TFL/rules.ML
changeset 10769 70b9b0cfe05f
child 10781 eedf2def44c1
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/TFL/rules.ML	Wed Jan 03 21:20:40 2001 +0100
@@ -0,0 +1,824 @@
+(*  Title:      TFL/rules.sml
+    ID:         $Id$
+    Author:     Konrad Slind, Cambridge University Computer Laboratory
+    Copyright   1997  University of Cambridge
+
+Emulation of HOL inference rules for TFL
+*)
+
+signature RULES =
+sig
+  val dest_thm : thm -> term list * term
+
+  (* Inference rules *)
+  val REFL      :cterm -> thm
+  val ASSUME    :cterm -> thm
+  val MP        :thm -> thm -> thm
+  val MATCH_MP  :thm -> thm -> thm
+  val CONJUNCT1 :thm -> thm
+  val CONJUNCT2 :thm -> thm
+  val CONJUNCTS :thm -> thm list
+  val DISCH     :cterm -> thm -> thm
+  val UNDISCH   :thm  -> thm
+  val SPEC      :cterm -> thm -> thm
+  val ISPEC     :cterm -> thm -> thm
+  val ISPECL    :cterm list -> thm -> thm
+  val GEN       :cterm -> thm -> thm
+  val GENL      :cterm list -> thm -> thm
+  val LIST_CONJ :thm list -> thm
+
+  val SYM : thm -> thm
+  val DISCH_ALL : thm -> thm
+  val FILTER_DISCH_ALL : (term -> bool) -> thm -> thm
+  val SPEC_ALL  : thm -> thm
+  val GEN_ALL   : thm -> thm
+  val IMP_TRANS : thm -> thm -> thm
+  val PROVE_HYP : thm -> thm -> thm
+
+  val CHOOSE : cterm * thm -> thm -> thm
+  val EXISTS : cterm * cterm -> thm -> thm
+  val EXISTL : cterm list -> thm -> thm
+  val IT_EXISTS : (cterm*cterm) list -> thm -> thm
+
+  val EVEN_ORS : thm list -> thm list
+  val DISJ_CASESL : thm -> thm list -> thm
+
+  val list_beta_conv : cterm -> cterm list -> thm
+  val SUBS : thm list -> thm -> thm
+  val simpl_conv : simpset -> thm list -> cterm -> thm
+
+  val rbeta : thm -> thm
+(* For debugging my isabelle solver in the conditional rewriter *)
+  val term_ref : term list ref
+  val thm_ref : thm list ref
+  val mss_ref : meta_simpset list ref
+  val tracing : bool ref
+  val CONTEXT_REWRITE_RULE : term * term list * thm * thm list
+                             -> thm -> thm * term list
+  val RIGHT_ASSOC : thm -> thm
+
+  val prove : cterm * tactic -> thm
+end;
+
+structure Rules: RULES =
+struct
+
+structure S = USyntax;
+structure U = Utils;
+structure D = Dcterm;
+
+
+fun RULES_ERR func mesg = U.ERR {module = "Rules", func = func, mesg = mesg};
+
+
+fun cconcl thm = D.drop_prop (#prop (Thm.crep_thm thm));
+fun chyps thm = map D.drop_prop (#hyps (Thm.crep_thm thm));
+
+fun dest_thm thm =
+  let val {prop,hyps,...} = Thm.rep_thm thm
+  in (map HOLogic.dest_Trueprop hyps, HOLogic.dest_Trueprop prop) end
+  handle TERM _ => raise RULES_ERR "dest_thm" "missing Trueprop";
+
+
+(* Inference rules *)
+
+(*---------------------------------------------------------------------------
+ *        Equality (one step)
+ *---------------------------------------------------------------------------*)
+
+fun REFL tm = Thm.reflexive tm RS meta_eq_to_obj_eq
+  handle THM (msg, _, _) => raise RULES_ERR "REFL" msg;
+
+fun SYM thm = thm RS sym
+  handle THM (msg, _, _) => raise RULES_ERR "SYM" msg;
+
+fun ALPHA thm ctm1 =
+  let
+    val ctm2 = Thm.cprop_of thm;
+    val ctm2_eq = Thm.reflexive ctm2;
+    val ctm1_eq = Thm.reflexive ctm1;
+  in Thm.equal_elim (Thm.transitive ctm2_eq ctm1_eq) thm end
+  handle THM (msg, _, _) => raise RULES_ERR "ALPHA" msg;
+
+fun rbeta th =
+  (case D.strip_comb (cconcl th) of
+    (_, [l, r]) => Thm.transitive th (Thm.beta_conversion false r)
+  | _ => raise RULES_ERR "rbeta" "");
+
+
+(*----------------------------------------------------------------------------
+ *        Implication and the assumption list
+ *
+ * Assumptions get stuck on the meta-language assumption list. Implications
+ * are in the object language, so discharging an assumption "A" from theorem
+ * "B" results in something that looks like "A --> B".
+ *---------------------------------------------------------------------------*)
+
+fun ASSUME ctm = Thm.assume (D.mk_prop ctm);
+
+
+(*---------------------------------------------------------------------------
+ * Implication in TFL is -->. Meta-language implication (==>) is only used
+ * in the implementation of some of the inference rules below.
+ *---------------------------------------------------------------------------*)
+fun MP th1 th2 = th2 RS (th1 RS mp)
+  handle THM (msg, _, _) => raise RULES_ERR "MP" msg;
+
+(*forces the first argument to be a proposition if necessary*)
+fun DISCH tm thm = Thm.implies_intr (D.mk_prop tm) thm COMP impI
+  handle THM (msg, _, _) => raise RULES_ERR "DISCH" msg;
+
+fun DISCH_ALL thm = U.itlist DISCH (#hyps (Thm.crep_thm thm)) thm;
+
+
+fun FILTER_DISCH_ALL P thm =
+ let fun check tm = P (#t (Thm.rep_cterm tm))
+ in  foldr (fn (tm,th) => if check tm then DISCH tm th else th)
+              (chyps thm, thm)
+ end;
+
+(* freezeT expensive! *)
+fun UNDISCH thm =
+   let val tm = D.mk_prop (#1 (D.dest_imp (cconcl (Thm.freezeT thm))))
+   in Thm.implies_elim (thm RS mp) (ASSUME tm) end
+   handle U.ERR _ => raise RULES_ERR "UNDISCH" ""
+     | THM _ => raise RULES_ERR "UNDISCH" "";
+
+fun PROVE_HYP ath bth = MP (DISCH (cconcl ath) bth) ath;
+
+fun IMP_TRANS th1 th2 = th2 RS (th1 RS Thms.imp_trans)
+  handle THM (msg, _, _) => raise RULES_ERR "IMP_TRANS" msg;
+
+
+(*----------------------------------------------------------------------------
+ *        Conjunction
+ *---------------------------------------------------------------------------*)
+
+fun CONJUNCT1 thm = thm RS conjunct1
+  handle THM (msg, _, _) => raise RULES_ERR "CONJUNCT1" msg;
+
+fun CONJUNCT2 thm = thm RS conjunct2
+  handle THM (msg, _, _) => raise RULES_ERR "CONJUNCT2" msg;
+
+fun CONJUNCTS th = CONJUNCTS (CONJUNCT1 th) @ CONJUNCTS (CONJUNCT2 th) handle U.ERR _ => [th];
+
+fun LIST_CONJ [] = raise RULES_ERR "LIST_CONJ" "empty list"
+  | LIST_CONJ [th] = th
+  | LIST_CONJ (th :: rst) = MP (MP (conjI COMP (impI RS impI)) th) (LIST_CONJ rst)
+      handle THM (msg, _, _) => raise RULES_ERR "LIST_CONJ" msg;
+
+
+(*----------------------------------------------------------------------------
+ *        Disjunction
+ *---------------------------------------------------------------------------*)
+local val {prop,sign,...} = rep_thm disjI1
+      val [P,Q] = term_vars prop
+      val disj1 = Thm.forall_intr (Thm.cterm_of sign Q) disjI1
+in
+fun DISJ1 thm tm = thm RS (forall_elim (D.drop_prop tm) disj1)
+  handle THM (msg, _, _) => raise RULES_ERR "DISJ1" msg;
+end;
+
+local val {prop,sign,...} = rep_thm disjI2
+      val [P,Q] = term_vars prop
+      val disj2 = Thm.forall_intr (Thm.cterm_of sign P) disjI2
+in
+fun DISJ2 tm thm = thm RS (forall_elim (D.drop_prop tm) disj2)
+  handle THM (msg, _, _) => raise RULES_ERR "DISJ2" msg;
+end;
+
+
+(*----------------------------------------------------------------------------
+ *
+ *                   A1 |- M1, ..., An |- Mn
+ *     ---------------------------------------------------
+ *     [A1 |- M1 \/ ... \/ Mn, ..., An |- M1 \/ ... \/ Mn]
+ *
+ *---------------------------------------------------------------------------*)
+
+
+fun EVEN_ORS thms =
+  let fun blue ldisjs [] _ = []
+        | blue ldisjs (th::rst) rdisjs =
+            let val tail = tl rdisjs
+                val rdisj_tl = D.list_mk_disj tail
+            in U.itlist DISJ2 ldisjs (DISJ1 th rdisj_tl)
+               :: blue (ldisjs @ [cconcl th]) rst tail
+            end handle U.ERR _ => [U.itlist DISJ2 ldisjs th]
+   in blue [] thms (map cconcl thms) end;
+
+
+(*----------------------------------------------------------------------------
+ *
+ *         A |- P \/ Q   B,P |- R    C,Q |- R
+ *     ---------------------------------------------------
+ *                     A U B U C |- R
+ *
+ *---------------------------------------------------------------------------*)
+
+fun DISJ_CASES th1 th2 th3 =
+  let
+    val c = D.drop_prop (cconcl th1);
+    val (disj1, disj2) = D.dest_disj c;
+    val th2' = DISCH disj1 th2;
+    val th3' = DISCH disj2 th3;
+  in
+    th3' RS (th2' RS (th1 RS Thms.tfl_disjE))
+      handle THM (msg, _, _) => raise RULES_ERR "DISJ_CASES" msg
+  end;
+
+
+(*-----------------------------------------------------------------------------
+ *
+ *       |- A1 \/ ... \/ An     [A1 |- M, ..., An |- M]
+ *     ---------------------------------------------------
+ *                           |- M
+ *
+ * Note. The list of theorems may be all jumbled up, so we have to
+ * first organize it to align with the first argument (the disjunctive
+ * theorem).
+ *---------------------------------------------------------------------------*)
+
+fun organize eq =    (* a bit slow - analogous to insertion sort *)
+ let fun extract a alist =
+     let fun ex (_,[]) = raise RULES_ERR "organize" "not a permutation.1"
+           | ex(left,h::t) = if (eq h a) then (h,rev left@t) else ex(h::left,t)
+     in ex ([],alist)
+     end
+     fun place [] [] = []
+       | place (a::rst) alist =
+           let val (item,next) = extract a alist
+           in item::place rst next
+           end
+       | place _ _ = raise RULES_ERR "organize" "not a permutation.2"
+ in place
+ end;
+(* freezeT expensive! *)
+fun DISJ_CASESL disjth thl =
+   let val c = cconcl disjth
+       fun eq th atm = exists (fn t => HOLogic.dest_Trueprop t
+                                       aconv term_of atm)
+                              (#hyps(rep_thm th))
+       val tml = D.strip_disj c
+       fun DL th [] = raise RULES_ERR "DISJ_CASESL" "no cases"
+         | DL th [th1] = PROVE_HYP th th1
+         | DL th [th1,th2] = DISJ_CASES th th1 th2
+         | DL th (th1::rst) =
+            let val tm = #2(D.dest_disj(D.drop_prop(cconcl th)))
+             in DISJ_CASES th th1 (DL (ASSUME tm) rst) end
+   in DL (freezeT disjth) (organize eq tml thl)
+   end;
+
+
+(*----------------------------------------------------------------------------
+ *        Universals
+ *---------------------------------------------------------------------------*)
+local (* this is fragile *)
+      val {prop,sign,...} = rep_thm spec
+      val x = hd (tl (term_vars prop))
+      val (TVar (indx,_)) = type_of x
+      val gspec = forall_intr (cterm_of sign x) spec
+in
+fun SPEC tm thm =
+   let val {sign,T,...} = rep_cterm tm
+       val gspec' = instantiate([(indx,ctyp_of sign T)],[]) gspec
+   in
+      thm RS (forall_elim tm gspec')
+   end
+end;
+
+fun SPEC_ALL thm = U.rev_itlist SPEC (#1(D.strip_forall(cconcl thm))) thm;
+
+val ISPEC = SPEC
+val ISPECL = U.rev_itlist ISPEC;
+
+(* Not optimized! Too complicated. *)
+local val {prop,sign,...} = rep_thm allI
+      val [P] = add_term_vars (prop, [])
+      fun cty_theta s = map (fn (i,ty) => (i, ctyp_of s ty))
+      fun ctm_theta s = map (fn (i,tm2) =>
+                             let val ctm2 = cterm_of s tm2
+                             in (cterm_of s (Var(i,#T(rep_cterm ctm2))), ctm2)
+                             end)
+      fun certify s (ty_theta,tm_theta) = (cty_theta s ty_theta,
+                                           ctm_theta s tm_theta)
+in
+fun GEN v th =
+   let val gth = forall_intr v th
+       val {prop=Const("all",_)$Abs(x,ty,rst),sign,...} = rep_thm gth
+       val P' = Abs(x,ty, HOLogic.dest_Trueprop rst)  (* get rid of trueprop *)
+       val tsig = #tsig(Sign.rep_sg sign)
+       val theta = Pattern.match tsig (P,P')
+       val allI2 = instantiate (certify sign theta) allI
+       val thm = Thm.implies_elim allI2 gth
+       val {prop = tp $ (A $ Abs(_,_,M)),sign,...} = rep_thm thm
+       val prop' = tp $ (A $ Abs(x,ty,M))
+   in ALPHA thm (cterm_of sign prop')
+   end
+end;
+
+val GENL = U.itlist GEN;
+
+fun GEN_ALL thm =
+   let val {prop,sign,...} = rep_thm thm
+       val tycheck = cterm_of sign
+       val vlist = map tycheck (add_term_vars (prop, []))
+  in GENL vlist thm
+  end;
+
+
+fun MATCH_MP th1 th2 =
+   if (D.is_forall (D.drop_prop(cconcl th1)))
+   then MATCH_MP (th1 RS spec) th2
+   else MP th1 th2;
+
+
+(*----------------------------------------------------------------------------
+ *        Existentials
+ *---------------------------------------------------------------------------*)
+
+
+
+(*---------------------------------------------------------------------------
+ * Existential elimination
+ *
+ *      A1 |- ?x.t[x]   ,   A2, "t[v]" |- t'
+ *      ------------------------------------     (variable v occurs nowhere)
+ *                A1 u A2 |- t'
+ *
+ *---------------------------------------------------------------------------*)
+
+fun CHOOSE (fvar, exth) fact =
+  let
+    val lam = #2 (D.dest_comb (D.drop_prop (cconcl exth)))
+    val redex = D.capply lam fvar
+    val {sign, t = t$u,...} = Thm.rep_cterm redex
+    val residue = Thm.cterm_of sign (betapply (t, u))
+  in
+    GEN fvar (DISCH residue fact) RS (exth RS Thms.choose_thm)
+      handle THM (msg, _, _) => raise RULES_ERR "CHOOSE" msg
+  end;
+
+local val {prop,sign,...} = rep_thm exI
+      val [P,x] = term_vars prop
+in
+fun EXISTS (template,witness) thm =
+   let val {prop,sign,...} = rep_thm thm
+       val P' = cterm_of sign P
+       val x' = cterm_of sign x
+       val abstr = #2 (D.dest_comb template)
+   in
+   thm RS (cterm_instantiate[(P',abstr), (x',witness)] exI)
+     handle THM (msg, _, _) => raise RULES_ERR "EXISTS" msg
+   end
+end;
+
+(*----------------------------------------------------------------------------
+ *
+ *         A |- M
+ *   -------------------   [v_1,...,v_n]
+ *    A |- ?v1...v_n. M
+ *
+ *---------------------------------------------------------------------------*)
+
+fun EXISTL vlist th =
+  U.itlist (fn v => fn thm => EXISTS(D.mk_exists(v,cconcl thm), v) thm)
+           vlist th;
+
+
+(*----------------------------------------------------------------------------
+ *
+ *       A |- M[x_1,...,x_n]
+ *   ----------------------------   [(x |-> y)_1,...,(x |-> y)_n]
+ *       A |- ?y_1...y_n. M
+ *
+ *---------------------------------------------------------------------------*)
+(* Could be improved, but needs "subst_free" for certified terms *)
+
+fun IT_EXISTS blist th =
+   let val {sign,...} = rep_thm th
+       val tych = cterm_of sign
+       val detype = #t o rep_cterm
+       val blist' = map (fn (x,y) => (detype x, detype y)) blist
+       fun ?v M  = cterm_of sign (S.mk_exists{Bvar=v,Body = M})
+
+  in
+  U.itlist (fn (b as (r1,r2)) => fn thm =>
+        EXISTS(?r2(subst_free[b]
+                   (HOLogic.dest_Trueprop(#prop(rep_thm thm)))), tych r1)
+              thm)
+       blist' th
+  end;
+
+(*---------------------------------------------------------------------------
+ *  Faster version, that fails for some as yet unknown reason
+ * fun IT_EXISTS blist th =
+ *    let val {sign,...} = rep_thm th
+ *        val tych = cterm_of sign
+ *        fun detype (x,y) = ((#t o rep_cterm) x, (#t o rep_cterm) y)
+ *   in
+ *  fold (fn (b as (r1,r2), thm) =>
+ *  EXISTS(D.mk_exists(r2, tych(subst_free[detype b](#t(rep_cterm(cconcl thm))))),
+ *           r1) thm)  blist th
+ *   end;
+ *---------------------------------------------------------------------------*)
+
+(*----------------------------------------------------------------------------
+ *        Rewriting
+ *---------------------------------------------------------------------------*)
+
+fun SUBS thl =
+  rewrite_rule (map (fn th => th RS eq_reflection handle THM _ => th) thl);
+
+local fun rew_conv mss = MetaSimplifier.rewrite_cterm (true,false,false) (K(K None)) mss
+in
+fun simpl_conv ss thl ctm =
+ rew_conv (MetaSimplifier.mss_of (#simps (MetaSimplifier.dest_mss (#mss (rep_ss ss))) @ thl)) ctm
+ RS meta_eq_to_obj_eq
+end;
+
+val RIGHT_ASSOC = rewrite_rule [Thms.disj_assoc];
+
+
+
+(*---------------------------------------------------------------------------
+ *                  TERMINATION CONDITION EXTRACTION
+ *---------------------------------------------------------------------------*)
+
+
+(* Object language quantifier, i.e., "!" *)
+fun Forall v M = S.mk_forall{Bvar=v, Body=M};
+
+
+(* Fragile: it's a cong if it is not "R y x ==> cut f R x y = f y" *)
+fun is_cong thm =
+  let val {prop, ...} = rep_thm thm
+  in case prop
+     of (Const("==>",_)$(Const("Trueprop",_)$ _) $
+         (Const("==",_) $ (Const ("Wellfounded_Recursion.cut",_) $ f $ R $ a $ x) $ _)) => false
+      | _ => true
+  end;
+
+
+
+fun dest_equal(Const ("==",_) $
+               (Const ("Trueprop",_) $ lhs)
+               $ (Const ("Trueprop",_) $ rhs)) = {lhs=lhs, rhs=rhs}
+  | dest_equal(Const ("==",_) $ lhs $ rhs)  = {lhs=lhs, rhs=rhs}
+  | dest_equal tm = S.dest_eq tm;
+
+fun get_lhs tm = #lhs(dest_equal (HOLogic.dest_Trueprop tm));
+
+fun dest_all used (Const("all",_) $ (a as Abs _)) = S.dest_abs used a
+  | dest_all _ _ = raise RULES_ERR "dest_all" "not a !!";
+
+val is_all = can (dest_all []);
+
+fun strip_all used fm =
+   if (is_all fm)
+   then let val ({Bvar, Body}, used') = dest_all used fm
+            val (bvs, core, used'') = strip_all used' Body
+        in ((Bvar::bvs), core, used'')
+        end
+   else ([], fm, used);
+
+fun break_all(Const("all",_) $ Abs (_,_,body)) = body
+  | break_all _ = raise RULES_ERR "break_all" "not a !!";
+
+fun list_break_all(Const("all",_) $ Abs (s,ty,body)) =
+     let val (L,core) = list_break_all body
+     in ((s,ty)::L, core)
+     end
+  | list_break_all tm = ([],tm);
+
+(*---------------------------------------------------------------------------
+ * Rename a term of the form
+ *
+ *      !!x1 ...xn. x1=M1 ==> ... ==> xn=Mn
+ *                  ==> ((%v1...vn. Q) x1 ... xn = g x1 ... xn.
+ * to one of
+ *
+ *      !!v1 ... vn. v1=M1 ==> ... ==> vn=Mn
+ *      ==> ((%v1...vn. Q) v1 ... vn = g v1 ... vn.
+ *
+ * This prevents name problems in extraction, and helps the result to read
+ * better. There is a problem with varstructs, since they can introduce more
+ * than n variables, and some extra reasoning needs to be done.
+ *---------------------------------------------------------------------------*)
+
+fun get ([],_,L) = rev L
+  | get (ant::rst,n,L) =
+      case (list_break_all ant)
+        of ([],_) => get (rst, n+1,L)
+         | (vlist,body) =>
+            let val eq = Logic.strip_imp_concl body
+                val (f,args) = S.strip_comb (get_lhs eq)
+                val (vstrl,_) = S.strip_abs f
+                val names  = variantlist (map (#1 o dest_Free) vstrl,
+                                          add_term_names(body, []))
+            in get (rst, n+1, (names,n)::L) end
+            handle TERM _ => get (rst, n+1, L)
+              | U.ERR _ => get (rst, n+1, L);
+
+(* Note: rename_params_rule counts from 1, not 0 *)
+fun rename thm =
+  let val {prop,sign,...} = rep_thm thm
+      val tych = cterm_of sign
+      val ants = Logic.strip_imp_prems prop
+      val news = get (ants,1,[])
+  in
+  U.rev_itlist rename_params_rule news thm
+  end;
+
+
+(*---------------------------------------------------------------------------
+ * Beta-conversion to the rhs of an equation (taken from hol90/drule.sml)
+ *---------------------------------------------------------------------------*)
+
+fun list_beta_conv tm =
+  let fun rbeta th = Thm.transitive th (beta_conversion false (#2(D.dest_eq(cconcl th))))
+      fun iter [] = Thm.reflexive tm
+        | iter (v::rst) = rbeta (combination(iter rst) (Thm.reflexive v))
+  in iter  end;
+
+
+(*---------------------------------------------------------------------------
+ * Trace information for the rewriter
+ *---------------------------------------------------------------------------*)
+val term_ref = ref[] : term list ref
+val mss_ref = ref [] : meta_simpset list ref;
+val thm_ref = ref [] : thm list ref;
+val tracing = ref false;
+
+fun say s = if !tracing then writeln s else ();
+
+fun print_thms s L =
+  say (cat_lines (s :: map string_of_thm L));
+
+fun print_cterms s L =
+  say (cat_lines (s :: map string_of_cterm L));
+
+
+(*---------------------------------------------------------------------------
+ * General abstraction handlers, should probably go in USyntax.
+ *---------------------------------------------------------------------------*)
+fun mk_aabs (vstr, body) =
+  S.mk_abs {Bvar = vstr, Body = body}
+  handle U.ERR _ => S.mk_pabs {varstruct = vstr, body = body};
+
+fun list_mk_aabs (vstrl,tm) =
+    U.itlist (fn vstr => fn tm => mk_aabs(vstr,tm)) vstrl tm;
+
+fun dest_aabs used tm =
+   let val ({Bvar,Body}, used') = S.dest_abs used tm
+   in (Bvar, Body, used') end
+   handle U.ERR _ =>
+     let val {varstruct, body, used} = S.dest_pabs used tm
+     in (varstruct, body, used) end;
+
+fun strip_aabs used tm =
+   let val (vstr, body, used') = dest_aabs used tm
+       val (bvs, core, used'') = strip_aabs used' body
+   in (vstr::bvs, core, used'') end
+   handle U.ERR _ => ([], tm, used);
+
+fun dest_combn tm 0 = (tm,[])
+  | dest_combn tm n =
+     let val {Rator,Rand} = S.dest_comb tm
+         val (f,rands) = dest_combn Rator (n-1)
+     in (f,Rand::rands)
+     end;
+
+
+
+
+local fun dest_pair M = let val {fst,snd} = S.dest_pair M in (fst,snd) end
+      fun mk_fst tm =
+          let val ty as Type("*", [fty,sty]) = type_of tm
+          in  Const ("fst", ty --> fty) $ tm  end
+      fun mk_snd tm =
+          let val ty as Type("*", [fty,sty]) = type_of tm
+          in  Const ("snd", ty --> sty) $ tm  end
+in
+fun XFILL tych x vstruct =
+  let fun traverse p xocc L =
+        if (is_Free p)
+        then tych xocc::L
+        else let val (p1,p2) = dest_pair p
+             in traverse p1 (mk_fst xocc) (traverse p2  (mk_snd xocc) L)
+             end
+  in
+  traverse vstruct x []
+end end;
+
+(*---------------------------------------------------------------------------
+ * Replace a free tuple (vstr) by a universally quantified variable (a).
+ * Note that the notion of "freeness" for a tuple is different than for a
+ * variable: if variables in the tuple also occur in any other place than
+ * an occurrences of the tuple, they aren't "free" (which is thus probably
+ *  the wrong word to use).
+ *---------------------------------------------------------------------------*)
+
+fun VSTRUCT_ELIM tych a vstr th =
+  let val L = S.free_vars_lr vstr
+      val bind1 = tych (HOLogic.mk_Trueprop (HOLogic.mk_eq(a,vstr)))
+      val thm1 = implies_intr bind1 (SUBS [SYM(assume bind1)] th)
+      val thm2 = forall_intr_list (map tych L) thm1
+      val thm3 = forall_elim_list (XFILL tych a vstr) thm2
+  in refl RS
+     rewrite_rule [Thm.symmetric (surjective_pairing RS eq_reflection)] thm3
+  end;
+
+fun PGEN tych a vstr th =
+  let val a1 = tych a
+      val vstr1 = tych vstr
+  in
+  forall_intr a1
+     (if (is_Free vstr)
+      then cterm_instantiate [(vstr1,a1)] th
+      else VSTRUCT_ELIM tych a vstr th)
+  end;
+
+
+(*---------------------------------------------------------------------------
+ * Takes apart a paired beta-redex, looking like "(\(x,y).N) vstr", into
+ *
+ *     (([x,y],N),vstr)
+ *---------------------------------------------------------------------------*)
+fun dest_pbeta_redex used M n =
+  let val (f,args) = dest_combn M n
+      val dummy = dest_aabs used f
+  in (strip_aabs used f,args)
+  end;
+
+fun pbeta_redex M n = can (U.C (dest_pbeta_redex []) n) M;
+
+fun dest_impl tm =
+  let val ants = Logic.strip_imp_prems tm
+      val eq = Logic.strip_imp_concl tm
+  in (ants,get_lhs eq)
+  end;
+
+fun restricted t = is_some (S.find_term
+                            (fn (Const("Wellfounded_Recursion.cut",_)) =>true | _ => false)
+                            t)
+
+fun CONTEXT_REWRITE_RULE (func, G, cut_lemma, congs) th =
+ let val globals = func::G
+     val pbeta_reduce = simpl_conv empty_ss [split RS eq_reflection];
+     val tc_list = ref[]: term list ref
+     val dummy = term_ref := []
+     val dummy = thm_ref  := []
+     val dummy = mss_ref  := []
+     val cut_lemma' = cut_lemma RS eq_reflection
+     fun prover used mss thm =
+     let fun cong_prover mss thm =
+         let val dummy = say "cong_prover:"
+             val cntxt = prems_of_mss mss
+             val dummy = print_thms "cntxt:" cntxt
+             val dummy = say "cong rule:"
+             val dummy = say (string_of_thm thm)
+             val dummy = thm_ref := (thm :: !thm_ref)
+             val dummy = mss_ref := (mss :: !mss_ref)
+             (* Unquantified eliminate *)
+             fun uq_eliminate (thm,imp,sign) =
+                 let val tych = cterm_of sign
+                     val dummy = print_cterms "To eliminate:" [tych imp]
+                     val ants = map tych (Logic.strip_imp_prems imp)
+                     val eq = Logic.strip_imp_concl imp
+                     val lhs = tych(get_lhs eq)
+                     val mss' = add_prems(mss, map ASSUME ants)
+                     val lhs_eq_lhs1 = MetaSimplifier.rewrite_cterm (false,true,false) (prover used) mss' lhs
+                       handle U.ERR _ => Thm.reflexive lhs
+                     val dummy = print_thms "proven:" [lhs_eq_lhs1]
+                     val lhs_eq_lhs2 = implies_intr_list ants lhs_eq_lhs1
+                     val lhs_eeq_lhs2 = lhs_eq_lhs2 RS meta_eq_to_obj_eq
+                  in
+                  lhs_eeq_lhs2 COMP thm
+                  end
+             fun pq_eliminate (thm,sign,vlist,imp_body,lhs_eq) =
+              let val ((vstrl, _, used'), args) = dest_pbeta_redex used lhs_eq (length vlist)
+                  val dummy = assert (forall (op aconv)
+                                      (ListPair.zip (vlist, args)))
+                               "assertion failed in CONTEXT_REWRITE_RULE"
+                  val imp_body1 = subst_free (ListPair.zip (args, vstrl))
+                                             imp_body
+                  val tych = cterm_of sign
+                  val ants1 = map tych (Logic.strip_imp_prems imp_body1)
+                  val eq1 = Logic.strip_imp_concl imp_body1
+                  val Q = get_lhs eq1
+                  val QeqQ1 = pbeta_reduce (tych Q)
+                  val Q1 = #2(D.dest_eq(cconcl QeqQ1))
+                  val mss' = add_prems(mss, map ASSUME ants1)
+                  val Q1eeqQ2 = MetaSimplifier.rewrite_cterm (false,true,false) (prover used') mss' Q1
+                                handle U.ERR _ => Thm.reflexive Q1
+                  val Q2 = #2 (Logic.dest_equals (#prop(rep_thm Q1eeqQ2)))
+                  val Q3 = tych(list_comb(list_mk_aabs(vstrl,Q2),vstrl))
+                  val Q2eeqQ3 = Thm.symmetric(pbeta_reduce Q3 RS eq_reflection)
+                  val thA = Thm.transitive(QeqQ1 RS eq_reflection) Q1eeqQ2
+                  val QeeqQ3 = Thm.transitive thA Q2eeqQ3 handle THM _ =>
+                               ((Q2eeqQ3 RS meta_eq_to_obj_eq)
+                                RS ((thA RS meta_eq_to_obj_eq) RS trans))
+                                RS eq_reflection
+                  val impth = implies_intr_list ants1 QeeqQ3
+                  val impth1 = impth RS meta_eq_to_obj_eq
+                  (* Need to abstract *)
+                  val ant_th = U.itlist2 (PGEN tych) args vstrl impth1
+              in ant_th COMP thm
+              end
+             fun q_eliminate (thm,imp,sign) =
+              let val (vlist, imp_body, used') = strip_all used imp
+                  val (ants,Q) = dest_impl imp_body
+              in if (pbeta_redex Q) (length vlist)
+                 then pq_eliminate (thm,sign,vlist,imp_body,Q)
+                 else
+                 let val tych = cterm_of sign
+                     val ants1 = map tych ants
+                     val mss' = add_prems(mss, map ASSUME ants1)
+                     val Q_eeq_Q1 = MetaSimplifier.rewrite_cterm
+                        (false,true,false) (prover used') mss' (tych Q)
+                      handle U.ERR _ => Thm.reflexive (tych Q)
+                     val lhs_eeq_lhs2 = implies_intr_list ants1 Q_eeq_Q1
+                     val lhs_eq_lhs2 = lhs_eeq_lhs2 RS meta_eq_to_obj_eq
+                     val ant_th = forall_intr_list(map tych vlist)lhs_eq_lhs2
+                 in
+                 ant_th COMP thm
+              end end
+
+             fun eliminate thm =
+               case (rep_thm thm)
+               of {prop = (Const("==>",_) $ imp $ _), sign, ...} =>
+                   eliminate
+                    (if not(is_all imp)
+                     then uq_eliminate (thm,imp,sign)
+                     else q_eliminate (thm,imp,sign))
+                            (* Assume that the leading constant is ==,   *)
+                | _ => thm  (* if it is not a ==>                        *)
+         in Some(eliminate (rename thm)) end
+         handle U.ERR _ => None    (* FIXME handle THM as well?? *)
+
+        fun restrict_prover mss thm =
+          let val dummy = say "restrict_prover:"
+              val cntxt = rev(prems_of_mss mss)
+              val dummy = print_thms "cntxt:" cntxt
+              val {prop = Const("==>",_) $ (Const("Trueprop",_) $ A) $ _,
+                   sign,...} = rep_thm thm
+              fun genl tm = let val vlist = gen_rems (op aconv)
+                                           (add_term_frees(tm,[]), globals)
+                            in U.itlist Forall vlist tm
+                            end
+              (*--------------------------------------------------------------
+               * This actually isn't quite right, since it will think that
+               * not-fully applied occs. of "f" in the context mean that the
+               * current call is nested. The real solution is to pass in a
+               * term "f v1..vn" which is a pattern that any full application
+               * of "f" will match.
+               *-------------------------------------------------------------*)
+              val func_name = #1(dest_Const func)
+              fun is_func (Const (name,_)) = (name = func_name)
+                | is_func _                = false
+              val rcontext = rev cntxt
+              val cncl = HOLogic.dest_Trueprop o #prop o rep_thm
+              val antl = case rcontext of [] => []
+                         | _   => [S.list_mk_conj(map cncl rcontext)]
+              val TC = genl(S.list_mk_imp(antl, A))
+              val dummy = print_cterms "func:" [cterm_of sign func]
+              val dummy = print_cterms "TC:"
+                              [cterm_of sign (HOLogic.mk_Trueprop TC)]
+              val dummy = tc_list := (TC :: !tc_list)
+              val nestedp = is_some (S.find_term is_func TC)
+              val dummy = if nestedp then say "nested" else say "not_nested"
+              val dummy = term_ref := ([func,TC]@(!term_ref))
+              val th' = if nestedp then raise RULES_ERR "solver" "nested function"
+                        else let val cTC = cterm_of sign
+                                              (HOLogic.mk_Trueprop TC)
+                             in case rcontext of
+                                [] => SPEC_ALL(ASSUME cTC)
+                               | _ => MP (SPEC_ALL (ASSUME cTC))
+                                         (LIST_CONJ rcontext)
+                             end
+              val th'' = th' RS thm
+          in Some (th'')
+          end handle U.ERR _ => None    (* FIXME handle THM as well?? *)
+    in
+    (if (is_cong thm) then cong_prover else restrict_prover) mss thm
+    end
+    val ctm = cprop_of th
+    val names = add_term_names (term_of ctm, [])
+    val th1 = MetaSimplifier.rewrite_cterm(false,true,false)
+      (prover names) (add_congs(mss_of [cut_lemma'], congs)) ctm
+    val th2 = equal_elim th1 th
+ in
+ (th2, filter (not o restricted) (!tc_list))
+ end;
+
+
+fun prove (ptm, tac) =
+  let val result =
+    Library.transform_error (fn () =>
+      Goals.prove_goalw_cterm [] ptm (fn _ => [tac])) ()
+    handle ERROR_MESSAGE msg => (warning msg; raise RULES_ERR "prove" msg)
+  in #1 (freeze_thaw result) end;
+
+
+end;