--- a/src/HOL/MicroJava/BV/StepMono.thy Wed Sep 20 21:20:41 2000 +0200
+++ b/src/HOL/MicroJava/BV/StepMono.thy Thu Sep 21 10:42:49 2000 +0200
@@ -14,7 +14,7 @@
lemma sup_loc_some [rule_format]:
-"\<forall> y n. (G \<turnstile> b <=l y) \<longrightarrow> n < length y \<longrightarrow> y!n = Ok t \<longrightarrow>
+"\<forall> y n. (G \<turnstile> b <=l y) --> n < length y --> y!n = Ok t -->
(\<exists>t. b!n = Ok t \<and> (G \<turnstile> (b!n) <=o (y!n)))" (is "?P b")
proof (induct (open) ?P b)
show "?P []" by simp
@@ -41,9 +41,9 @@
lemma all_widen_is_sup_loc:
-"\<forall>b. length a = length b \<longrightarrow>
+"\<forall>b. length a = length b -->
(\<forall>x\<in>set (zip a b). x \<in> widen G) = (G \<turnstile> (map Ok a) <=l (map Ok b))"
- (is "\<forall>b. length a = length b \<longrightarrow> ?Q a b" is "?P a")
+ (is "\<forall>b. length a = length b --> ?Q a b" is "?P a")
proof (induct "a")
show "?P []" by simp
@@ -60,7 +60,7 @@
lemma append_length_n [rule_format]:
-"\<forall>n. n \<le> length x \<longrightarrow> (\<exists>a b. x = a@b \<and> length a = n)" (is "?P x")
+"\<forall>n. n \<le> length x --> (\<exists>a b. x = a@b \<and> length a = n)" (is "?P x")
proof (induct (open) ?P x)
show "?P []" by simp
@@ -94,7 +94,7 @@
lemma rev_append_cons:
-"\<lbrakk>n < length x\<rbrakk> \<Longrightarrow> \<exists>a b c. x = (rev a) @ b # c \<and> length a = n"
+"[|n < length x|] ==> \<exists>a b c. x = (rev a) @ b # c \<and> length a = n"
proof -
assume n: "n < length x"
hence "n \<le> length x" by simp
@@ -118,7 +118,7 @@
lemma app_mono:
-"\<lbrakk>G \<turnstile> s <=' s'; app i G rT s'\<rbrakk> \<Longrightarrow> app i G rT s";
+"[|G \<turnstile> s <=' s'; app i G rT s'|] ==> app i G rT s";
proof -
{ fix s1 s2