src/HOL/Cardinals/Cardinal_Order_Relation.thy
changeset 49310 6e30078de4f0
parent 48979 b62d14275b89
child 51764 67f05cb13e08
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Cardinals/Cardinal_Order_Relation.thy	Wed Sep 12 05:29:21 2012 +0200
@@ -0,0 +1,1097 @@
+(*  Title:      HOL/Cardinals/Cardinal_Order_Relation.thy
+    Author:     Andrei Popescu, TU Muenchen
+    Copyright   2012
+
+Cardinal-order relations.
+*)
+
+header {* Cardinal-Order Relations *}
+
+theory Cardinal_Order_Relation
+imports Cardinal_Order_Relation_Base Constructions_on_Wellorders
+begin
+
+declare
+  card_order_on_well_order_on[simp]
+  card_of_card_order_on[simp]
+  card_of_well_order_on[simp]
+  Field_card_of[simp]
+  card_of_Card_order[simp]
+  card_of_Well_order[simp]
+  card_of_least[simp]
+  card_of_unique[simp]
+  card_of_mono1[simp]
+  card_of_mono2[simp]
+  card_of_cong[simp]
+  card_of_Field_ordLess[simp]
+  card_of_Field_ordIso[simp]
+  card_of_underS[simp]
+  ordLess_Field[simp]
+  card_of_empty[simp]
+  card_of_empty1[simp]
+  card_of_image[simp]
+  card_of_singl_ordLeq[simp]
+  Card_order_singl_ordLeq[simp]
+  card_of_Pow[simp]
+  Card_order_Pow[simp]
+  card_of_set_type[simp]
+  card_of_Plus1[simp]
+  Card_order_Plus1[simp]
+  card_of_Plus2[simp]
+  Card_order_Plus2[simp]
+  card_of_Plus_mono1[simp]
+  card_of_Plus_mono2[simp]
+  card_of_Plus_mono[simp]
+  card_of_Plus_cong2[simp]
+  card_of_Plus_cong[simp]
+  card_of_Un1[simp]
+  card_of_diff[simp]
+  card_of_Un_Plus_ordLeq[simp]
+  card_of_Times1[simp]
+  card_of_Times2[simp]
+  card_of_Times3[simp]
+  card_of_Times_mono1[simp]
+  card_of_Times_mono2[simp]
+  card_of_Times_cong1[simp]
+  card_of_Times_cong2[simp]
+  card_of_ordIso_finite[simp]
+  finite_ordLess_infinite2[simp]
+  card_of_Times_same_infinite[simp]
+  card_of_Times_infinite_simps[simp]
+  card_of_Plus_infinite1[simp]
+  card_of_Plus_infinite2[simp]
+  card_of_Plus_ordLess_infinite[simp]
+  card_of_Plus_ordLess_infinite_Field[simp]
+  card_of_lists_infinite[simp]
+  infinite_cartesian_product[simp]
+  cardSuc_Card_order[simp]
+  cardSuc_greater[simp]
+  cardSuc_ordLeq[simp]
+  cardSuc_ordLeq_ordLess[simp]
+  cardSuc_mono_ordLeq[simp]
+  cardSuc_invar_ordIso[simp]
+  card_of_cardSuc_finite[simp]
+  cardSuc_finite[simp]
+  card_of_Plus_ordLeq_infinite_Field[simp]
+  curr_in[intro, simp]
+  Func_empty[simp]
+  Func_map_empty[simp]
+  Func_is_emp[simp]
+
+
+subsection {* Cardinal of a set *}
+
+lemma card_of_inj_rel: assumes INJ: "!! x y y'. \<lbrakk>(x,y) : R; (x,y') : R\<rbrakk> \<Longrightarrow> y = y'"
+shows "|{y. EX x. (x,y) : R}| <=o |{x. EX y. (x,y) : R}|"
+proof-
+  let ?Y = "{y. EX x. (x,y) : R}"  let ?X = "{x. EX y. (x,y) : R}"
+  let ?f = "% y. SOME x. (x,y) : R"
+  have "?f ` ?Y <= ?X" using someI by force (* FIXME: takes a bit long *)
+  moreover have "inj_on ?f ?Y"
+  unfolding inj_on_def proof(auto)
+    fix y1 x1 y2 x2
+    assume *: "(x1, y1) \<in> R" "(x2, y2) \<in> R" and **: "?f y1 = ?f y2"
+    hence "(?f y1,y1) : R" using someI[of "% x. (x,y1) : R"] by auto
+    moreover have "(?f y2,y2) : R" using * someI[of "% x. (x,y2) : R"] by auto
+    ultimately show "y1 = y2" using ** INJ by auto
+  qed
+  ultimately show "|?Y| <=o |?X|" using card_of_ordLeq by blast
+qed
+
+lemma card_of_unique2: "\<lbrakk>card_order_on B r; bij_betw f A B\<rbrakk> \<Longrightarrow> r =o |A|"
+using card_of_ordIso card_of_unique ordIso_equivalence by blast
+
+lemma internalize_card_of_ordLess:
+"( |A| <o r) = (\<exists>B < Field r. |A| =o |B| \<and> |B| <o r)"
+proof
+  assume "|A| <o r"
+  then obtain p where 1: "Field p < Field r \<and> |A| =o p \<and> p <o r"
+  using internalize_ordLess[of "|A|" r] by blast
+  hence "Card_order p" using card_of_Card_order Card_order_ordIso2 by blast
+  hence "|Field p| =o p" using card_of_Field_ordIso by blast
+  hence "|A| =o |Field p| \<and> |Field p| <o r"
+  using 1 ordIso_equivalence ordIso_ordLess_trans by blast
+  thus "\<exists>B < Field r. |A| =o |B| \<and> |B| <o r" using 1 by blast
+next
+  assume "\<exists>B < Field r. |A| =o |B| \<and> |B| <o r"
+  thus "|A| <o r" using ordIso_ordLess_trans by blast
+qed
+
+lemma internalize_card_of_ordLess2:
+"( |A| <o |C| ) = (\<exists>B < C. |A| =o |B| \<and> |B| <o |C| )"
+using internalize_card_of_ordLess[of "A" "|C|"] Field_card_of[of C] by auto
+
+lemma Card_order_omax:
+assumes "finite R" and "R \<noteq> {}" and "\<forall>r\<in>R. Card_order r"
+shows "Card_order (omax R)"
+proof-
+  have "\<forall>r\<in>R. Well_order r"
+  using assms unfolding card_order_on_def by simp
+  thus ?thesis using assms apply - apply(drule omax_in) by auto
+qed
+
+lemma Card_order_omax2:
+assumes "finite I" and "I \<noteq> {}"
+shows "Card_order (omax {|A i| | i. i \<in> I})"
+proof-
+  let ?R = "{|A i| | i. i \<in> I}"
+  have "finite ?R" and "?R \<noteq> {}" using assms by auto
+  moreover have "\<forall>r\<in>?R. Card_order r"
+  using card_of_Card_order by auto
+  ultimately show ?thesis by(rule Card_order_omax)
+qed
+
+
+subsection {* Cardinals versus set operations on arbitrary sets *}
+
+lemma subset_ordLeq_strict:
+assumes "A \<le> B" and "|A| <o |B|"
+shows "A < B"
+proof-
+  {assume "\<not>(A < B)"
+   hence "A = B" using assms(1) by blast
+   hence False using assms(2) not_ordLess_ordIso card_of_refl by blast
+  }
+  thus ?thesis by blast
+qed
+
+corollary subset_ordLeq_diff:
+assumes "A \<le> B" and "|A| <o |B|"
+shows "B - A \<noteq> {}"
+using assms subset_ordLeq_strict by blast
+
+lemma card_of_empty4:
+"|{}::'b set| <o |A::'a set| = (A \<noteq> {})"
+proof(intro iffI notI)
+  assume *: "|{}::'b set| <o |A|" and "A = {}"
+  hence "|A| =o |{}::'b set|"
+  using card_of_ordIso unfolding bij_betw_def inj_on_def by blast
+  hence "|{}::'b set| =o |A|" using ordIso_symmetric by blast
+  with * show False using not_ordLess_ordIso[of "|{}::'b set|" "|A|"] by blast
+next
+  assume "A \<noteq> {}"
+  hence "(\<not> (\<exists>f. inj_on f A \<and> f ` A \<subseteq> {}))"
+  unfolding inj_on_def by blast
+  thus "| {} | <o | A |"
+  using card_of_ordLess by blast
+qed
+
+lemma card_of_empty5:
+"|A| <o |B| \<Longrightarrow> B \<noteq> {}"
+using card_of_empty not_ordLess_ordLeq by blast
+
+lemma Well_order_card_of_empty:
+"Well_order r \<Longrightarrow> |{}| \<le>o r" by simp
+
+lemma card_of_UNIV[simp]:
+"|A :: 'a set| \<le>o |UNIV :: 'a set|"
+using card_of_mono1[of A] by simp
+
+lemma card_of_UNIV2[simp]:
+"Card_order r \<Longrightarrow> (r :: 'a rel) \<le>o |UNIV :: 'a set|"
+using card_of_UNIV[of "Field r"] card_of_Field_ordIso
+      ordIso_symmetric ordIso_ordLeq_trans by blast
+
+lemma card_of_Pow_mono[simp]:
+assumes "|A| \<le>o |B|"
+shows "|Pow A| \<le>o |Pow B|"
+proof-
+  obtain f where "inj_on f A \<and> f ` A \<le> B"
+  using assms card_of_ordLeq[of A B] by auto
+  hence "inj_on (image f) (Pow A) \<and> (image f) ` (Pow A) \<le> (Pow B)"
+  by (auto simp add: inj_on_image_Pow image_Pow_mono)
+  thus ?thesis using card_of_ordLeq[of "Pow A"] by metis
+qed
+
+lemma ordIso_Pow_mono[simp]:
+assumes "r \<le>o r'"
+shows "|Pow(Field r)| \<le>o |Pow(Field r')|"
+using assms card_of_mono2 card_of_Pow_mono by blast
+
+lemma card_of_Pow_cong[simp]:
+assumes "|A| =o |B|"
+shows "|Pow A| =o |Pow B|"
+proof-
+  obtain f where "bij_betw f A B"
+  using assms card_of_ordIso[of A B] by auto
+  hence "bij_betw (image f) (Pow A) (Pow B)"
+  by (auto simp add: bij_betw_image_Pow)
+  thus ?thesis using card_of_ordIso[of "Pow A"] by auto
+qed
+
+lemma ordIso_Pow_cong[simp]:
+assumes "r =o r'"
+shows "|Pow(Field r)| =o |Pow(Field r')|"
+using assms card_of_cong card_of_Pow_cong by blast
+
+corollary Card_order_Plus_empty1:
+"Card_order r \<Longrightarrow> r =o |(Field r) <+> {}|"
+using card_of_Plus_empty1 card_of_Field_ordIso ordIso_equivalence by blast
+
+corollary Card_order_Plus_empty2:
+"Card_order r \<Longrightarrow> r =o |{} <+> (Field r)|"
+using card_of_Plus_empty2 card_of_Field_ordIso ordIso_equivalence by blast
+
+lemma Card_order_Un1:
+shows "Card_order r \<Longrightarrow> |Field r| \<le>o |(Field r) \<union> B| "
+using card_of_Un1 card_of_Field_ordIso ordIso_symmetric ordIso_ordLeq_trans by auto
+
+lemma card_of_Un2[simp]:
+shows "|A| \<le>o |B \<union> A|"
+using inj_on_id[of A] card_of_ordLeq[of A _] by fastforce
+
+lemma Card_order_Un2:
+shows "Card_order r \<Longrightarrow> |Field r| \<le>o |A \<union> (Field r)| "
+using card_of_Un2 card_of_Field_ordIso ordIso_symmetric ordIso_ordLeq_trans by auto
+
+lemma Un_Plus_bij_betw:
+assumes "A Int B = {}"
+shows "\<exists>f. bij_betw f (A \<union> B) (A <+> B)"
+proof-
+  let ?f = "\<lambda> c. if c \<in> A then Inl c else Inr c"
+  have "bij_betw ?f (A \<union> B) (A <+> B)"
+  using assms by(unfold bij_betw_def inj_on_def, auto)
+  thus ?thesis by blast
+qed
+
+lemma card_of_Un_Plus_ordIso:
+assumes "A Int B = {}"
+shows "|A \<union> B| =o |A <+> B|"
+using assms card_of_ordIso[of "A \<union> B"] Un_Plus_bij_betw[of A B] by auto
+
+lemma card_of_Un_Plus_ordIso1:
+"|A \<union> B| =o |A <+> (B - A)|"
+using card_of_Un_Plus_ordIso[of A "B - A"] by auto
+
+lemma card_of_Un_Plus_ordIso2:
+"|A \<union> B| =o |(A - B) <+> B|"
+using card_of_Un_Plus_ordIso[of "A - B" B] by auto
+
+lemma card_of_Times_singl1: "|A| =o |A \<times> {b}|"
+proof-
+  have "bij_betw fst (A \<times> {b}) A" unfolding bij_betw_def inj_on_def by force
+  thus ?thesis using card_of_ordIso ordIso_symmetric by blast
+qed
+
+corollary Card_order_Times_singl1:
+"Card_order r \<Longrightarrow> r =o |(Field r) \<times> {b}|"
+using card_of_Times_singl1[of _ b] card_of_Field_ordIso ordIso_equivalence by blast
+
+lemma card_of_Times_singl2: "|A| =o |{b} \<times> A|"
+proof-
+  have "bij_betw snd ({b} \<times> A) A" unfolding bij_betw_def inj_on_def by force
+  thus ?thesis using card_of_ordIso ordIso_symmetric by blast
+qed
+
+corollary Card_order_Times_singl2:
+"Card_order r \<Longrightarrow> r =o |{a} \<times> (Field r)|"
+using card_of_Times_singl2[of _ a] card_of_Field_ordIso ordIso_equivalence by blast
+
+lemma card_of_Times_assoc: "|(A \<times> B) \<times> C| =o |A \<times> B \<times> C|"
+proof -
+  let ?f = "\<lambda>((a,b),c). (a,(b,c))"
+  have "A \<times> B \<times> C \<subseteq> ?f ` ((A \<times> B) \<times> C)"
+  proof
+    fix x assume "x \<in> A \<times> B \<times> C"
+    then obtain a b c where *: "a \<in> A" "b \<in> B" "c \<in> C" "x = (a, b, c)" by blast
+    let ?x = "((a, b), c)"
+    from * have "?x \<in> (A \<times> B) \<times> C" "x = ?f ?x" by auto
+    thus "x \<in> ?f ` ((A \<times> B) \<times> C)" by blast
+  qed
+  hence "bij_betw ?f ((A \<times> B) \<times> C) (A \<times> B \<times> C)"
+  unfolding bij_betw_def inj_on_def by auto
+  thus ?thesis using card_of_ordIso by blast
+qed
+
+corollary Card_order_Times3:
+"Card_order r \<Longrightarrow> |Field r| \<le>o |(Field r) \<times> (Field r)|"
+using card_of_Times3 card_of_Field_ordIso
+      ordIso_ordLeq_trans ordIso_symmetric by blast
+
+lemma card_of_Times_mono[simp]:
+assumes "|A| \<le>o |B|" and "|C| \<le>o |D|"
+shows "|A \<times> C| \<le>o |B \<times> D|"
+using assms card_of_Times_mono1[of A B C] card_of_Times_mono2[of C D B]
+      ordLeq_transitive[of "|A \<times> C|"] by blast
+
+corollary ordLeq_Times_mono:
+assumes "r \<le>o r'" and "p \<le>o p'"
+shows "|(Field r) \<times> (Field p)| \<le>o |(Field r') \<times> (Field p')|"
+using assms card_of_mono2[of r r'] card_of_mono2[of p p'] card_of_Times_mono by blast
+
+corollary ordIso_Times_cong1[simp]:
+assumes "r =o r'"
+shows "|(Field r) \<times> C| =o |(Field r') \<times> C|"
+using assms card_of_cong card_of_Times_cong1 by blast
+
+lemma card_of_Times_cong[simp]:
+assumes "|A| =o |B|" and "|C| =o |D|"
+shows "|A \<times> C| =o |B \<times> D|"
+using assms
+by (auto simp add: ordIso_iff_ordLeq)
+
+corollary ordIso_Times_cong:
+assumes "r =o r'" and "p =o p'"
+shows "|(Field r) \<times> (Field p)| =o |(Field r') \<times> (Field p')|"
+using assms card_of_cong[of r r'] card_of_cong[of p p'] card_of_Times_cong by blast
+
+lemma card_of_Sigma_mono2:
+assumes "inj_on f (I::'i set)" and "f ` I \<le> (J::'j set)"
+shows "|SIGMA i : I. (A::'j \<Rightarrow> 'a set) (f i)| \<le>o |SIGMA j : J. A j|"
+proof-
+  let ?LEFT = "SIGMA i : I. A (f i)"
+  let ?RIGHT = "SIGMA j : J. A j"
+  obtain u where u_def: "u = (\<lambda>(i::'i,a::'a). (f i,a))" by blast
+  have "inj_on u ?LEFT \<and> u `?LEFT \<le> ?RIGHT"
+  using assms unfolding u_def inj_on_def by auto
+  thus ?thesis using card_of_ordLeq by blast
+qed
+
+lemma card_of_Sigma_mono:
+assumes INJ: "inj_on f I" and IM: "f ` I \<le> J" and
+        LEQ: "\<forall>j \<in> J. |A j| \<le>o |B j|"
+shows "|SIGMA i : I. A (f i)| \<le>o |SIGMA j : J. B j|"
+proof-
+  have "\<forall>i \<in> I. |A(f i)| \<le>o |B(f i)|"
+  using IM LEQ by blast
+  hence "|SIGMA i : I. A (f i)| \<le>o |SIGMA i : I. B (f i)|"
+  using card_of_Sigma_mono1[of I] by metis
+  moreover have "|SIGMA i : I. B (f i)| \<le>o |SIGMA j : J. B j|"
+  using INJ IM card_of_Sigma_mono2 by blast
+  ultimately show ?thesis using ordLeq_transitive by blast
+qed
+
+
+lemma ordLeq_Sigma_mono1:
+assumes "\<forall>i \<in> I. p i \<le>o r i"
+shows "|SIGMA i : I. Field(p i)| \<le>o |SIGMA i : I. Field(r i)|"
+using assms by (auto simp add: card_of_Sigma_mono1)
+
+
+lemma ordLeq_Sigma_mono:
+assumes "inj_on f I" and "f ` I \<le> J" and
+        "\<forall>j \<in> J. p j \<le>o r j"
+shows "|SIGMA i : I. Field(p(f i))| \<le>o |SIGMA j : J. Field(r j)|"
+using assms card_of_mono2 card_of_Sigma_mono
+      [of f I J "\<lambda> i. Field(p i)" "\<lambda> j. Field(r j)"] by metis
+
+
+lemma card_of_Sigma_cong1:
+assumes "\<forall>i \<in> I. |A i| =o |B i|"
+shows "|SIGMA i : I. A i| =o |SIGMA i : I. B i|"
+using assms by (auto simp add: card_of_Sigma_mono1 ordIso_iff_ordLeq)
+
+
+lemma card_of_Sigma_cong2:
+assumes "bij_betw f (I::'i set) (J::'j set)"
+shows "|SIGMA i : I. (A::'j \<Rightarrow> 'a set) (f i)| =o |SIGMA j : J. A j|"
+proof-
+  let ?LEFT = "SIGMA i : I. A (f i)"
+  let ?RIGHT = "SIGMA j : J. A j"
+  obtain u where u_def: "u = (\<lambda>(i::'i,a::'a). (f i,a))" by blast
+  have "bij_betw u ?LEFT ?RIGHT"
+  using assms unfolding u_def bij_betw_def inj_on_def by auto
+  thus ?thesis using card_of_ordIso by blast
+qed
+
+lemma card_of_Sigma_cong:
+assumes BIJ: "bij_betw f I J" and
+        ISO: "\<forall>j \<in> J. |A j| =o |B j|"
+shows "|SIGMA i : I. A (f i)| =o |SIGMA j : J. B j|"
+proof-
+  have "\<forall>i \<in> I. |A(f i)| =o |B(f i)|"
+  using ISO BIJ unfolding bij_betw_def by blast
+  hence "|SIGMA i : I. A (f i)| =o |SIGMA i : I. B (f i)|"
+  using card_of_Sigma_cong1 by metis
+  moreover have "|SIGMA i : I. B (f i)| =o |SIGMA j : J. B j|"
+  using BIJ card_of_Sigma_cong2 by blast
+  ultimately show ?thesis using ordIso_transitive by blast
+qed
+
+lemma ordIso_Sigma_cong1:
+assumes "\<forall>i \<in> I. p i =o r i"
+shows "|SIGMA i : I. Field(p i)| =o |SIGMA i : I. Field(r i)|"
+using assms by (auto simp add: card_of_Sigma_cong1)
+
+lemma ordLeq_Sigma_cong:
+assumes "bij_betw f I J" and
+        "\<forall>j \<in> J. p j =o r j"
+shows "|SIGMA i : I. Field(p(f i))| =o |SIGMA j : J. Field(r j)|"
+using assms card_of_cong card_of_Sigma_cong
+      [of f I J "\<lambda> j. Field(p j)" "\<lambda> j. Field(r j)"] by blast
+
+corollary ordLeq_Sigma_Times:
+"\<forall>i \<in> I. p i \<le>o r \<Longrightarrow> |SIGMA i : I. Field (p i)| \<le>o |I \<times> (Field r)|"
+by (auto simp add: card_of_Sigma_Times)
+
+lemma card_of_UNION_Sigma2:
+assumes
+"!! i j. \<lbrakk>{i,j} <= I; i ~= j\<rbrakk> \<Longrightarrow> A i Int A j = {}"
+shows
+"|\<Union>i\<in>I. A i| =o |Sigma I A|"
+proof-
+  let ?L = "\<Union>i\<in>I. A i"  let ?R = "Sigma I A"
+  have "|?L| <=o |?R|" using card_of_UNION_Sigma .
+  moreover have "|?R| <=o |?L|"
+  proof-
+    have "inj_on snd ?R"
+    unfolding inj_on_def using assms by auto
+    moreover have "snd ` ?R <= ?L" by auto
+    ultimately show ?thesis using card_of_ordLeq by blast
+  qed
+  ultimately show ?thesis by(simp add: ordIso_iff_ordLeq)
+qed
+
+corollary Plus_into_Times:
+assumes A2: "a1 \<noteq> a2 \<and> {a1,a2} \<le> A" and
+        B2: "b1 \<noteq> b2 \<and> {b1,b2} \<le> B"
+shows "\<exists>f. inj_on f (A <+> B) \<and> f ` (A <+> B) \<le> A \<times> B"
+using assms by (auto simp add: card_of_Plus_Times card_of_ordLeq)
+
+corollary Plus_into_Times_types:
+assumes A2: "(a1::'a) \<noteq> a2" and  B2: "(b1::'b) \<noteq> b2"
+shows "\<exists>(f::'a + 'b \<Rightarrow> 'a * 'b). inj f"
+using assms Plus_into_Times[of a1 a2 UNIV b1 b2 UNIV]
+by auto
+
+corollary Times_same_infinite_bij_betw:
+assumes "infinite A"
+shows "\<exists>f. bij_betw f (A \<times> A) A"
+using assms by (auto simp add: card_of_ordIso)
+
+corollary Times_same_infinite_bij_betw_types:
+assumes INF: "infinite(UNIV::'a set)"
+shows "\<exists>(f::('a * 'a) => 'a). bij f"
+using assms Times_same_infinite_bij_betw[of "UNIV::'a set"]
+by auto
+
+corollary Times_infinite_bij_betw:
+assumes INF: "infinite A" and NE: "B \<noteq> {}" and INJ: "inj_on g B \<and> g ` B \<le> A"
+shows "(\<exists>f. bij_betw f (A \<times> B) A) \<and> (\<exists>h. bij_betw h (B \<times> A) A)"
+proof-
+  have "|B| \<le>o |A|" using INJ card_of_ordLeq by blast
+  thus ?thesis using INF NE
+  by (auto simp add: card_of_ordIso card_of_Times_infinite)
+qed
+
+corollary Times_infinite_bij_betw_types:
+assumes INF: "infinite(UNIV::'a set)" and
+        BIJ: "inj(g::'b \<Rightarrow> 'a)"
+shows "(\<exists>(f::('b * 'a) => 'a). bij f) \<and> (\<exists>(h::('a * 'b) => 'a). bij h)"
+using assms Times_infinite_bij_betw[of "UNIV::'a set" "UNIV::'b set" g]
+by auto
+
+lemma card_of_Times_ordLeq_infinite:
+"\<lbrakk>infinite C; |A| \<le>o |C|; |B| \<le>o |C|\<rbrakk>
+ \<Longrightarrow> |A <*> B| \<le>o |C|"
+by(simp add: card_of_Sigma_ordLeq_infinite)
+
+corollary Plus_infinite_bij_betw:
+assumes INF: "infinite A" and INJ: "inj_on g B \<and> g ` B \<le> A"
+shows "(\<exists>f. bij_betw f (A <+> B) A) \<and> (\<exists>h. bij_betw h (B <+> A) A)"
+proof-
+  have "|B| \<le>o |A|" using INJ card_of_ordLeq by blast
+  thus ?thesis using INF
+  by (auto simp add: card_of_ordIso)
+qed
+
+corollary Plus_infinite_bij_betw_types:
+assumes INF: "infinite(UNIV::'a set)" and
+        BIJ: "inj(g::'b \<Rightarrow> 'a)"
+shows "(\<exists>(f::('b + 'a) => 'a). bij f) \<and> (\<exists>(h::('a + 'b) => 'a). bij h)"
+using assms Plus_infinite_bij_betw[of "UNIV::'a set" g "UNIV::'b set"]
+by auto
+
+lemma card_of_Un_infinite_simps[simp]:
+"\<lbrakk>infinite A; |B| \<le>o |A| \<rbrakk> \<Longrightarrow> |A \<union> B| =o |A|"
+"\<lbrakk>infinite A; |B| \<le>o |A| \<rbrakk> \<Longrightarrow> |B \<union> A| =o |A|"
+using card_of_Un_infinite by auto
+
+corollary Card_order_Un_infinite:
+assumes INF: "infinite(Field r)" and CARD: "Card_order r" and
+        LEQ: "p \<le>o r"
+shows "| (Field r) \<union> (Field p) | =o r \<and> | (Field p) \<union> (Field r) | =o r"
+proof-
+  have "| Field r \<union> Field p | =o | Field r | \<and>
+        | Field p \<union> Field r | =o | Field r |"
+  using assms by (auto simp add: card_of_Un_infinite)
+  thus ?thesis
+  using assms card_of_Field_ordIso[of r]
+        ordIso_transitive[of "|Field r \<union> Field p|"]
+        ordIso_transitive[of _ "|Field r|"] by blast
+qed
+
+corollary subset_ordLeq_diff_infinite:
+assumes INF: "infinite B" and SUB: "A \<le> B" and LESS: "|A| <o |B|"
+shows "infinite (B - A)"
+using assms card_of_Un_diff_infinite card_of_ordIso_finite by blast
+
+lemma card_of_Times_ordLess_infinite[simp]:
+assumes INF: "infinite C" and
+        LESS1: "|A| <o |C|" and LESS2: "|B| <o |C|"
+shows "|A \<times> B| <o |C|"
+proof(cases "A = {} \<or> B = {}")
+  assume Case1: "A = {} \<or> B = {}"
+  hence "A \<times> B = {}" by blast
+  moreover have "C \<noteq> {}" using
+  LESS1 card_of_empty5 by blast
+  ultimately show ?thesis by(auto simp add:  card_of_empty4)
+next
+  assume Case2: "\<not>(A = {} \<or> B = {})"
+  {assume *: "|C| \<le>o |A \<times> B|"
+   hence "infinite (A \<times> B)" using INF card_of_ordLeq_finite by blast
+   hence 1: "infinite A \<or> infinite B" using finite_cartesian_product by blast
+   {assume Case21: "|A| \<le>o |B|"
+    hence "infinite B" using 1 card_of_ordLeq_finite by blast
+    hence "|A \<times> B| =o |B|" using Case2 Case21
+    by (auto simp add: card_of_Times_infinite)
+    hence False using LESS2 not_ordLess_ordLeq * ordLeq_ordIso_trans by blast
+   }
+   moreover
+   {assume Case22: "|B| \<le>o |A|"
+    hence "infinite A" using 1 card_of_ordLeq_finite by blast
+    hence "|A \<times> B| =o |A|" using Case2 Case22
+    by (auto simp add: card_of_Times_infinite)
+    hence False using LESS1 not_ordLess_ordLeq * ordLeq_ordIso_trans by blast
+   }
+   ultimately have False using ordLeq_total card_of_Well_order[of A]
+   card_of_Well_order[of B] by blast
+  }
+  thus ?thesis using ordLess_or_ordLeq[of "|A \<times> B|" "|C|"]
+  card_of_Well_order[of "A \<times> B"] card_of_Well_order[of "C"] by auto
+qed
+
+lemma card_of_Times_ordLess_infinite_Field[simp]:
+assumes INF: "infinite (Field r)" and r: "Card_order r" and
+        LESS1: "|A| <o r" and LESS2: "|B| <o r"
+shows "|A \<times> B| <o r"
+proof-
+  let ?C  = "Field r"
+  have 1: "r =o |?C| \<and> |?C| =o r" using r card_of_Field_ordIso
+  ordIso_symmetric by blast
+  hence "|A| <o |?C|"  "|B| <o |?C|"
+  using LESS1 LESS2 ordLess_ordIso_trans by blast+
+  hence  "|A <*> B| <o |?C|" using INF
+  card_of_Times_ordLess_infinite by blast
+  thus ?thesis using 1 ordLess_ordIso_trans by blast
+qed
+
+lemma card_of_Un_ordLess_infinite[simp]:
+assumes INF: "infinite C" and
+        LESS1: "|A| <o |C|" and LESS2: "|B| <o |C|"
+shows "|A \<union> B| <o |C|"
+using assms card_of_Plus_ordLess_infinite card_of_Un_Plus_ordLeq
+      ordLeq_ordLess_trans by blast
+
+lemma card_of_Un_ordLess_infinite_Field[simp]:
+assumes INF: "infinite (Field r)" and r: "Card_order r" and
+        LESS1: "|A| <o r" and LESS2: "|B| <o r"
+shows "|A Un B| <o r"
+proof-
+  let ?C  = "Field r"
+  have 1: "r =o |?C| \<and> |?C| =o r" using r card_of_Field_ordIso
+  ordIso_symmetric by blast
+  hence "|A| <o |?C|"  "|B| <o |?C|"
+  using LESS1 LESS2 ordLess_ordIso_trans by blast+
+  hence  "|A Un B| <o |?C|" using INF
+  card_of_Un_ordLess_infinite by blast
+  thus ?thesis using 1 ordLess_ordIso_trans by blast
+qed
+
+lemma card_of_Un_singl_ordLess_infinite1:
+assumes "infinite B" and "|A| <o |B|"
+shows "|{a} Un A| <o |B|"
+proof-
+  have "|{a}| <o |B|" using assms by auto
+  thus ?thesis using assms card_of_Un_ordLess_infinite[of B] by fastforce
+qed
+
+lemma card_of_Un_singl_ordLess_infinite:
+assumes "infinite B"
+shows "( |A| <o |B| ) = ( |{a} Un A| <o |B| )"
+using assms card_of_Un_singl_ordLess_infinite1[of B A]
+proof(auto)
+  assume "|insert a A| <o |B|"
+  moreover have "|A| <=o |insert a A|" using card_of_mono1[of A] by blast
+  ultimately show "|A| <o |B|" using ordLeq_ordLess_trans by blast
+qed
+
+
+subsection {* Cardinals versus lists  *}
+
+lemma Card_order_lists: "Card_order r \<Longrightarrow> r \<le>o |lists(Field r) |"
+using card_of_lists card_of_Field_ordIso ordIso_ordLeq_trans ordIso_symmetric by blast
+
+lemma Union_set_lists:
+"Union(set ` (lists A)) = A"
+unfolding lists_def2 proof(auto)
+  fix a assume "a \<in> A"
+  hence "set [a] \<le> A \<and> a \<in> set [a]" by auto
+  thus "\<exists>l. set l \<le> A \<and> a \<in> set l" by blast
+qed
+
+lemma inj_on_map_lists:
+assumes "inj_on f A"
+shows "inj_on (map f) (lists A)"
+using assms Union_set_lists[of A] inj_on_mapI[of f "lists A"] by auto
+
+lemma map_lists_mono:
+assumes "f ` A \<le> B"
+shows "(map f) ` (lists A) \<le> lists B"
+using assms unfolding lists_def2 by (auto, blast) (* lethal combination of methods :)  *)
+
+lemma map_lists_surjective:
+assumes "f ` A = B"
+shows "(map f) ` (lists A) = lists B"
+using assms unfolding lists_def2
+proof (auto, blast)
+  fix l' assume *: "set l' \<le> f ` A"
+  have "set l' \<le> f ` A \<longrightarrow> l' \<in> map f ` {l. set l \<le> A}"
+  proof(induct l', auto)
+    fix l a
+    assume "a \<in> A" and "set l \<le> A" and
+           IH: "f ` (set l) \<le> f ` A"
+    hence "set (a # l) \<le> A" by auto
+    hence "map f (a # l) \<in> map f ` {l. set l \<le> A}" by blast
+    thus "f a # map f l \<in> map f ` {l. set l \<le> A}" by auto
+  qed
+  thus "l' \<in> map f ` {l. set l \<le> A}" using * by auto
+qed
+
+lemma bij_betw_map_lists:
+assumes "bij_betw f A B"
+shows "bij_betw (map f) (lists A) (lists B)"
+using assms unfolding bij_betw_def
+by(auto simp add: inj_on_map_lists map_lists_surjective)
+
+lemma card_of_lists_mono[simp]:
+assumes "|A| \<le>o |B|"
+shows "|lists A| \<le>o |lists B|"
+proof-
+  obtain f where "inj_on f A \<and> f ` A \<le> B"
+  using assms card_of_ordLeq[of A B] by auto
+  hence "inj_on (map f) (lists A) \<and> (map f) ` (lists A) \<le> (lists B)"
+  by (auto simp add: inj_on_map_lists map_lists_mono)
+  thus ?thesis using card_of_ordLeq[of "lists A"] by metis
+qed
+
+lemma ordIso_lists_mono:
+assumes "r \<le>o r'"
+shows "|lists(Field r)| \<le>o |lists(Field r')|"
+using assms card_of_mono2 card_of_lists_mono by blast
+
+lemma card_of_lists_cong[simp]:
+assumes "|A| =o |B|"
+shows "|lists A| =o |lists B|"
+proof-
+  obtain f where "bij_betw f A B"
+  using assms card_of_ordIso[of A B] by auto
+  hence "bij_betw (map f) (lists A) (lists B)"
+  by (auto simp add: bij_betw_map_lists)
+  thus ?thesis using card_of_ordIso[of "lists A"] by auto
+qed
+
+lemma ordIso_lists_cong:
+assumes "r =o r'"
+shows "|lists(Field r)| =o |lists(Field r')|"
+using assms card_of_cong card_of_lists_cong by blast
+
+corollary lists_infinite_bij_betw:
+assumes "infinite A"
+shows "\<exists>f. bij_betw f (lists A) A"
+using assms card_of_lists_infinite card_of_ordIso by blast
+
+corollary lists_infinite_bij_betw_types:
+assumes "infinite(UNIV :: 'a set)"
+shows "\<exists>(f::'a list \<Rightarrow> 'a). bij f"
+using assms assms lists_infinite_bij_betw[of "UNIV::'a set"]
+using lists_UNIV by auto
+
+
+subsection {* Cardinals versus the set-of-finite-sets operator  *}
+
+definition Fpow :: "'a set \<Rightarrow> 'a set set"
+where "Fpow A \<equiv> {X. X \<le> A \<and> finite X}"
+
+lemma Fpow_mono: "A \<le> B \<Longrightarrow> Fpow A \<le> Fpow B"
+unfolding Fpow_def by auto
+
+lemma empty_in_Fpow: "{} \<in> Fpow A"
+unfolding Fpow_def by auto
+
+lemma Fpow_not_empty: "Fpow A \<noteq> {}"
+using empty_in_Fpow by blast
+
+lemma Fpow_subset_Pow: "Fpow A \<le> Pow A"
+unfolding Fpow_def by auto
+
+lemma card_of_Fpow[simp]: "|A| \<le>o |Fpow A|"
+proof-
+  let ?h = "\<lambda> a. {a}"
+  have "inj_on ?h A \<and> ?h ` A \<le> Fpow A"
+  unfolding inj_on_def Fpow_def by auto
+  thus ?thesis using card_of_ordLeq by metis
+qed
+
+lemma Card_order_Fpow: "Card_order r \<Longrightarrow> r \<le>o |Fpow(Field r) |"
+using card_of_Fpow card_of_Field_ordIso ordIso_ordLeq_trans ordIso_symmetric by blast
+
+lemma Fpow_Pow_finite: "Fpow A = Pow A Int {A. finite A}"
+unfolding Fpow_def Pow_def by blast
+
+lemma inj_on_image_Fpow:
+assumes "inj_on f A"
+shows "inj_on (image f) (Fpow A)"
+using assms Fpow_subset_Pow[of A] subset_inj_on[of "image f" "Pow A"]
+      inj_on_image_Pow by blast
+
+lemma image_Fpow_mono:
+assumes "f ` A \<le> B"
+shows "(image f) ` (Fpow A) \<le> Fpow B"
+using assms by(unfold Fpow_def, auto)
+
+lemma image_Fpow_surjective:
+assumes "f ` A = B"
+shows "(image f) ` (Fpow A) = Fpow B"
+using assms proof(unfold Fpow_def, auto)
+  fix Y assume *: "Y \<le> f ` A" and **: "finite Y"
+  hence "\<forall>b \<in> Y. \<exists>a. a \<in> A \<and> f a = b" by auto
+  with bchoice[of Y "\<lambda>b a. a \<in> A \<and> f a = b"]
+  obtain g where 1: "\<forall>b \<in> Y. g b \<in> A \<and> f(g b) = b" by blast
+  obtain X where X_def: "X = g ` Y" by blast
+  have "f ` X = Y \<and> X \<le> A \<and> finite X"
+  by(unfold X_def, force simp add: ** 1)
+  thus "Y \<in> (image f) ` {X. X \<le> A \<and> finite X}" by auto
+qed
+
+lemma bij_betw_image_Fpow:
+assumes "bij_betw f A B"
+shows "bij_betw (image f) (Fpow A) (Fpow B)"
+using assms unfolding bij_betw_def
+by (auto simp add: inj_on_image_Fpow image_Fpow_surjective)
+
+lemma card_of_Fpow_mono[simp]:
+assumes "|A| \<le>o |B|"
+shows "|Fpow A| \<le>o |Fpow B|"
+proof-
+  obtain f where "inj_on f A \<and> f ` A \<le> B"
+  using assms card_of_ordLeq[of A B] by auto
+  hence "inj_on (image f) (Fpow A) \<and> (image f) ` (Fpow A) \<le> (Fpow B)"
+  by (auto simp add: inj_on_image_Fpow image_Fpow_mono)
+  thus ?thesis using card_of_ordLeq[of "Fpow A"] by auto
+qed
+
+lemma ordIso_Fpow_mono:
+assumes "r \<le>o r'"
+shows "|Fpow(Field r)| \<le>o |Fpow(Field r')|"
+using assms card_of_mono2 card_of_Fpow_mono by blast
+
+lemma card_of_Fpow_cong[simp]:
+assumes "|A| =o |B|"
+shows "|Fpow A| =o |Fpow B|"
+proof-
+  obtain f where "bij_betw f A B"
+  using assms card_of_ordIso[of A B] by auto
+  hence "bij_betw (image f) (Fpow A) (Fpow B)"
+  by (auto simp add: bij_betw_image_Fpow)
+  thus ?thesis using card_of_ordIso[of "Fpow A"] by auto
+qed
+
+lemma ordIso_Fpow_cong:
+assumes "r =o r'"
+shows "|Fpow(Field r)| =o |Fpow(Field r')|"
+using assms card_of_cong card_of_Fpow_cong by blast
+
+lemma card_of_Fpow_lists: "|Fpow A| \<le>o |lists A|"
+proof-
+  have "set ` (lists A) = Fpow A"
+  unfolding lists_def2 Fpow_def using finite_list finite_set by blast
+  thus ?thesis using card_of_ordLeq2[of "Fpow A"] Fpow_not_empty[of A] by blast
+qed
+
+lemma card_of_Fpow_infinite[simp]:
+assumes "infinite A"
+shows "|Fpow A| =o |A|"
+using assms card_of_Fpow_lists card_of_lists_infinite card_of_Fpow
+      ordLeq_ordIso_trans ordIso_iff_ordLeq by blast
+
+corollary Fpow_infinite_bij_betw:
+assumes "infinite A"
+shows "\<exists>f. bij_betw f (Fpow A) A"
+using assms card_of_Fpow_infinite card_of_ordIso by blast
+
+
+subsection {* The cardinal $\omega$ and the finite cardinals  *}
+
+subsubsection {* First as well-orders *}
+
+lemma Field_natLess: "Field natLess = (UNIV::nat set)"
+by(unfold Field_def, auto)
+
+lemma natLeq_ofilter_less: "ofilter natLeq {0 ..< n}"
+by(auto simp add: natLeq_wo_rel wo_rel.ofilter_def,
+   simp add:  Field_natLeq, unfold rel.under_def, auto)
+
+lemma natLeq_ofilter_leq: "ofilter natLeq {0 .. n}"
+by(auto simp add: natLeq_wo_rel wo_rel.ofilter_def,
+   simp add:  Field_natLeq, unfold rel.under_def, auto)
+
+lemma natLeq_ofilter_iff:
+"ofilter natLeq A = (A = UNIV \<or> (\<exists>n. A = {0 ..< n}))"
+proof(rule iffI)
+  assume "ofilter natLeq A"
+  hence "\<forall>m n. n \<in> A \<and> m \<le> n \<longrightarrow> m \<in> A"
+  by(auto simp add: natLeq_wo_rel wo_rel.ofilter_def rel.under_def)
+  thus "A = UNIV \<or> (\<exists>n. A = {0 ..< n})" using closed_nat_set_iff by blast
+next
+  assume "A = UNIV \<or> (\<exists>n. A = {0 ..< n})"
+  thus "ofilter natLeq A"
+  by(auto simp add: natLeq_ofilter_less natLeq_UNIV_ofilter)
+qed
+
+lemma natLeq_under_leq: "under natLeq n = {0 .. n}"
+unfolding rel.under_def by auto
+
+corollary natLeq_on_ofilter:
+"ofilter(natLeq_on n) {0 ..< n}"
+by (auto simp add: natLeq_on_ofilter_less_eq)
+
+lemma natLeq_on_ofilter_less:
+"n < m \<Longrightarrow> ofilter (natLeq_on m) {0 .. n}"
+by(auto simp add: natLeq_on_wo_rel wo_rel.ofilter_def,
+   simp add: Field_natLeq_on, unfold rel.under_def, auto)
+
+lemma natLeq_on_ordLess_natLeq: "natLeq_on n <o natLeq"
+using Field_natLeq Field_natLeq_on[of n] nat_infinite
+      finite_ordLess_infinite[of "natLeq_on n" natLeq]
+      natLeq_Well_order natLeq_on_Well_order[of n] by auto
+
+lemma natLeq_on_injective:
+"natLeq_on m = natLeq_on n \<Longrightarrow> m = n"
+using Field_natLeq_on[of m] Field_natLeq_on[of n]
+      atLeastLessThan_injective[of m n] by auto
+
+lemma natLeq_on_injective_ordIso:
+"(natLeq_on m =o natLeq_on n) = (m = n)"
+proof(auto simp add: natLeq_on_Well_order ordIso_reflexive)
+  assume "natLeq_on m =o natLeq_on n"
+  then obtain f where "bij_betw f {0..<m} {0..<n}"
+  using Field_natLeq_on assms unfolding ordIso_def iso_def[abs_def] by auto
+  thus "m = n" using atLeastLessThan_injective2 by blast
+qed
+
+
+subsubsection {* Then as cardinals *}
+
+lemma ordIso_natLeq_infinite1:
+"|A| =o natLeq \<Longrightarrow> infinite A"
+using ordIso_symmetric ordIso_imp_ordLeq infinite_iff_natLeq_ordLeq by blast
+
+lemma ordIso_natLeq_infinite2:
+"natLeq =o |A| \<Longrightarrow> infinite A"
+using ordIso_imp_ordLeq infinite_iff_natLeq_ordLeq by blast
+
+lemma ordLeq_natLeq_on_imp_finite:
+assumes "|A| \<le>o natLeq_on n"
+shows "finite A"
+proof-
+  have "|A| \<le>o |{0 ..< n}|"
+  using assms card_of_less ordIso_symmetric ordLeq_ordIso_trans by blast
+  thus ?thesis by (auto simp add: card_of_ordLeq_finite)
+qed
+
+
+subsubsection {* "Backwards compatibility" with the numeric cardinal operator for finite sets *}
+
+lemma finite_card_of_iff_card:
+assumes FIN: "finite A" and FIN': "finite B"
+shows "( |A| =o |B| ) = (card A = card B)"
+using assms card_of_ordIso[of A B] bij_betw_iff_card[of A B] by blast
+
+lemma finite_card_of_iff_card3:
+assumes FIN: "finite A" and FIN': "finite B"
+shows "( |A| <o |B| ) = (card A < card B)"
+proof-
+  have "( |A| <o |B| ) = (~ ( |B| \<le>o |A| ))" by simp
+  also have "... = (~ (card B \<le> card A))"
+  using assms by(simp add: finite_card_of_iff_card2)
+  also have "... = (card A < card B)" by auto
+  finally show ?thesis .
+qed
+
+lemma card_Field_natLeq_on:
+"card(Field(natLeq_on n)) = n"
+using Field_natLeq_on card_atLeastLessThan by auto
+
+
+subsection {* The successor of a cardinal *}
+
+lemma embed_implies_ordIso_Restr:
+assumes WELL: "Well_order r" and WELL': "Well_order r'" and EMB: "embed r' r f"
+shows "r' =o Restr r (f ` (Field r'))"
+using assms embed_implies_iso_Restr Well_order_Restr unfolding ordIso_def by blast
+
+lemma cardSuc_Well_order[simp]:
+"Card_order r \<Longrightarrow> Well_order(cardSuc r)"
+using cardSuc_Card_order unfolding card_order_on_def by blast
+
+lemma Field_cardSuc_not_empty:
+assumes "Card_order r"
+shows "Field (cardSuc r) \<noteq> {}"
+proof
+  assume "Field(cardSuc r) = {}"
+  hence "|Field(cardSuc r)| \<le>o r" using assms Card_order_empty[of r] by auto
+  hence "cardSuc r \<le>o r" using assms card_of_Field_ordIso
+  cardSuc_Card_order ordIso_symmetric ordIso_ordLeq_trans by blast
+  thus False using cardSuc_greater not_ordLess_ordLeq assms by blast
+qed
+
+lemma cardSuc_mono_ordLess[simp]:
+assumes CARD: "Card_order r" and CARD': "Card_order r'"
+shows "(cardSuc r <o cardSuc r') = (r <o r')"
+proof-
+  have 0: "Well_order r \<and> Well_order r' \<and> Well_order(cardSuc r) \<and> Well_order(cardSuc r')"
+  using assms by auto
+  thus ?thesis
+  using not_ordLeq_iff_ordLess not_ordLeq_iff_ordLess[of r r']
+  using cardSuc_mono_ordLeq[of r' r] assms by blast
+qed
+
+lemma card_of_Plus_ordLeq_infinite[simp]:
+assumes C: "infinite C" and A: "|A| \<le>o |C|" and B: "|B| \<le>o |C|"
+shows "|A <+> B| \<le>o |C|"
+proof-
+  let ?r = "cardSuc |C|"
+  have "Card_order ?r \<and> infinite (Field ?r)" using assms by simp
+  moreover have "|A| <o ?r" and "|B| <o ?r" using A B by auto
+  ultimately have "|A <+> B| <o ?r"
+  using card_of_Plus_ordLess_infinite_Field by blast
+  thus ?thesis using C by simp
+qed
+
+lemma card_of_Un_ordLeq_infinite[simp]:
+assumes C: "infinite C" and A: "|A| \<le>o |C|" and B: "|B| \<le>o |C|"
+shows "|A Un B| \<le>o |C|"
+using assms card_of_Plus_ordLeq_infinite card_of_Un_Plus_ordLeq
+ordLeq_transitive by metis
+
+
+subsection {* Others *}
+
+lemma under_mono[simp]:
+assumes "Well_order r" and "(i,j) \<in> r"
+shows "under r i \<subseteq> under r j"
+using assms unfolding rel.under_def order_on_defs
+trans_def by blast
+
+lemma underS_under:
+assumes "i \<in> Field r"
+shows "underS r i = under r i - {i}"
+using assms unfolding rel.underS_def rel.under_def by auto
+
+lemma relChain_under:
+assumes "Well_order r"
+shows "relChain r (\<lambda> i. under r i)"
+using assms unfolding relChain_def by auto
+
+lemma infinite_card_of_diff_singl:
+assumes "infinite A"
+shows "|A - {a}| =o |A|"
+by (metis assms card_of_infinite_diff_finitte finite.emptyI finite_insert)
+
+lemma card_of_vimage:
+assumes "B \<subseteq> range f"
+shows "|B| \<le>o |f -` B|"
+apply(rule surj_imp_ordLeq[of _ f])
+using assms by (metis Int_absorb2 image_vimage_eq order_refl)
+
+lemma surj_card_of_vimage:
+assumes "surj f"
+shows "|B| \<le>o |f -` B|"
+by (metis assms card_of_vimage subset_UNIV)
+
+(* bounded powerset *)
+definition Bpow where
+"Bpow r A \<equiv> {X . X \<subseteq> A \<and> |X| \<le>o r}"
+
+lemma Bpow_empty[simp]:
+assumes "Card_order r"
+shows "Bpow r {} = {{}}"
+using assms unfolding Bpow_def by auto
+
+lemma singl_in_Bpow:
+assumes rc: "Card_order r"
+and r: "Field r \<noteq> {}" and a: "a \<in> A"
+shows "{a} \<in> Bpow r A"
+proof-
+  have "|{a}| \<le>o r" using r rc by auto
+  thus ?thesis unfolding Bpow_def using a by auto
+qed
+
+lemma ordLeq_card_Bpow:
+assumes rc: "Card_order r" and r: "Field r \<noteq> {}"
+shows "|A| \<le>o |Bpow r A|"
+proof-
+  have "inj_on (\<lambda> a. {a}) A" unfolding inj_on_def by auto
+  moreover have "(\<lambda> a. {a}) ` A \<subseteq> Bpow r A"
+  using singl_in_Bpow[OF assms] by auto
+  ultimately show ?thesis unfolding card_of_ordLeq[symmetric] by blast
+qed
+
+lemma infinite_Bpow:
+assumes rc: "Card_order r" and r: "Field r \<noteq> {}"
+and A: "infinite A"
+shows "infinite (Bpow r A)"
+using ordLeq_card_Bpow[OF rc r]
+by (metis A card_of_ordLeq_infinite)
+
+lemma Bpow_ordLeq_Func_Field:
+assumes rc: "Card_order r" and r: "Field r \<noteq> {}" and A: "infinite A"
+shows "|Bpow r A| \<le>o |Func (Field r) A|"
+proof-
+  let ?F = "\<lambda> f. {x | x a. f a = Some x}"
+  {fix X assume "X \<in> Bpow r A - {{}}"
+   hence XA: "X \<subseteq> A" and "|X| \<le>o r"
+   and X: "X \<noteq> {}" unfolding Bpow_def by auto
+   hence "|X| \<le>o |Field r|" by (metis Field_card_of card_of_mono2)
+   then obtain F where 1: "X = F ` (Field r)"
+   using card_of_ordLeq2[OF X] by metis
+   def f \<equiv> "\<lambda> i. if i \<in> Field r then Some (F i) else None"
+   have "\<exists> f \<in> Func (Field r) A. X = ?F f"
+   apply (intro bexI[of _ f]) using 1 XA unfolding Func_def f_def by auto
+  }
+  hence "Bpow r A - {{}} \<subseteq> ?F ` (Func (Field r) A)" by auto
+  hence "|Bpow r A - {{}}| \<le>o |Func (Field r) A|"
+  by (rule surj_imp_ordLeq)
+  moreover
+  {have 2: "infinite (Bpow r A)" using infinite_Bpow[OF rc r A] .
+   have "|Bpow r A| =o |Bpow r A - {{}}|"
+   using card_of_infinite_diff_finitte
+   by (metis Pow_empty 2 finite_Pow_iff infinite_imp_nonempty ordIso_symmetric)
+  }
+  ultimately show ?thesis by (metis ordIso_ordLeq_trans)
+qed
+
+lemma Func_emp2[simp]: "A \<noteq> {} \<Longrightarrow> Func A {} = {}" by auto
+
+lemma empty_in_Func[simp]:
+"B \<noteq> {} \<Longrightarrow> empty \<in> Func {} B"
+unfolding Func_def by auto
+
+lemma Func_mono[simp]:
+assumes "B1 \<subseteq> B2"
+shows "Func A B1 \<subseteq> Func A B2"
+using assms unfolding Func_def by force
+
+lemma Pfunc_mono[simp]:
+assumes "A1 \<subseteq> A2" and "B1 \<subseteq> B2"
+shows "Pfunc A B1 \<subseteq> Pfunc A B2"
+using assms in_mono unfolding Pfunc_def apply safe
+apply(case_tac "x a", auto)
+by (metis in_mono option.simps(5))
+
+lemma card_of_Func_UNIV_UNIV:
+"|Func (UNIV::'a set) (UNIV::'b set)| =o |UNIV::('a \<Rightarrow> 'b) set|"
+using card_of_Func_UNIV[of "UNIV::'b set"] by auto
+
+end