\<Inter>\<F> \<noteq> {}"
-by (metis InterI all_not_in_conv clof closed_fip_heine_borel compact_eq_bounded_closed none)
-
-lemma compact_sequence_with_limit:
-  fixes f :: "nat \<Rightarrow> 'a::heine_borel"
-  shows "(f \<longlongrightarrow> l) sequentially \<Longrightarrow> compact (insert l (range f))"
-apply (simp add: compact_eq_bounded_closed, auto)
-apply (simp add: convergent_imp_bounded)
-by (simp add: closed_limpt islimpt_insert sequence_unique_limpt)
-
-no_notation
-  eucl_less (infix "<e" 50)
-
-end