src/HOL/AxClasses/Lattice/OrdDefs.ML
changeset 4091 771b1f6422a8
parent 2606 27cdd600a3b1
child 4153 e534c4c32d54
     1.1 --- a/src/HOL/AxClasses/Lattice/OrdDefs.ML	Mon Nov 03 12:22:43 1997 +0100
     1.2 +++ b/src/HOL/AxClasses/Lattice/OrdDefs.ML	Mon Nov 03 12:24:13 1997 +0100
     1.3 @@ -13,7 +13,7 @@
     1.4  qed "le_prod_refl";
     1.5  
     1.6  goalw thy [le_prod_def] "x [= y & y [= z --> x [= (z::'a::quasi_order*'b::quasi_order)";
     1.7 -  by (safe_tac (!claset));
     1.8 +  by (safe_tac (claset()));
     1.9    be (conjI RS (le_trans RS mp)) 1;
    1.10    ba 1;
    1.11    be (conjI RS (le_trans RS mp)) 1;
    1.12 @@ -21,7 +21,7 @@
    1.13  qed "le_prod_trans";
    1.14  
    1.15  goalw thy [le_prod_def] "x [= y & y [= x --> x = (y::'a::partial_order*'b::partial_order)";
    1.16 -  by (safe_tac (!claset));
    1.17 +  by (safe_tac (claset()));
    1.18    by (stac Pair_fst_snd_eq 1);
    1.19    br conjI 1;
    1.20    be (conjI RS (le_antisym RS mp)) 1;
    1.21 @@ -39,13 +39,13 @@
    1.22  qed "le_fun_refl";
    1.23  
    1.24  goalw thy [le_fun_def] "f [= g & g [= h --> f [= (h::'a=>'b::quasi_order)";
    1.25 -  by (safe_tac (!claset));
    1.26 +  by (safe_tac (claset()));
    1.27    br (le_trans RS mp) 1;
    1.28    by (Fast_tac 1);
    1.29  qed "le_fun_trans";
    1.30  
    1.31  goalw thy [le_fun_def] "f [= g & g [= f --> f = (g::'a=>'b::partial_order)";
    1.32 -  by (safe_tac (!claset));
    1.33 +  by (safe_tac (claset()));
    1.34    br ext 1;
    1.35    br (le_antisym RS mp) 1;
    1.36    by (Fast_tac 1);
    1.37 @@ -73,7 +73,7 @@
    1.38  qed "le_dual_trans";
    1.39  
    1.40  goalw thy [le_dual_def] "x [= y & y [= x --> x = (y::'a::partial_order dual)";
    1.41 -  by (safe_tac (!claset));
    1.42 +  by (safe_tac (claset()));
    1.43    br (Rep_dual_inverse RS subst) 1;
    1.44    br sym 1;
    1.45    br (Rep_dual_inverse RS subst) 1;