--- a/src/HOL/MacLaurin.thy Sat Aug 24 23:44:05 2024 +0100
+++ b/src/HOL/MacLaurin.thy Sun Aug 25 17:24:42 2024 +0100
@@ -341,9 +341,7 @@
show "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> x \<longrightarrow>
((\<lambda>u. sin (u + 1/2 * real m * pi)) has_real_derivative
sin (t + 1/2 * real (Suc m) * pi)) (at t)"
- apply (simp add: sin_expansion_lemma del: of_nat_Suc)
- apply (force intro!: derivative_eq_intros)
- done
+ using DERIV_shift sin_expansion_lemma by fastforce
qed (use assms in auto)
then show ?thesis
apply (rule ex_forward, simp)
@@ -362,9 +360,7 @@
show "\<forall>m t. m < n \<and> 0 \<le> t \<and> t \<le> x \<longrightarrow>
((\<lambda>u. sin (u + 1/2 * real m * pi)) has_real_derivative
sin (t + 1/2 * real (Suc m) * pi)) (at t)"
- apply (simp add: sin_expansion_lemma del: of_nat_Suc)
- apply (force intro!: derivative_eq_intros)
- done
+ using DERIV_shift sin_expansion_lemma by fastforce
qed (use assms in auto)
then show ?thesis
apply (rule ex_forward, simp)
@@ -477,8 +473,7 @@
apply (subst t2)
apply (rule sin_bound_lemma)
apply (rule sum.cong[OF refl])
- unfolding sin_coeff_def
- apply (subst diff_m_0, simp)
+ apply (simp add: diff_m_0 sin_coeff_def)
using est
apply (auto intro: mult_right_mono [where b=1, simplified] mult_right_mono
simp: ac_simps divide_inverse power_abs [symmetric] abs_mult)