src/HOL/HOLCF/Domain_Aux.thy
changeset 41182 717404c7d59a
parent 40774 0437dbc127b3
child 41430 1aa23e9f2c87
--- a/src/HOL/HOLCF/Domain_Aux.thy	Wed Dec 15 20:52:20 2010 +0100
+++ b/src/HOL/HOLCF/Domain_Aux.thy	Wed Dec 15 19:15:06 2010 -0800
@@ -86,10 +86,10 @@
 
 lemma compact_abs_rev: "compact (abs\<cdot>x) \<Longrightarrow> compact x"
 proof (unfold compact_def)
-  assume "adm (\<lambda>y. \<not> abs\<cdot>x \<sqsubseteq> y)"
+  assume "adm (\<lambda>y. abs\<cdot>x \<notsqsubseteq> y)"
   with cont_Rep_cfun2
-  have "adm (\<lambda>y. \<not> abs\<cdot>x \<sqsubseteq> abs\<cdot>y)" by (rule adm_subst)
-  then show "adm (\<lambda>y. \<not> x \<sqsubseteq> y)" using abs_below by simp
+  have "adm (\<lambda>y. abs\<cdot>x \<notsqsubseteq> abs\<cdot>y)" by (rule adm_subst)
+  then show "adm (\<lambda>y. x \<notsqsubseteq> y)" using abs_below by simp
 qed
 
 lemma compact_rep_rev: "compact (rep\<cdot>x) \<Longrightarrow> compact x"