src/ZF/ex/PropLog.thy
changeset 12088 6f463d16cbd0
parent 12087 b38cfbabfda4
child 12089 34e7693271a9
--- a/src/ZF/ex/PropLog.thy	Wed Nov 07 00:16:19 2001 +0100
+++ /dev/null	Thu Jan 01 00:00:00 1970 +0000
@@ -1,68 +0,0 @@
-(*  Title:      ZF/ex/PropLog.thy
-    ID:         $Id$
-    Author:     Tobias Nipkow & Lawrence C Paulson
-    Copyright   1993  University of Cambridge
-
-Datatype definition of propositional logic formulae and inductive definition
-of the propositional tautologies.
-*)
-
-PropLog = Main +
-
-(** The datatype of propositions; note mixfix syntax **)
-consts
-  prop     :: i
-
-datatype
-  "prop" = Fls
-         | Var ("n \\<in> nat")                       ("#_" [100] 100)
-         | "=>" ("p \\<in> prop", "q \\<in> prop")          (infixr 90)
-
-(** The proof system **)
-consts
-  thms     :: i => i
-
-syntax
-  "|-"     :: [i,i] => o                        (infixl 50)
-
-translations
-  "H |- p" == "p \\<in> thms(H)"
-
-inductive
-  domains "thms(H)" <= "prop"
-  intrs
-    H  "[| p \\<in> H;  p \\<in> prop |] ==> H |- p"
-    K  "[| p \\<in> prop;  q \\<in> prop |] ==> H |- p=>q=>p"
-    S  "[| p \\<in> prop;  q \\<in> prop;  r \\<in> prop |] ==> H |- (p=>q=>r) => (p=>q) => p=>r"
-    DN "p \\<in> prop ==> H |- ((p=>Fls) => Fls) => p"
-    MP "[| H |- p=>q;  H |- p;  p \\<in> prop;  q \\<in> prop |] ==> H |- q"
-  type_intrs "prop.intrs"
-
-
-(** The semantics **)
-consts
-  "|="        :: [i,i] => o                        (infixl 50)
-  hyps        :: [i,i] => i
-  is_true_fun :: [i,i] => i
-
-constdefs (*this definitionis necessary since predicates can't be recursive*)
-  is_true     :: [i,i] => o
-    "is_true(p,t) == is_true_fun(p,t)=1"
-
-defs
-  (*Logical consequence: for every valuation, if all elements of H are true
-     then so is p*)
-  logcon_def  "H |= p == \\<forall>t. (\\<forall>q \\<in> H. is_true(q,t)) --> is_true(p,t)"
-
-primrec (** A finite set of hypotheses from t and the Vars in p **)
-  "hyps(Fls, t)    = 0"
-  "hyps(Var(v), t) = (if v \\<in> t then {#v} else {#v=>Fls})"
-  "hyps(p=>q, t)   = hyps(p,t) Un hyps(q,t)"
- 
-primrec (** Semantics of propositional logic **)
-  "is_true_fun(Fls, t)    = 0"
-  "is_true_fun(Var(v), t) = (if v \\<in> t then 1 else 0)"
-  "is_true_fun(p=>q, t)   = (if is_true_fun(p,t)=1 then is_true_fun(q,t)
-			     else 1)"
-
-end