--- a/src/ZF/AC/AC_Equiv.ML Mon Sep 29 11:47:01 1997 +0200
+++ b/src/ZF/AC/AC_Equiv.ML Mon Sep 29 11:48:48 1997 +0200
@@ -29,7 +29,7 @@
by (eres_inst_tac [("n","n")] natE 1);
by (asm_simp_tac (!simpset addsimps [inj_def, succI1 RS Pi_empty2]) 1);
by (fast_tac (!claset addSIs [le_imp_subset RS id_subset_inj]) 1);
-val nat_le_imp_lepoll_lemma = result();
+qed "nat_le_imp_lepoll_lemma";
(* used in : AC10-AC15.ML WO1-WO6.ML WO6WO1.ML*)
val nat_le_imp_lepoll = nat_le_imp_lepoll_lemma RS bspec RS mp |> standard;
@@ -40,14 +40,14 @@
goal thy "!!X. (A->X)=0 ==> X=0";
by (fast_tac (!claset addSIs [equals0I] addEs [lam_type RSN (2, equals0D)]) 1);
-val fun_space_emptyD = result();
+qed "fun_space_emptyD";
(* used only in WO1_DC.ML *)
(*Note simpler proof*)
goal ZF.thy "!!A f g. [| ALL x:A. f`x=g`x; f:Df->Cf; g:Dg->Cg; \
\ A<=Df; A<=Dg |] ==> f``A=g``A";
by (asm_simp_tac (!simpset addsimps [image_fun]) 1);
-val images_eq = result();
+qed "images_eq";
(* used in : AC10-AC15.ML AC16WO4.ML WO6WO1.ML *)
(*I don't know where to put this one.*)
@@ -60,7 +60,7 @@
(Diff_sing_lepoll RSN (2, subset_imp_lepoll RS lepoll_trans)) 1
THEN (REPEAT (assume_tac 2)));
by (Fast_tac 1);
-val Diff_lepoll = result();
+qed "Diff_lepoll";
(* ********************************************************************** *)
(* lemmas concerning lepoll and eqpoll relations *)
@@ -73,13 +73,13 @@
(* lemma for ordertype_Int *)
goalw Cardinal.thy [rvimage_def] "rvimage(A,id(A),r) = r Int A*A";
by (rtac equalityI 1);
-by (Step_tac 1);
+by Safe_tac;
by (dres_inst_tac [("P","%a. <id(A)`xb,a>:r")] (id_conv RS subst) 1
THEN (assume_tac 1));
by (dres_inst_tac [("P","%a. <a,ya>:r")] (id_conv RS subst) 1
THEN (REPEAT (assume_tac 1)));
by (fast_tac (!claset addIs [id_conv RS ssubst]) 1);
-val rvimage_id = result();
+qed "rvimage_id";
(* used only in Hartog.ML *)
goal Cardinal.thy
@@ -87,49 +87,49 @@
by (res_inst_tac [("P","%a. ordertype(A,a)=ordertype(A,r)")]
(rvimage_id RS subst) 1);
by (eresolve_tac [id_bij RS bij_ordertype_vimage] 1);
-val ordertype_Int = result();
+qed "ordertype_Int";
(* used only in AC16_lemmas.ML *)
goalw CardinalArith.thy [InfCard_def]
"!!i. [| ~Finite(i); Card(i) |] ==> InfCard(i)";
by (asm_simp_tac (!simpset addsimps [Card_is_Ord RS nat_le_infinite_Ord]) 1);
-val Inf_Card_is_InfCard = result();
+qed "Inf_Card_is_InfCard";
goal thy "(THE z. {x}={z}) = x";
by (fast_tac (!claset addSIs [the_equality]
addSEs [singleton_eq_iff RS iffD1 RS sym]) 1);
-val the_element = result();
+qed "the_element";
goal thy "(lam x:A. {x}) : bij(A, {{x}. x:A})";
by (res_inst_tac [("d","%z. THE x. z={x}")] lam_bijective 1);
by (TRYALL (eresolve_tac [RepFunI, RepFunE]));
by (REPEAT (asm_full_simp_tac (!simpset addsimps [the_element]) 1));
-val lam_sing_bij = result();
+qed "lam_sing_bij";
val [major,minor] = goal thy
"[| f : Pi(A,B); (!!x. x:A ==> B(x)<=C(x)) |] ==> f : Pi(A,C)";
by (fast_tac (!claset addSIs [major RS Pi_type, minor RS subsetD,
major RS apply_type]) 1);
-val Pi_weaken_type = result();
+qed "Pi_weaken_type";
val [major, minor] = goalw thy [inj_def]
"[| f:inj(A, B); (!!a. a:A ==> f`a : C) |] ==> f:inj(A,C)";
by (fast_tac (!claset addSEs [minor]
addSIs [major RS CollectD1 RS Pi_type, major RS CollectD2]) 1);
-val inj_strengthen_type = result();
+qed "inj_strengthen_type";
goal thy "A*B=0 <-> A=0 | B=0";
by (fast_tac (!claset addSIs [equals0I] addEs [equals0D]) 1);
-val Sigma_empty_iff = result();
+qed "Sigma_empty_iff";
goalw thy [Finite_def] "!!n. n:nat ==> Finite(n)";
by (fast_tac (!claset addSIs [eqpoll_refl]) 1);
-val nat_into_Finite = result();
+qed "nat_into_Finite";
goalw thy [Finite_def] "~Finite(nat)";
by (fast_tac (!claset addSDs [eqpoll_imp_lepoll]
addIs [Ord_nat RSN (2, ltI) RS lt_not_lepoll RS notE]) 1);
-val nat_not_Finite = result();
+qed "nat_not_Finite";
val le_imp_lepoll = le_imp_subset RS subset_imp_lepoll;
@@ -142,7 +142,7 @@
by (res_inst_tac [("b","xa")] (sym RSN (2, trans)) 1);
by (Fast_tac 1);
by (Fast_tac 1);
-val ex1_two_eq = result();
+qed "ex1_two_eq";
(* ********************************************************************** *)
(* image of a surjection *)
@@ -153,14 +153,14 @@
by (resolve_tac [subset_refl RSN (2, image_fun) RS ssubst] 1
THEN (assume_tac 1));
by (fast_tac (!claset addSEs [apply_type] addIs [equalityI]) 1);
-val surj_image_eq = result();
+qed "surj_image_eq";
goal thy "!!y. succ(x) lepoll y ==> y ~= 0";
by (fast_tac (!claset addSDs [lepoll_0_is_0]) 1);
-val succ_lepoll_imp_not_empty = result();
+qed "succ_lepoll_imp_not_empty";
goal thy "!!x. x eqpoll succ(n) ==> x ~= 0";
by (fast_tac (!claset addSEs [eqpoll_sym RS eqpoll_0_is_0 RS succ_neq_0]) 1);
-val eqpoll_succ_imp_not_empty = result();
+qed "eqpoll_succ_imp_not_empty";