src/HOL/Corec_Examples/Tests/Small_Concrete.thy
changeset 62696 7325d8573fb8
child 62726 5b2a7caa855b
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Corec_Examples/Tests/Small_Concrete.thy	Tue Mar 22 12:39:37 2016 +0100
@@ -0,0 +1,174 @@
+(*  Title:      HOL/Corec_Examples/Tests/Small_Concrete.thy
+    Author:     Aymeric Bouzy, Ecole polytechnique
+    Author:     Jasmin Blanchette, Inria, LORIA, MPII
+    Copyright   2015, 2016
+
+Small concrete examples.
+*)
+
+section {* Small Concrete Examples *}
+
+theory Small_Concrete
+imports "~~/src/HOL/Library/BNF_Corec"
+begin
+
+subsection {* Streams of Natural Numbers *}
+
+codatatype natstream = S (head: nat) (tail: natstream)
+
+corec (friend) incr_all where
+  "incr_all s = S (head s + 1) (incr_all (tail s))"
+
+corec all_numbers where
+  "all_numbers = S 0 (incr_all all_numbers)"
+
+corec all_numbers_efficient where
+  "all_numbers_efficient n = S n (all_numbers_efficient (n + 1))"
+
+corec remove_multiples where
+  "remove_multiples n s =
+    (if (head s) mod n = 0 then
+      S (head (tail s)) (remove_multiples n (tail (tail s)))
+    else
+      S (head s) (remove_multiples n (tail s)))"
+
+corec prime_numbers where
+  "prime_numbers known_primes =
+    (let next_prime = head (fold (%n s. remove_multiples n s) known_primes (tail (tail all_numbers))) in
+      S next_prime (prime_numbers (next_prime # known_primes)))"
+
+term "prime_numbers []"
+
+corec prime_numbers_more_efficient where
+  "prime_numbers_more_efficient n remaining_numbers =
+    (let remaining_numbers = remove_multiples n remaining_numbers in
+      S (head remaining_numbers) (prime_numbers_more_efficient (head remaining_numbers) remaining_numbers))"
+
+term "prime_numbers_more_efficient 0 (tail (tail all_numbers))"
+
+corec (friend) alternate where
+  "alternate s1 s2 = S (head s1) (S (head s2) (alternate (tail s1) (tail s2)))"
+
+corec (friend) all_sums where
+  "all_sums s1 s2 = S (head s1 + head s2) (alternate (all_sums s1 (tail s2)) (all_sums (tail s1) s2))"
+
+corec app_list where
+  "app_list s l = (case l of
+    [] \<Rightarrow> s
+  | a # r \<Rightarrow> S a (app_list s r))"
+
+friend_of_corec app_list where
+  "app_list s l = (case l of
+    [] \<Rightarrow> (case s of S a b \<Rightarrow> S a b)
+  | a # r \<Rightarrow> S a (app_list s r))"
+  sorry
+
+corec expand_with where
+  "expand_with f s = (let l = f (head s) in S (hd l) (app_list (expand_with f (tail s)) (tl l)))"
+
+friend_of_corec expand_with where
+  "expand_with f s = (let l = f (head s) in S (hd l) (app_list (expand_with f (tail s)) (tl l)))"
+  sorry
+
+corec iterations where
+  "iterations f a = S a (iterations f (f a))"
+
+corec exponential_iterations where
+  "exponential_iterations f a = S (f a) (exponential_iterations (f o f) a)"
+
+corec (friend) alternate_list where
+  "alternate_list l = (let heads = (map head l) in S (hd heads) (app_list (alternate_list (map tail l)) (tl heads)))"
+
+corec switch_one_two0 where
+  "switch_one_two0 f a s = (case s of
+    S b r \<Rightarrow> S b (S a (f r)))"
+
+corec switch_one_two where
+  "switch_one_two s = (case s of
+    S a (S b r) \<Rightarrow> S b (S a (switch_one_two r)))"
+
+corec fibonacci where
+  "fibonacci n m = S m (fibonacci (n + m) n)"
+
+corec sequence2 where
+  "sequence2 f u1 u0 = S u0 (sequence2 f (f u1 u0) u1)"
+
+corec (friend) alternate_with_function where
+  "alternate_with_function f s =
+    (let f_head_s = f (head s) in S (head f_head_s) (alternate (tail f_head_s) (alternate_with_function f (tail s))))"
+
+corec h where
+  "h l s = (case l of
+    [] \<Rightarrow> s
+  | (S a s') # r \<Rightarrow> S a (alternate s (h r s')))"
+
+friend_of_corec h where
+  "h l s = (case l of
+    [] \<Rightarrow> (case s of S a b \<Rightarrow> S a b)
+  | (S a s') # r \<Rightarrow> S a (alternate s (h r s')))"
+  sorry
+
+corec z where
+  "z = S 0 (S 0 z)"
+
+lemma "\<And>x. x = S 0 (S 0 x) \<Longrightarrow> x = z"
+  apply corec_unique
+  apply (rule z.code)
+  done
+
+corec enum where
+  "enum m = S m (enum (m + 1))"
+
+lemma "(\<And>m. f m = S m (f (m + 1))) \<Longrightarrow> f m = enum m"
+  apply corec_unique
+  apply (rule enum.code)
+  done
+
+lemma "(\<forall>m. f m = S m (f (m + 1))) \<Longrightarrow> f m = enum m"
+  apply corec_unique
+  apply (rule enum.code)
+  done
+
+
+subsection {* Lazy Lists of Natural Numbers *}
+
+codatatype llist = LNil | LCons nat llist
+
+corec h1 where
+  "h1 x = (if x = 1 then
+    LNil
+  else
+    let x = if x mod 2 = 0 then x div 2 else 3 * x + 1 in
+    LCons x (h1 x))"
+
+corec h3 where
+  "h3 s = (case s of
+    LNil \<Rightarrow> LNil
+  | LCons x r \<Rightarrow> LCons x (h3 r))"
+
+corec (friend) fold_map where
+  "fold_map f a s = (let v = f a (head s) in S v (fold_map f v (tail s)))"
+
+
+subsection {* Coinductie Natural Numbers *}
+
+codatatype conat = CoZero | CoSuc conat
+
+corec sum where
+  "sum x y = (case x of
+      CoZero \<Rightarrow> y
+    | CoSuc x \<Rightarrow> CoSuc (sum x y))"
+
+friend_of_corec sum where
+  "sum x y = (case x of
+      CoZero \<Rightarrow> (case y of CoZero \<Rightarrow> CoZero | CoSuc y \<Rightarrow> CoSuc y)
+    | CoSuc x \<Rightarrow> CoSuc (sum x y))"
+  sorry
+
+corec (friend) prod where
+  "prod x y = (case (x, y) of
+      (CoZero, _) \<Rightarrow> CoZero
+    | (_, CoZero) \<Rightarrow> CoZero
+    | (CoSuc x, CoSuc y) \<Rightarrow> CoSuc (sum (prod x y) (sum x y)))"
+
+end