src/HOL/Probability/Levy.thy
changeset 62083 7582b39f51ed
child 62397 5ae24f33d343
--- /dev/null	Thu Jan 01 00:00:00 1970 +0000
+++ b/src/HOL/Probability/Levy.thy	Wed Jan 06 12:18:53 2016 +0100
@@ -0,0 +1,539 @@
+(*  Theory: Levy.thy
+    Author: Jeremy Avigad
+*)
+
+section \<open>The Levy inversion theorem, and the Levy continuity theorem.\<close>
+
+theory Levy
+  imports Characteristic_Functions Helly_Selection Sinc_Integral
+begin
+
+lemma LIM_zero_cancel:
+  fixes f :: "_ \<Rightarrow> 'b::real_normed_vector"
+  shows "((\<lambda>x. f x - l) \<longlongrightarrow> 0) F \<Longrightarrow> (f \<longlongrightarrow> l) F"
+unfolding tendsto_iff dist_norm by simp
+
+subsection \<open>The Levy inversion theorem\<close>
+
+(* Actually, this is not needed for us -- but it is useful for other purposes. (See Billingsley.) *)
+lemma Levy_Inversion_aux1:
+  fixes a b :: real
+  assumes "a \<le> b"
+  shows "((\<lambda>t. (iexp (-(t * a)) - iexp (-(t * b))) / (ii * t)) \<longlongrightarrow> b - a) (at 0)"
+    (is "(?F \<longlongrightarrow> _) (at _)")
+proof -
+  have 1: "cmod (?F t - (b - a)) \<le> a^2 / 2 * abs t + b^2 / 2 * abs t" if "t \<noteq> 0" for t
+  proof -
+    have "cmod (?F t - (b - a)) = cmod (
+        (iexp (-(t * a)) - (1 + ii * -(t * a))) / (ii * t) - 
+        (iexp (-(t * b)) - (1 + ii * -(t * b))) / (ii * t))"  
+           (is "_ = cmod (?one / (ii * t) - ?two / (ii * t))")
+      using `t \<noteq> 0` by (intro arg_cong[where f=norm]) (simp add: field_simps)
+    also have "\<dots> \<le> cmod (?one / (ii * t)) + cmod (?two / (ii * t))" 
+      by (rule norm_triangle_ineq4)
+    also have "cmod (?one / (ii * t)) = cmod ?one / abs t"
+      by (simp add: norm_divide norm_mult)
+    also have "cmod (?two / (ii * t)) = cmod ?two / abs t"
+      by (simp add: norm_divide norm_mult)      
+    also have "cmod ?one / abs t + cmod ?two / abs t \<le> 
+        ((- (a * t))^2 / 2) / abs t + ((- (b * t))^2 / 2) / abs t"
+      apply (rule add_mono)
+      apply (rule divide_right_mono)
+      using iexp_approx1 [of "-(t * a)" 1] apply (simp add: field_simps eval_nat_numeral)
+      apply force
+      apply (rule divide_right_mono)
+      using iexp_approx1 [of "-(t * b)" 1] apply (simp add: field_simps eval_nat_numeral)
+      by force
+    also have "\<dots> = a^2 / 2 * abs t + b^2 / 2 * abs t"
+      using `t \<noteq> 0` apply (case_tac "t \<ge> 0", simp add: field_simps power2_eq_square)
+      using `t \<noteq> 0` by (subst (1 2) abs_of_neg, auto simp add: field_simps power2_eq_square)
+    finally show "cmod (?F t - (b - a)) \<le> a^2 / 2 * abs t + b^2 / 2 * abs t" .
+  qed
+  show ?thesis
+    apply (rule LIM_zero_cancel)
+    apply (rule tendsto_norm_zero_cancel)
+    apply (rule real_LIM_sandwich_zero [OF _ _ 1])
+    apply (auto intro!: tendsto_eq_intros)
+    done
+qed
+
+lemma Levy_Inversion_aux2:
+  fixes a b t :: real
+  assumes "a \<le> b" and "t \<noteq> 0"
+  shows "cmod ((iexp (t * b) - iexp (t * a)) / (ii * t)) \<le> b - a" (is "?F \<le> _")
+proof -
+  have "?F = cmod (iexp (t * a) * (iexp (t * (b - a)) - 1) / (ii * t))"
+    using `t \<noteq> 0` by (intro arg_cong[where f=norm]) (simp add: field_simps exp_diff exp_minus)
+  also have "\<dots> = cmod (iexp (t * (b - a)) - 1) / abs t"
+    unfolding norm_divide norm_mult norm_exp_ii_times using `t \<noteq> 0`
+    by (simp add: complex_eq_iff norm_mult)
+  also have "\<dots> \<le> abs (t * (b - a)) / abs t"
+    using iexp_approx1 [of "t * (b - a)" 0]
+    by (intro divide_right_mono) (auto simp add: field_simps eval_nat_numeral)
+  also have "\<dots> = b - a"
+    using assms by (auto simp add: abs_mult) 
+  finally show ?thesis .
+qed
+
+(* TODO: refactor! *)
+theorem (in real_distribution) Levy_Inversion:
+  fixes a b :: real
+  assumes "a \<le> b"
+  defines "\<mu> \<equiv> measure M" and "\<phi> \<equiv> char M"
+  assumes "\<mu> {a} = 0" and "\<mu> {b} = 0"
+  shows "(\<lambda>T. 1 / (2 * pi) * (CLBINT t=-T..T. (iexp (-(t * a)) - iexp (-(t * b))) / (ii * t) * \<phi> t))
+    \<longlonglongrightarrow> \<mu> {a<..b}"
+    (is "(\<lambda>T. 1 / (2 * pi) * (CLBINT t=-T..T. ?F t * \<phi> t)) \<longlonglongrightarrow> of_real (\<mu> {a<..b})")
+proof -
+  interpret P: pair_sigma_finite lborel M ..
+  from bounded_Si obtain B where Bprop: "\<And>T. abs (Si T) \<le> B" by auto
+  from Bprop [of 0] have [simp]: "B \<ge> 0" by auto
+  let ?f = "\<lambda>t x :: real. (iexp (t * (x - a)) - iexp(t * (x - b))) / (ii * t)"
+  { fix T :: real
+    assume "T \<ge> 0"
+    let ?f' = "\<lambda>(t, x). indicator {-T<..<T} t *\<^sub>R ?f t x"
+    { fix x
+      have 1: "complex_interval_lebesgue_integrable lborel u v (\<lambda>t. ?f t x)" for u v :: real
+        using Levy_Inversion_aux2[of "x - b" "x - a"]
+        apply (simp add: interval_lebesgue_integrable_def del: times_divide_eq_left)
+        apply (intro integrableI_bounded_set_indicator[where B="b - a"] conjI impI)
+        apply (auto intro!: AE_I [of _ _ "{0}"] simp: assms)
+        done
+      have "(CLBINT t. ?f' (t, x)) = (CLBINT t=-T..T. ?f t x)"
+        using `T \<ge> 0` by (simp add: interval_lebesgue_integral_def)
+      also have "\<dots> = (CLBINT t=-T..(0 :: real). ?f t x) + (CLBINT t=(0 :: real)..T. ?f t x)"
+          (is "_ = _ + ?t")
+        using 1 by (intro interval_integral_sum[symmetric]) (simp add: min_absorb1 max_absorb2 \<open>T \<ge> 0\<close>)
+      also have "(CLBINT t=-T..(0 :: real). ?f t x) = (CLBINT t=(0::real)..T. ?f (-t) x)"
+        by (subst interval_integral_reflect) auto
+      also have "\<dots> + ?t = (CLBINT t=(0::real)..T. ?f (-t) x + ?f t x)"
+        using 1
+        by (intro interval_lebesgue_integral_add(2) [symmetric] interval_integrable_mirror[THEN iffD2]) simp_all
+      also have "\<dots> = (CLBINT t=(0::real)..T. ((iexp(t * (x - a)) - iexp (-(t * (x - a)))) -  
+          (iexp(t * (x - b)) - iexp (-(t * (x - b))))) / (ii * t))"
+        using `T \<ge> 0` by (intro interval_integral_cong) (auto simp add: divide_simps)
+      also have "\<dots> = (CLBINT t=(0::real)..T. complex_of_real(
+          2 * (sin (t * (x - a)) / t) - 2 * (sin (t * (x - b)) / t)))"
+        using `T \<ge> 0`
+        apply (intro interval_integral_cong)
+        apply (simp add: field_simps cis.ctr Im_divide Re_divide Im_exp Re_exp complex_eq_iff)
+        unfolding minus_diff_eq[symmetric, of "y * x" "y * a" for y a] sin_minus cos_minus
+        apply (simp add: field_simps power2_eq_square)
+        done
+      also have "\<dots> = complex_of_real (LBINT t=(0::real)..T. 
+          2 * (sin (t * (x - a)) / t) - 2 * (sin (t * (x - b)) / t))"
+        by (rule interval_lebesgue_integral_of_real)
+      also have "\<dots> = complex_of_real (2 * (sgn (x - a) * Si (T * abs (x - a)) -
+          sgn (x - b) * Si (T * abs (x - b))))"
+        apply (subst interval_lebesgue_integral_diff)
+        apply (rule interval_lebesgue_integrable_mult_right, rule integrable_sinc')+
+        apply (subst interval_lebesgue_integral_mult_right)+
+        apply (simp add: zero_ereal_def[symmetric] LBINT_I0c_sin_scale_divide[OF `T \<ge> 0`])
+        done
+      finally have "(CLBINT t. ?f' (t, x)) =
+          2 * (sgn (x - a) * Si (T * abs (x - a)) - sgn (x - b) * Si (T * abs (x - b)))" .
+    } note main_eq = this
+    have "(CLBINT t=-T..T. ?F t * \<phi> t) = 
+      (CLBINT t. (CLINT x | M. ?F t * iexp (t * x) * indicator {-T<..<T} t))"
+      using `T \<ge> 0` unfolding \<phi>_def char_def interval_lebesgue_integral_def
+      by (auto split: split_indicator intro!: integral_cong)
+    also have "\<dots> = (CLBINT t. (CLINT x | M. ?f' (t, x)))"
+      by (auto intro!: integral_cong simp: field_simps exp_diff exp_minus split: split_indicator)
+    also have "\<dots> = (CLINT x | M. (CLBINT t. ?f' (t, x)))"
+    proof (intro P.Fubini_integral [symmetric] integrableI_bounded_set [where B="b - a"])
+      show "emeasure (lborel \<Otimes>\<^sub>M M) ({- T<..<T} \<times> space M) < \<infinity>"
+        using \<open>T \<ge> 0\<close> by (subst emeasure_pair_measure_Times) auto
+      show "AE x\<in>{- T<..<T} \<times> space M in lborel \<Otimes>\<^sub>M M. cmod (case x of (t, x) \<Rightarrow> ?f' (t, x)) \<le> b - a"
+        using Levy_Inversion_aux2[of "x - b" "x - a" for x] `a \<le> b`
+        by (intro AE_I [of _ _ "{0} \<times> UNIV"]) (force simp: emeasure_pair_measure_Times)+
+    qed (auto split: split_indicator split_indicator_asm)
+    also have "\<dots> = (CLINT x | M. (complex_of_real (2 * (sgn (x - a) * 
+         Si (T * abs (x - a)) - sgn (x - b) * Si (T * abs (x - b))))))"
+       using main_eq by (intro integral_cong, auto)
+    also have "\<dots> = complex_of_real (LINT x | M. (2 * (sgn (x - a) * 
+         Si (T * abs (x - a)) - sgn (x - b) * Si (T * abs (x - b)))))"
+       by (rule integral_complex_of_real)
+    finally have "(CLBINT t=-T..T. ?F t * \<phi> t) = 
+        complex_of_real (LINT x | M. (2 * (sgn (x - a) * 
+         Si (T * abs (x - a)) - sgn (x - b) * Si (T * abs (x - b)))))" .
+  } note main_eq2 = this
+
+  have "(\<lambda>T :: nat. LINT x | M. (2 * (sgn (x - a) * 
+         Si (T * abs (x - a)) - sgn (x - b) * Si (T * abs (x - b))))) \<longlonglongrightarrow> 
+       (LINT x | M. 2 * pi * indicator {a<..b} x)"
+  proof (rule integral_dominated_convergence [where w="\<lambda>x. 4 * B"])
+    show "integrable M (\<lambda>x. 4 * B)"
+      by (rule integrable_const_bound [of _ "4 * B"]) auto
+  next
+    let ?S = "\<lambda>n::nat. \<lambda>x. sgn (x - a) * Si (n * \<bar>x - a\<bar>) - sgn (x - b) * Si (n * \<bar>x - b\<bar>)"
+    { fix n x
+      have "norm (?S n x) \<le> norm (sgn (x - a) * Si (n * \<bar>x - a\<bar>)) + norm (sgn (x - b) * Si (n * \<bar>x - b\<bar>))"
+        by (rule norm_triangle_ineq4)
+      also have "\<dots> \<le> B + B"
+        using Bprop by (intro add_mono) (auto simp: abs_mult abs_sgn_eq)
+      finally have "norm (2 * ?S n x) \<le> 4 * B"
+        by simp }
+    then show "\<And>n. AE x in M. norm (2 * ?S n x) \<le> 4 * B"
+      by auto
+    have "AE x in M. x \<noteq> a" "AE x in M. x \<noteq> b"
+      using prob_eq_0[of "{a}"] prob_eq_0[of "{b}"] `\<mu> {a} = 0` `\<mu> {b} = 0` by (auto simp: \<mu>_def)
+    then show "AE x in M. (\<lambda>n. 2 * ?S n x) \<longlonglongrightarrow> 2 * pi * indicator {a<..b} x"
+    proof eventually_elim
+      fix x assume x: "x \<noteq> a" "x \<noteq> b"
+      then have "(\<lambda>n. 2 * (sgn (x - a) * Si (\<bar>x - a\<bar> * n) - sgn (x - b) * Si (\<bar>x - b\<bar> * n)))
+          \<longlonglongrightarrow> 2 * (sgn (x - a) * (pi / 2) - sgn (x - b) * (pi / 2))"
+        by (intro tendsto_intros filterlim_compose[OF Si_at_top]
+            filterlim_tendsto_pos_mult_at_top[OF tendsto_const] filterlim_real_sequentially)
+           auto
+      also have "(\<lambda>n. 2 * (sgn (x - a) * Si (\<bar>x - a\<bar> * n) - sgn (x - b) * Si (\<bar>x - b\<bar> * n))) = (\<lambda>n. 2 * ?S n x)"
+        by (auto simp: ac_simps)
+      also have "2 * (sgn (x - a) * (pi / 2) - sgn (x - b) * (pi / 2)) = 2 * pi * indicator {a<..b} x"
+        using x `a \<le> b` by (auto split: split_indicator)
+      finally show "(\<lambda>n. 2 * ?S n x) \<longlonglongrightarrow> 2 * pi * indicator {a<..b} x" .
+    qed
+  qed simp_all 
+  also have "(LINT x | M. 2 * pi * indicator {a<..b} x) = 2 * pi * \<mu> {a<..b}"
+    by (simp add: \<mu>_def)
+  finally have "(\<lambda>T. LINT x | M. (2 * (sgn (x - a) * 
+         Si (T * abs (x - a)) - sgn (x - b) * Si (T * abs (x - b))))) \<longlonglongrightarrow> 
+       2 * pi * \<mu> {a<..b}" .
+  with main_eq2 show ?thesis
+    by (auto intro!: tendsto_eq_intros)
+qed
+
+theorem Levy_uniqueness:
+  fixes M1 M2 :: "real measure"
+  assumes "real_distribution M1" "real_distribution M2" and
+    "char M1 = char M2"
+  shows "M1 = M2"
+proof -
+  interpret M1: real_distribution M1 by (rule assms)
+  interpret M2: real_distribution M2 by (rule assms)
+  have "countable ({x. measure M1 {x} \<noteq> 0} \<union> {x. measure M2 {x} \<noteq> 0})"
+    by (intro countable_Un M2.countable_support M1.countable_support)
+  then have count: "countable {x. measure M1 {x} \<noteq> 0 \<or> measure M2 {x} \<noteq> 0}"
+    by (simp add: Un_def)
+
+  have "cdf M1 = cdf M2"
+  proof (rule ext)
+    fix x
+    from M1.cdf_is_right_cont [of x] have "(cdf M1 \<longlongrightarrow> cdf M1 x) (at_right x)"
+      by (simp add: continuous_within)
+    from M2.cdf_is_right_cont [of x] have "(cdf M2 \<longlongrightarrow> cdf M2 x) (at_right x)"
+      by (simp add: continuous_within)
+
+    { fix \<epsilon> :: real
+      assume "\<epsilon> > 0"
+      from `\<epsilon> > 0` `(cdf M1 \<longlongrightarrow> 0) at_bot` `(cdf M2 \<longlongrightarrow> 0) at_bot`
+      have "eventually (\<lambda>y. \<bar>cdf M1 y\<bar> < \<epsilon> / 4 \<and> \<bar>cdf M2 y\<bar> < \<epsilon> / 4 \<and> y \<le> x) at_bot"
+        by (simp only: tendsto_iff dist_real_def diff_0_right eventually_conj eventually_le_at_bot)
+      then obtain M where "\<And>y. y \<le> M \<Longrightarrow> \<bar>cdf M1 y\<bar> < \<epsilon> / 4" "\<And>y. y \<le> M \<Longrightarrow> \<bar>cdf M2 y\<bar> < \<epsilon> / 4" "M \<le> x"
+        unfolding eventually_at_bot_linorder by auto
+      with open_minus_countable[OF count, of "{..< M}"] obtain a where
+        "measure M1 {a} = 0" "measure M2 {a} = 0" "a < M" "a \<le> x" "\<bar>cdf M1 a\<bar> < \<epsilon> / 4" "\<bar>cdf M2 a\<bar> < \<epsilon> / 4"
+        by auto
+
+      from `\<epsilon> > 0` `(cdf M1 \<longlongrightarrow> cdf M1 x) (at_right x)` `(cdf M2 \<longlongrightarrow> cdf M2 x) (at_right x)` 
+      have "eventually (\<lambda>y. \<bar>cdf M1 y - cdf M1 x\<bar> < \<epsilon> / 4 \<and> \<bar>cdf M2 y - cdf M2 x\<bar> < \<epsilon> / 4 \<and> x < y) (at_right x)"
+        by (simp only: tendsto_iff dist_real_def eventually_conj eventually_at_right_less)
+      then obtain N where "N > x" "\<And>y. x < y \<Longrightarrow> y < N \<Longrightarrow> \<bar>cdf M1 y - cdf M1 x\<bar> < \<epsilon> / 4"
+        "\<And>y. x < y \<Longrightarrow> y < N \<Longrightarrow> \<bar>cdf M2 y - cdf M2 x\<bar> < \<epsilon> / 4" "\<And>y. x < y \<Longrightarrow> y < N \<Longrightarrow> x < y"
+        by (auto simp add: eventually_at_right[OF less_add_one])
+      with open_minus_countable[OF count, of "{x <..< N}"] obtain b where "x < b" "b < N"
+          "measure M1 {b} = 0" "measure M2 {b} = 0" "\<bar>cdf M2 x - cdf M2 b\<bar> < \<epsilon> / 4" "\<bar>cdf M1 x - cdf M1 b\<bar> < \<epsilon> / 4"
+        by (auto simp: abs_minus_commute)
+      from `a \<le> x` `x < b` have "a < b" "a \<le> b" by auto
+
+      from `char M1 = char M2`
+        M1.Levy_Inversion [OF `a \<le> b` `measure M1 {a} = 0`  `measure M1 {b} = 0`]
+        M2.Levy_Inversion [OF `a \<le> b` `measure M2 {a} = 0` `measure M2 {b} = 0`]
+      have "complex_of_real (measure M1 {a<..b}) = complex_of_real (measure M2 {a<..b})"
+        by (intro LIMSEQ_unique) auto
+      then have "measure M1 {a<..b} = measure M2 {a<..b}" by auto
+      then have *: "cdf M1 b - cdf M1 a = cdf M2 b - cdf M2 a"
+        unfolding M1.cdf_diff_eq [OF `a < b`] M2.cdf_diff_eq [OF `a < b`] .
+
+      have "abs (cdf M1 x - (cdf M1 b - cdf M1 a)) = abs (cdf M1 x - cdf M1 b + cdf M1 a)"
+        by simp
+      also have "\<dots> \<le> abs (cdf M1 x - cdf M1 b) + abs (cdf M1 a)"
+        by (rule abs_triangle_ineq)
+      also have "\<dots> \<le> \<epsilon> / 4 + \<epsilon> / 4"
+        by (intro add_mono less_imp_le \<open>\<bar>cdf M1 a\<bar> < \<epsilon> / 4\<close> \<open>\<bar>cdf M1 x - cdf M1 b\<bar> < \<epsilon> / 4\<close>)
+      finally have 1: "abs (cdf M1 x - (cdf M1 b - cdf M1 a)) \<le> \<epsilon> / 2" by simp
+
+      have "abs (cdf M2 x - (cdf M2 b - cdf M2 a)) = abs (cdf M2 x - cdf M2 b + cdf M2 a)"
+        by simp
+      also have "\<dots> \<le> abs (cdf M2 x - cdf M2 b) + abs (cdf M2 a)"
+        by (rule abs_triangle_ineq)
+      also have "\<dots> \<le> \<epsilon> / 4 + \<epsilon> / 4"
+        by (intro add_mono less_imp_le \<open>\<bar>cdf M2 x - cdf M2 b\<bar> < \<epsilon> / 4\<close> \<open>\<bar>cdf M2 a\<bar> < \<epsilon> / 4\<close>)
+      finally have 2: "abs (cdf M2 x - (cdf M2 b - cdf M2 a)) \<le> \<epsilon> / 2" by simp
+
+      have "abs (cdf M1 x - cdf M2 x) = abs ((cdf M1 x - (cdf M1 b - cdf M1 a)) - 
+          (cdf M2 x - (cdf M2 b - cdf M2 a)))" by (subst *, simp)
+      also have "\<dots> \<le> abs (cdf M1 x - (cdf M1 b - cdf M1 a)) + 
+          abs (cdf M2 x - (cdf M2 b - cdf M2 a))" by (rule abs_triangle_ineq4)
+      also have "\<dots> \<le> \<epsilon> / 2 + \<epsilon> / 2" by (rule add_mono [OF 1 2])
+      finally have "abs (cdf M1 x - cdf M2 x) \<le> \<epsilon>" by simp }
+    then show "cdf M1 x = cdf M2 x"
+      by (metis abs_le_zero_iff dense_ge eq_iff_diff_eq_0)
+  qed
+  thus ?thesis
+    by (rule cdf_unique [OF `real_distribution M1` `real_distribution M2`])
+qed
+
+
+subsection \<open>The Levy continuity theorem\<close>
+
+theorem levy_continuity1:
+  fixes M :: "nat \<Rightarrow> real measure" and M' :: "real measure"
+  assumes "\<And>n. real_distribution (M n)" "real_distribution M'" "weak_conv_m M M'"
+  shows "(\<lambda>n. char (M n) t) \<longlonglongrightarrow> char M' t"
+  unfolding char_def using assms by (rule weak_conv_imp_integral_bdd_continuous_conv) auto
+
+theorem levy_continuity:
+  fixes M :: "nat \<Rightarrow> real measure" and M' :: "real measure"
+  assumes real_distr_M : "\<And>n. real_distribution (M n)"
+    and real_distr_M': "real_distribution M'"
+    and char_conv: "\<And>t. (\<lambda>n. char (M n) t) \<longlonglongrightarrow> char M' t" 
+  shows "weak_conv_m M M'"
+proof -
+  interpret Mn: real_distribution "M n" for n by fact
+  interpret M': real_distribution M' by fact
+
+  have *: "\<And>u x. u > 0 \<Longrightarrow> x \<noteq> 0 \<Longrightarrow> (CLBINT t:{-u..u}. 1 - iexp (t * x)) = 
+      2 * (u  - sin (u * x) / x)"
+  proof -
+    fix u :: real and x :: real
+    assume "u > 0" and "x \<noteq> 0"
+    hence "(CLBINT t:{-u..u}. 1 - iexp (t * x)) = (CLBINT t=-u..u. 1 - iexp (t * x))"
+      by (subst interval_integral_Icc, auto)
+    also have "\<dots> = (CLBINT t=-u..0. 1 - iexp (t * x)) + (CLBINT t=0..u. 1 - iexp (t * x))"
+      using `u > 0`
+      apply (subst interval_integral_sum)
+      apply (simp add: min_absorb1 min_absorb2 max_absorb1 max_absorb2)
+      apply (rule interval_integrable_isCont)
+      apply auto
+      done
+    also have "\<dots> = (CLBINT t=ereal 0..u. 1 - iexp (t * -x)) + (CLBINT t=ereal 0..u. 1 - iexp (t * x))"
+      apply (subgoal_tac "0 = ereal 0", erule ssubst)
+      by (subst interval_integral_reflect, auto)
+    also have "\<dots> = (LBINT t=ereal 0..u. 2 - 2 * cos (t * x))"
+      apply (subst interval_lebesgue_integral_add (2) [symmetric])
+      apply ((rule interval_integrable_isCont, auto)+) [2]
+      unfolding exp_Euler cos_of_real
+      apply (simp add: of_real_mult interval_lebesgue_integral_of_real[symmetric])
+      done
+    also have "\<dots> = 2 * u - 2 * sin (u * x) / x"
+      by (subst interval_lebesgue_integral_diff)
+         (auto intro!: interval_integrable_isCont
+               simp: interval_lebesgue_integral_of_real integral_cos [OF `x \<noteq> 0`] mult.commute[of _ x])
+    finally show "(CLBINT t:{-u..u}. 1 - iexp (t * x)) = 2 * (u  - sin (u * x) / x)"
+      by (simp add: field_simps)
+  qed
+  have main_bound: "\<And>u n. u > 0 \<Longrightarrow> Re (CLBINT t:{-u..u}. 1 - char (M n) t) \<ge> 
+    u * measure (M n) {x. abs x \<ge> 2 / u}"
+  proof -
+    fix u :: real and n
+    assume "u > 0"
+    interpret P: pair_sigma_finite "M n" lborel ..
+    (* TODO: put this in the real_distribution locale as a simp rule? *)
+    have Mn1 [simp]: "measure (M n) UNIV = 1" by (metis Mn.prob_space Mn.space_eq_univ)
+    (* TODO: make this automatic somehow? *)
+    have Mn2 [simp]: "\<And>x. complex_integrable (M n) (\<lambda>t. exp (\<i> * complex_of_real (x * t)))"
+      by (rule Mn.integrable_const_bound [where B = 1], auto)
+    have Mn3: "set_integrable (M n \<Otimes>\<^sub>M lborel) (UNIV \<times> {- u..u}) (\<lambda>a. 1 - exp (\<i> * complex_of_real (snd a * fst a)))"
+      using `0 < u`
+      by (intro integrableI_bounded_set_indicator [where B="2"])
+         (auto simp: lborel.emeasure_pair_measure_Times split: split_indicator
+               intro!: order_trans [OF norm_triangle_ineq4])
+    have "(CLBINT t:{-u..u}. 1 - char (M n) t) = 
+        (CLBINT t:{-u..u}. (CLINT x | M n. 1 - iexp (t * x)))"
+      unfolding char_def by (rule set_lebesgue_integral_cong, auto simp del: of_real_mult)
+    also have "\<dots> = (CLBINT t. (CLINT x | M n. indicator {-u..u} t *\<^sub>R (1 - iexp (t * x))))"
+      by (rule integral_cong) (auto split: split_indicator)
+    also have "\<dots> = (CLINT x | M n. (CLBINT t:{-u..u}. 1 - iexp (t * x)))"
+      using Mn3 by (subst P.Fubini_integral) (auto simp: indicator_times split_beta')
+    also have "\<dots> = (CLINT x | M n. (if x = 0 then 0 else 2 * (u  - sin (u * x) / x)))"
+      using `u > 0` by (intro integral_cong, auto simp add: * simp del: of_real_mult)
+    also have "\<dots> = (LINT x | M n. (if x = 0 then 0 else 2 * (u  - sin (u * x) / x)))"
+      by (rule integral_complex_of_real)
+    finally have "Re (CLBINT t:{-u..u}. 1 - char (M n) t) = 
+       (LINT x | M n. (if x = 0 then 0 else 2 * (u  - sin (u * x) / x)))" by simp
+    also have "\<dots> \<ge> (LINT x : {x. abs x \<ge> 2 / u} | M n. u)"
+    proof -
+      have "complex_integrable (M n) (\<lambda>x. CLBINT t:{-u..u}. 1 - iexp (snd (x, t) * fst (x, t)))"
+        using Mn3 by (intro P.integrable_fst) (simp add: indicator_times split_beta')
+      hence "complex_integrable (M n) (\<lambda>x. if x = 0 then 0 else 2 * (u  - sin (u * x) / x))"
+        using `u > 0` by (subst integrable_cong) (auto simp add: * simp del: of_real_mult)
+      hence **: "integrable (M n) (\<lambda>x. if x = 0 then 0 else 2 * (u  - sin (u * x) / x))"
+        unfolding complex_of_real_integrable_eq .
+      have "2 * sin x \<le> x" if "2 \<le> x" for x :: real
+        by (rule order_trans[OF _ \<open>2 \<le> x\<close>]) auto
+      moreover have "x \<le> 2 * sin x" if "x \<le> - 2" for x :: real
+        by (rule order_trans[OF \<open>x \<le> - 2\<close>]) auto
+      moreover have "x < 0 \<Longrightarrow> x \<le> sin x" for x :: real
+        using sin_x_le_x[of "-x"] by simp
+      ultimately show ?thesis
+        using `u > 0`
+        by (intro integral_mono [OF _ **])
+           (auto simp: divide_simps sin_x_le_x mult.commute[of u] mult_neg_pos split: split_indicator)
+    qed
+    also (xtrans) have "(LINT x : {x. abs x \<ge> 2 / u} | M n. u) = 
+        u * measure (M n) {x. abs x \<ge> 2 / u}"
+      by (simp add: Mn.emeasure_eq_measure)
+    finally show "Re (CLBINT t:{-u..u}. 1 - char (M n) t) \<ge> u * measure (M n) {x. abs x \<ge> 2 / u}" .
+  qed
+
+  have tight_aux: "\<And>\<epsilon>. \<epsilon> > 0 \<Longrightarrow> \<exists>a b. a < b \<and> (\<forall>n. 1 - \<epsilon> < measure (M n) {a<..b})"
+  proof -
+    fix \<epsilon> :: real
+    assume "\<epsilon> > 0"
+    note M'.isCont_char [of 0]
+    hence "\<exists>d>0. \<forall>t. abs t < d \<longrightarrow> cmod (char M' t - 1) < \<epsilon> / 4"
+      apply (subst (asm) continuous_at_eps_delta)
+      apply (drule_tac x = "\<epsilon> / 4" in spec)
+      using `\<epsilon> > 0` by (auto simp add: dist_real_def dist_complex_def M'.char_zero)
+    then obtain d where "d > 0 \<and> (\<forall>t. (abs t < d \<longrightarrow> cmod (char M' t - 1) < \<epsilon> / 4))" ..
+    hence d0: "d > 0" and d1: "\<And>t. abs t < d \<Longrightarrow> cmod (char M' t - 1) < \<epsilon> / 4" by auto
+    have 1: "\<And>x. cmod (1 - char M' x) \<le> 2"
+      by (rule order_trans [OF norm_triangle_ineq4], auto simp add: M'.cmod_char_le_1)
+    then have 2: "\<And>u v. complex_set_integrable lborel {u..v} (\<lambda>x. 1 - char M' x)"
+      by (intro integrableI_bounded_set_indicator[where B=2]) (auto simp: emeasure_lborel_Icc_eq)
+    have 3: "\<And>u v. set_integrable lborel {u..v} (\<lambda>x. cmod (1 - char M' x))"
+      by (intro borel_integrable_compact[OF compact_Icc] continuous_at_imp_continuous_on
+                continuous_intros ballI M'.isCont_char continuous_intros)
+    have "cmod (CLBINT t:{-d/2..d/2}. 1 - char M' t) \<le> LBINT t:{-d/2..d/2}. cmod (1 - char M' t)"
+      using integral_norm_bound[OF 2] by simp
+    also have "\<dots> \<le> LBINT t:{-d/2..d/2}. \<epsilon> / 4"
+      apply (rule integral_mono [OF 3])
+      apply (simp add: emeasure_lborel_Icc_eq)
+      apply (case_tac "x \<in> {-d/2..d/2}", auto)
+      apply (subst norm_minus_commute)
+      apply (rule less_imp_le)
+      apply (rule d1 [simplified])
+      using d0 by auto
+    also with d0 have "\<dots> = d * \<epsilon> / 4"
+      by simp
+    finally have bound: "cmod (CLBINT t:{-d/2..d/2}. 1 - char M' t) \<le> d * \<epsilon> / 4" .
+    { fix n x
+      have "cmod (1 - char (M n) x) \<le> 2"
+        by (rule order_trans [OF norm_triangle_ineq4], auto simp add: Mn.cmod_char_le_1)
+    } note bd1 = this
+    have "(\<lambda>n. CLBINT t:{-d/2..d/2}. 1 - char (M n) t) \<longlonglongrightarrow> (CLBINT t:{-d/2..d/2}. 1 - char M' t)"
+      using bd1
+      apply (intro integral_dominated_convergence[where w="\<lambda>x. indicator {-d/2..d/2} x *\<^sub>R 2"])
+      apply (auto intro!: char_conv tendsto_intros 
+                  simp: emeasure_lborel_Icc_eq
+                  split: split_indicator)
+      done
+    hence "eventually (\<lambda>n. cmod ((CLBINT t:{-d/2..d/2}. 1 - char (M n) t) -
+        (CLBINT t:{-d/2..d/2}. 1 - char M' t)) < d * \<epsilon> / 4) sequentially"
+      using d0 `\<epsilon> > 0` apply (subst (asm) tendsto_iff)
+      by (subst (asm) dist_complex_def, drule spec, erule mp, auto)
+    hence "\<exists>N. \<forall>n \<ge> N. cmod ((CLBINT t:{-d/2..d/2}. 1 - char (M n) t) -
+        (CLBINT t:{-d/2..d/2}. 1 - char M' t)) < d * \<epsilon> / 4" by (simp add: eventually_sequentially)
+    then guess N ..
+    hence N: "\<And>n. n \<ge> N \<Longrightarrow> cmod ((CLBINT t:{-d/2..d/2}. 1 - char (M n) t) -
+        (CLBINT t:{-d/2..d/2}. 1 - char M' t)) < d * \<epsilon> / 4" by auto
+    { fix n
+      assume "n \<ge> N"
+      have "cmod (CLBINT t:{-d/2..d/2}. 1 - char (M n) t) = 
+        cmod ((CLBINT t:{-d/2..d/2}. 1 - char (M n) t) - (CLBINT t:{-d/2..d/2}. 1 - char M' t)
+          + (CLBINT t:{-d/2..d/2}. 1 - char M' t))" by simp
+      also have "\<dots> \<le> cmod ((CLBINT t:{-d/2..d/2}. 1 - char (M n) t) - 
+          (CLBINT t:{-d/2..d/2}. 1 - char M' t)) + cmod(CLBINT t:{-d/2..d/2}. 1 - char M' t)"
+        by (rule norm_triangle_ineq)
+      also have "\<dots> < d * \<epsilon> / 4 + d * \<epsilon> / 4" 
+        by (rule add_less_le_mono [OF N [OF `n \<ge> N`] bound])
+      also have "\<dots> = d * \<epsilon> / 2" by auto
+      finally have "cmod (CLBINT t:{-d/2..d/2}. 1 - char (M n) t) < d * \<epsilon> / 2" .
+      hence "d * \<epsilon> / 2 > Re (CLBINT t:{-d/2..d/2}. 1 - char (M n) t)"
+        by (rule order_le_less_trans [OF complex_Re_le_cmod])
+      hence "d * \<epsilon> / 2 > Re (CLBINT t:{-(d/2)..d/2}. 1 - char (M n) t)" (is "_ > ?lhs") by simp
+      also have "?lhs \<ge> (d / 2) * measure (M n) {x. abs x \<ge> 2 / (d / 2)}" 
+        using d0 by (intro main_bound, simp)
+      finally (xtrans) have "d * \<epsilon> / 2 > (d / 2) * measure (M n) {x. abs x \<ge> 2 / (d / 2)}" .
+      with d0 `\<epsilon> > 0` have "\<epsilon> > measure (M n) {x. abs x \<ge> 2 / (d / 2)}" by (simp add: field_simps)
+      hence "\<epsilon> > 1 - measure (M n) (UNIV - {x. abs x \<ge> 2 / (d / 2)})"
+        apply (subst Mn.borel_UNIV [symmetric])
+        by (subst Mn.prob_compl, auto)
+      also have "UNIV - {x. abs x \<ge> 2 / (d / 2)} = {x. -(4 / d) < x \<and> x < (4 / d)}"
+        using d0 apply (auto simp add: field_simps)
+        (* very annoying -- this should be automatic *)
+        apply (case_tac "x \<ge> 0", auto simp add: field_simps)
+        apply (subgoal_tac "0 \<le> x * d", arith, rule mult_nonneg_nonneg, auto)
+        apply (case_tac "x \<ge> 0", auto simp add: field_simps)
+        apply (subgoal_tac "x * d \<le> 0", arith)
+        apply (rule mult_nonpos_nonneg, auto)
+        by (case_tac "x \<ge> 0", auto simp add: field_simps)
+      finally have "measure (M n) {x. -(4 / d) < x \<and> x < (4 / d)} > 1 - \<epsilon>"
+        by auto
+    } note 6 = this
+    { fix n :: nat
+      have *: "(UN (k :: nat). {- real k<..real k}) = UNIV"
+        by (auto, metis leI le_less_trans less_imp_le minus_less_iff reals_Archimedean2)
+      have "(\<lambda>k. measure (M n) {- real k<..real k}) \<longlonglongrightarrow> 
+          measure (M n) (UN (k :: nat). {- real k<..real k})"
+        by (rule Mn.finite_Lim_measure_incseq, auto simp add: incseq_def)
+      hence "(\<lambda>k. measure (M n) {- real k<..real k}) \<longlonglongrightarrow> 1"
+        using Mn.prob_space unfolding * Mn.borel_UNIV by simp
+      hence "eventually (\<lambda>k. measure (M n) {- real k<..real k} > 1 - \<epsilon>) sequentially"
+        apply (elim order_tendstoD (1))
+        using `\<epsilon> > 0` by auto
+    } note 7 = this
+    { fix n :: nat
+      have "eventually (\<lambda>k. \<forall>m < n. measure (M m) {- real k<..real k} > 1 - \<epsilon>) sequentially"
+        (is "?P n")
+      proof (induct n)
+        case (Suc n) with 7[of n] show ?case
+          by eventually_elim (auto simp add: less_Suc_eq)
+      qed simp
+    } note 8 = this
+    from 8 [of N] have "\<exists>K :: nat. \<forall>k \<ge> K. \<forall>m<N. 1 - \<epsilon> < 
+        Sigma_Algebra.measure (M m) {- real k<..real k}"
+      by (auto simp add: eventually_sequentially)
+    hence "\<exists>K :: nat. \<forall>m<N. 1 - \<epsilon> < Sigma_Algebra.measure (M m) {- real K<..real K}" by auto
+    then obtain K :: nat where 
+      "\<forall>m<N. 1 - \<epsilon> < Sigma_Algebra.measure (M m) {- real K<..real K}" ..
+    hence K: "\<And>m. m < N \<Longrightarrow> 1 - \<epsilon> < Sigma_Algebra.measure (M m) {- real K<..real K}"
+      by auto
+    let ?K' = "max K (4 / d)"
+    have "-?K' < ?K' \<and> (\<forall>n. 1 - \<epsilon> < measure (M n) {-?K'<..?K'})"
+      using d0 apply auto
+      apply (rule max.strict_coboundedI2, auto)
+    proof -
+      fix n
+      show " 1 - \<epsilon> < measure (M n) {- max (real K) (4 / d)<..max (real K) (4 / d)}"      
+        apply (case_tac "n < N")
+        apply (rule order_less_le_trans)
+        apply (erule K)
+        apply (rule Mn.finite_measure_mono, auto)
+        apply (rule order_less_le_trans)
+        apply (rule 6, erule leI)
+        by (rule Mn.finite_measure_mono, auto)
+    qed 
+    thus "\<exists>a b. a < b \<and> (\<forall>n. 1 - \<epsilon> < measure (M n) {a<..b})" by (intro exI)
+  qed
+  have tight: "tight M"
+    by (auto simp: tight_def intro: assms tight_aux)
+  show ?thesis
+  proof (rule tight_subseq_weak_converge [OF real_distr_M real_distr_M' tight])
+    fix s \<nu>
+    assume s: "subseq s"
+    assume nu: "weak_conv_m (M \<circ> s) \<nu>"
+    assume *: "real_distribution \<nu>"
+    have 2: "\<And>n. real_distribution ((M \<circ> s) n)" unfolding comp_def by (rule assms)
+    have 3: "\<And>t. (\<lambda>n. char ((M \<circ> s) n) t) \<longlonglongrightarrow> char \<nu> t" by (intro levy_continuity1 [OF 2 * nu])
+    have 4: "\<And>t. (\<lambda>n. char ((M \<circ> s) n) t) = ((\<lambda>n. char (M n) t) \<circ> s)" by (rule ext, simp)
+    have 5: "\<And>t. (\<lambda>n. char ((M \<circ> s) n) t) \<longlonglongrightarrow> char M' t"
+      by (subst 4, rule lim_subseq [OF s], rule assms)
+    hence "char \<nu> = char M'" by (intro ext, intro LIMSEQ_unique [OF 3 5])
+    hence "\<nu> = M'" by (rule Levy_uniqueness [OF * `real_distribution M'`])
+    thus "weak_conv_m (M \<circ> s) M'" 
+      apply (elim subst)
+      by (rule nu)  
+  qed
+qed
+
+end