--- a/src/HOL/Algebra/IntRing.thy Fri Jan 12 09:58:31 2007 +0100
+++ b/src/HOL/Algebra/IntRing.thy Fri Jan 12 15:37:21 2007 +0100
@@ -96,54 +96,60 @@
interpretation "domain" ["\<Z>"] by (rule int_is_domain)
lemma int_le_total_order:
- "total_order (UNIV::int set) (op \<le>)"
-apply (rule partial_order.total_orderI)
- apply (rule partial_order.intro, simp+)
-apply clarsimp
-done
+ "total_order (| carrier = UNIV::int set, le = op \<le> |)"
+ apply (rule partial_order.total_orderI)
+ apply (rule partial_order.intro, simp+)
+ apply clarsimp
+ done
lemma less_int:
- "order_syntax.less (op \<le>::[int, int] => bool) = (op <)"
- by (auto simp add: expand_fun_eq order_syntax.less_def)
+ "lless (| carrier = UNIV::int set, le = op \<le> |) = (op <)"
+ by (auto simp add: expand_fun_eq lless_def)
lemma join_int:
- "order_syntax.join (UNIV::int set) (op \<le>) = max"
+ "join (| carrier = UNIV::int set, le = op \<le> |) = max"
apply (simp add: expand_fun_eq max_def)
apply (rule+)
apply (rule lattice.joinI)
apply (simp add: int_le_total_order total_order.axioms)
- apply (simp add: order_syntax.least_def order_syntax.Upper_def)
+ apply (simp add: least_def Upper_def)
apply arith
apply simp apply simp
apply (rule lattice.joinI)
apply (simp add: int_le_total_order total_order.axioms)
- apply (simp add: order_syntax.least_def order_syntax.Upper_def)
+ apply (simp add: least_def Upper_def)
apply arith
apply simp apply simp
done
lemma meet_int:
- "order_syntax.meet (UNIV::int set) (op \<le>) = min"
+ "meet (| carrier = UNIV::int set, le = op \<le> |) = min"
apply (simp add: expand_fun_eq min_def)
apply (rule+)
apply (rule lattice.meetI)
apply (simp add: int_le_total_order total_order.axioms)
- apply (simp add: order_syntax.greatest_def order_syntax.Lower_def)
+ apply (simp add: greatest_def Lower_def)
apply arith
apply simp apply simp
apply (rule lattice.meetI)
apply (simp add: int_le_total_order total_order.axioms)
- apply (simp add: order_syntax.greatest_def order_syntax.Lower_def)
+ apply (simp add: greatest_def Lower_def)
apply arith
apply simp apply simp
done
-text {* Interpretation unfolding @{text less}, @{text join} and @{text
+lemma carrier_int:
+ "carrier (| carrier = UNIV::int set, le = op \<le> |) = UNIV"
+ apply simp
+ done
+
+text {* Interpretation unfolding @{text lless}, @{text join} and @{text
meet} since they have natural representations in @{typ int}. *}
interpretation
- int [unfolded less_int join_int meet_int]:
- total_order ["UNIV::int set" "op \<le>"] by (rule int_le_total_order)
+ int [unfolded less_int join_int meet_int carrier_int]:
+ total_order ["(| carrier = UNIV::int set, le = op \<le> |)"]
+ by (rule int_le_total_order)
subsubsection {* Generated Ideals of @{text "\<Z>"} *}