--- a/src/HOL/Real_Vector_Spaces.thy Wed Apr 09 22:45:04 2025 +0200
+++ b/src/HOL/Real_Vector_Spaces.thy Thu Apr 10 17:07:18 2025 +0100
@@ -796,6 +796,14 @@
class real_normed_field = real_field + real_normed_div_algebra
+lemma dist_mult_left:
+ "dist (a * b) (a * c :: 'a :: real_normed_field) = norm a * dist b c"
+ unfolding dist_norm right_diff_distrib [symmetric] norm_mult by simp
+
+lemma dist_mult_right:
+ "dist (b * a) (c * a :: 'a :: real_normed_field) = norm a * dist b c"
+ using dist_mult_left[of a b c] by (simp add: mult_ac)
+
instance real_normed_div_algebra < real_normed_algebra_1
proof
show "norm (x * y) \<le> norm x * norm y" for x y :: 'a