src/HOL/arith_data.ML
changeset 24095 785c3cd7fcb5
parent 24076 ae946f751c44
child 25484 4c98517601ce
--- a/src/HOL/arith_data.ML	Tue Jul 31 19:40:25 2007 +0200
+++ b/src/HOL/arith_data.ML	Tue Jul 31 19:40:26 2007 +0200
@@ -1,13 +1,11 @@
 (*  Title:      HOL/arith_data.ML
     ID:         $Id$
-    Author:     Markus Wenzel, Stefan Berghofer and Tobias Nipkow
+    Author:     Markus Wenzel, Stefan Berghofer, and Tobias Nipkow
 
-Various arithmetic proof procedures.
+Basic arithmetic proof tools.
 *)
 
-(*---------------------------------------------------------------------------*)
-(* 1. Cancellation of common terms                                           *)
-(*---------------------------------------------------------------------------*)
+(*** cancellation of common terms ***)
 
 structure NatArithUtils =
 struct
@@ -28,6 +26,7 @@
     funpow (length ones) HOLogic.mk_Suc (mk_sum sums)
   end;
 
+
 (* dest_sum *)
 
 val dest_plus = HOLogic.dest_bin @{const_name HOL.plus} HOLogic.natT;
@@ -42,6 +41,8 @@
           SOME (t, u) => dest_sum t @ dest_sum u
         | NONE => [tm]));
 
+
+
 (** generic proof tools **)
 
 (* prove conversions *)
@@ -61,21 +62,25 @@
 fun prep_simproc (name, pats, proc) =
   Simplifier.simproc (the_context ()) name pats proc;
 
-end;  (* NatArithUtils *)
+end;
+
 
 
+(** ArithData **)
+
 signature ARITH_DATA =
 sig
   val nat_cancel_sums_add: simproc list
   val nat_cancel_sums: simproc list
+  val arith_data_setup: Context.generic -> Context.generic
 end;
 
-
 structure ArithData: ARITH_DATA =
 struct
 
 open NatArithUtils;
 
+
 (** cancel common summands **)
 
 structure Sum =
@@ -92,6 +97,7 @@
 fun gen_uncancel_tac rule ct =
   rtac (instantiate' [] [NONE, SOME ct] (rule RS @{thm subst_equals})) 1;
 
+
 (* nat eq *)
 
 structure EqCancelSums = CancelSumsFun
@@ -102,6 +108,7 @@
   val uncancel_tac = gen_uncancel_tac @{thm "nat_add_left_cancel"};
 end);
 
+
 (* nat less *)
 
 structure LessCancelSums = CancelSumsFun
@@ -112,6 +119,7 @@
   val uncancel_tac = gen_uncancel_tac @{thm "nat_add_left_cancel_less"};
 end);
 
+
 (* nat le *)
 
 structure LeCancelSums = CancelSumsFun
@@ -122,6 +130,7 @@
   val uncancel_tac = gen_uncancel_tac @{thm "nat_add_left_cancel_le"};
 end);
 
+
 (* nat diff *)
 
 structure DiffCancelSums = CancelSumsFun
@@ -132,7 +141,8 @@
   val uncancel_tac = gen_uncancel_tac @{thm "diff_cancel"};
 end);
 
-(** prepare nat_cancel simprocs **)
+
+(* prepare nat_cancel simprocs *)
 
 val nat_cancel_sums_add = map prep_simproc
   [("nateq_cancel_sums",
@@ -150,848 +160,11 @@
     ["((l::nat) + m) - n", "(l::nat) - (m + n)", "Suc m - n", "m - Suc n"],
     K DiffCancelSums.proc)];
 
-end;  (* ArithData *)
-
-open ArithData;
-
-
-(*---------------------------------------------------------------------------*)
-(* 2. Linear arithmetic                                                      *)
-(*---------------------------------------------------------------------------*)
-
-(* Parameters data for general linear arithmetic functor *)
-
-structure LA_Logic: LIN_ARITH_LOGIC =
-struct
-
-val ccontr = ccontr;
-val conjI = conjI;
-val notI = notI;
-val sym = sym;
-val not_lessD = @{thm linorder_not_less} RS iffD1;
-val not_leD = @{thm linorder_not_le} RS iffD1;
-val le0 = thm "le0";
-
-fun mk_Eq thm = (thm RS Eq_FalseI) handle THM _ => (thm RS Eq_TrueI);
-
-val mk_Trueprop = HOLogic.mk_Trueprop;
-
-fun atomize thm = case Thm.prop_of thm of
-    Const("Trueprop",_) $ (Const("op &",_) $ _ $ _) =>
-    atomize(thm RS conjunct1) @ atomize(thm RS conjunct2)
-  | _ => [thm];
-
-fun neg_prop ((TP as Const("Trueprop",_)) $ (Const("Not",_) $ t)) = TP $ t
-  | neg_prop ((TP as Const("Trueprop",_)) $ t) = TP $ (HOLogic.Not $t)
-  | neg_prop t = raise TERM ("neg_prop", [t]);
-
-fun is_False thm =
-  let val _ $ t = Thm.prop_of thm
-  in t = Const("False",HOLogic.boolT) end;
-
-fun is_nat(t) = fastype_of1 t = HOLogic.natT;
-
-fun mk_nat_thm sg t =
-  let val ct = cterm_of sg t  and cn = cterm_of sg (Var(("n",0),HOLogic.natT))
-  in instantiate ([],[(cn,ct)]) le0 end;
-
-end;  (* LA_Logic *)
-
-
-(* arith theory data *)
-
-datatype arithtactic = ArithTactic of {name: string, tactic: int -> tactic, id: stamp};
-
-fun mk_arith_tactic name tactic = ArithTactic {name = name, tactic = tactic, id = stamp ()};
-
-fun eq_arith_tactic (ArithTactic {id = id1, ...}, ArithTactic {id = id2, ...}) = (id1 = id2);
-
-structure ArithContextData = GenericDataFun
-(
-  type T = {splits: thm list,
-            inj_consts: (string * typ) list,
-            discrete: string list,
-            tactics: arithtactic list};
-  val empty = {splits = [], inj_consts = [], discrete = [], tactics = []};
-  val extend = I;
-  fun merge _ ({splits= splits1, inj_consts= inj_consts1, discrete= discrete1, tactics= tactics1},
-             {splits= splits2, inj_consts= inj_consts2, discrete= discrete2, tactics= tactics2}) =
-   {splits = Library.merge Thm.eq_thm_prop (splits1, splits2),
-    inj_consts = Library.merge (op =) (inj_consts1, inj_consts2),
-    discrete = Library.merge (op =) (discrete1, discrete2),
-    tactics = Library.merge eq_arith_tactic (tactics1, tactics2)};
-);
-
-val get_arith_data = ArithContextData.get o Context.Proof;
-
-val arith_split_add = Thm.declaration_attribute (fn thm =>
-  ArithContextData.map (fn {splits, inj_consts, discrete, tactics} =>
-    {splits = insert Thm.eq_thm_prop thm splits,
-     inj_consts = inj_consts, discrete = discrete, tactics = tactics}));
-
-fun arith_discrete d = ArithContextData.map (fn {splits, inj_consts, discrete, tactics} =>
-  {splits = splits, inj_consts = inj_consts,
-   discrete = insert (op =) d discrete, tactics = tactics});
-
-fun arith_inj_const c = ArithContextData.map (fn {splits, inj_consts, discrete, tactics} =>
-  {splits = splits, inj_consts = insert (op =) c inj_consts,
-   discrete = discrete, tactics= tactics});
-
-fun arith_tactic_add tac = ArithContextData.map (fn {splits, inj_consts, discrete, tactics} =>
-  {splits = splits, inj_consts = inj_consts, discrete = discrete,
-   tactics = insert eq_arith_tactic tac tactics});
-
-
-signature HOL_LIN_ARITH_DATA =
-sig
-  include LIN_ARITH_DATA
-  val fast_arith_split_limit: int ConfigOption.T
-  val setup_options: theory -> theory
-end;
-
-structure LA_Data_Ref: HOL_LIN_ARITH_DATA =
-struct
-
-val (fast_arith_split_limit, setup1) = ConfigOption.int "fast_arith_split_limit" 9;
-val (fast_arith_neq_limit, setup2) = ConfigOption.int "fast_arith_neq_limit" 9;
-val setup_options = setup1 #> setup2;
+val arith_data_setup =
+  Simplifier.map_ss (fn ss => ss addsimprocs nat_cancel_sums);
 
 
-(* internal representation of linear (in-)equations *)
-type decompT = ((term * Rat.rat) list * Rat.rat * string * (term * Rat.rat) list * Rat.rat * bool);
-
-(* Decomposition of terms *)
-
-fun nT (Type ("fun", [N, _])) = (N = HOLogic.natT)
-  | nT _                      = false;
-
-fun add_atom (t : term) (m : Rat.rat) (p : (term * Rat.rat) list, i : Rat.rat) :
-             (term * Rat.rat) list * Rat.rat =
-  case AList.lookup (op =) p t of NONE   => ((t, m) :: p, i)
-                                | SOME n => (AList.update (op =) (t, Rat.add n m) p, i);
-
-exception Zero;
-
-fun rat_of_term (numt, dent) =
-  let
-    val num = HOLogic.dest_numeral numt
-    val den = HOLogic.dest_numeral dent
-  in
-    if den = 0 then raise Zero else Rat.rat_of_quotient (num, den)
-  end;
-
-(* Warning: in rare cases number_of encloses a non-numeral,
-   in which case dest_numeral raises TERM; hence all the handles below.
-   Same for Suc-terms that turn out not to be numerals -
-   although the simplifier should eliminate those anyway ...
-*)
-fun number_of_Sucs (Const ("Suc", _) $ n) : int =
-      number_of_Sucs n + 1
-  | number_of_Sucs t =
-      if HOLogic.is_zero t then 0 else raise TERM ("number_of_Sucs", []);
-
-(* decompose nested multiplications, bracketing them to the right and combining
-   all their coefficients
-*)
-fun demult (inj_consts : (string * typ) list) : term * Rat.rat -> term option * Rat.rat =
-let
-  fun demult ((mC as Const (@{const_name HOL.times}, _)) $ s $ t, m) = (
-    (case s of
-      Const ("Numeral.number_class.number_of", _) $ n =>
-        demult (t, Rat.mult m (Rat.rat_of_int (HOLogic.dest_numeral n)))
-    | Const (@{const_name HOL.uminus}, _) $ (Const ("Numeral.number_class.number_of", _) $ n) =>
-        demult (t, Rat.mult m (Rat.rat_of_int (~(HOLogic.dest_numeral n))))
-    | Const (@{const_name Suc}, _) $ _ =>
-        demult (t, Rat.mult m (Rat.rat_of_int (HOLogic.dest_nat s)))
-    | Const (@{const_name HOL.times}, _) $ s1 $ s2 =>
-        demult (mC $ s1 $ (mC $ s2 $ t), m)
-    | Const (@{const_name HOL.divide}, _) $ numt $ (Const ("Numeral.number_class.number_of", _) $ dent) =>
-        let
-          val den = HOLogic.dest_numeral dent
-        in
-          if den = 0 then
-            raise Zero
-          else
-            demult (mC $ numt $ t, Rat.mult m (Rat.inv (Rat.rat_of_int den)))
-        end
-    | _ =>
-        atomult (mC, s, t, m)
-    ) handle TERM _ => atomult (mC, s, t, m)
-  )
-    | demult (atom as Const(@{const_name HOL.divide}, _) $ t $ (Const ("Numeral.number_class.number_of", _) $ dent), m) =
-      (let
-        val den = HOLogic.dest_numeral dent
-      in
-        if den = 0 then
-          raise Zero
-        else
-          demult (t, Rat.mult m (Rat.inv (Rat.rat_of_int den)))
-      end
-        handle TERM _ => (SOME atom, m))
-    | demult (Const (@{const_name HOL.zero}, _), m) = (NONE, Rat.zero)
-    | demult (Const (@{const_name HOL.one}, _), m) = (NONE, m)
-    | demult (t as Const ("Numeral.number_class.number_of", _) $ n, m) =
-        ((NONE, Rat.mult m (Rat.rat_of_int (HOLogic.dest_numeral n)))
-          handle TERM _ => (SOME t, m))
-    | demult (Const (@{const_name HOL.uminus}, _) $ t, m) = demult (t, Rat.neg m)
-    | demult (t as Const f $ x, m) =
-        (if member (op =) inj_consts f then SOME x else SOME t, m)
-    | demult (atom, m) = (SOME atom, m)
-and
-  atomult (mC, atom, t, m) = (
-    case demult (t, m) of (NONE, m')    => (SOME atom, m')
-                        | (SOME t', m') => (SOME (mC $ atom $ t'), m')
-  )
-in demult end;
-
-fun decomp0 (inj_consts : (string * typ) list) (rel : string, lhs : term, rhs : term) :
-            ((term * Rat.rat) list * Rat.rat * string * (term * Rat.rat) list * Rat.rat) option =
-let
-  (* Turn term into list of summand * multiplicity plus a constant *)
-  fun poly (Const (@{const_name HOL.plus}, _) $ s $ t, m : Rat.rat, pi : (term * Rat.rat) list * Rat.rat) =
-        poly (s, m, poly (t, m, pi))
-    | poly (all as Const (@{const_name HOL.minus}, T) $ s $ t, m, pi) =
-        if nT T then add_atom all m pi else poly (s, m, poly (t, Rat.neg m, pi))
-    | poly (all as Const (@{const_name HOL.uminus}, T) $ t, m, pi) =
-        if nT T then add_atom all m pi else poly (t, Rat.neg m, pi)
-    | poly (Const (@{const_name HOL.zero}, _), _, pi) =
-        pi
-    | poly (Const (@{const_name HOL.one}, _), m, (p, i)) =
-        (p, Rat.add i m)
-    | poly (Const (@{const_name Suc}, _) $ t, m, (p, i)) =
-        poly (t, m, (p, Rat.add i m))
-    | poly (all as Const (@{const_name HOL.times}, _) $ _ $ _, m, pi as (p, i)) =
-        (case demult inj_consts (all, m) of
-           (NONE,   m') => (p, Rat.add i m')
-         | (SOME u, m') => add_atom u m' pi)
-    | poly (all as Const (@{const_name HOL.divide}, _) $ _ $ _, m, pi as (p, i)) =
-        (case demult inj_consts (all, m) of
-           (NONE,   m') => (p, Rat.add i m')
-         | (SOME u, m') => add_atom u m' pi)
-    | poly (all as Const ("Numeral.number_class.number_of", Type(_,[_,T])) $ t, m, pi as (p, i)) =
-        (let val k = HOLogic.dest_numeral t
-            val k2 = if k < 0 andalso T = HOLogic.natT then 0 else k
-        in (p, Rat.add i (Rat.mult m (Rat.rat_of_int k2))) end
-        handle TERM _ => add_atom all m pi)
-    | poly (all as Const f $ x, m, pi) =
-        if f mem inj_consts then poly (x, m, pi) else add_atom all m pi
-    | poly (all, m, pi) =
-        add_atom all m pi
-  val (p, i) = poly (lhs, Rat.one, ([], Rat.zero))
-  val (q, j) = poly (rhs, Rat.one, ([], Rat.zero))
-in
-  case rel of
-    @{const_name HOL.less}    => SOME (p, i, "<", q, j)
-  | @{const_name HOL.less_eq} => SOME (p, i, "<=", q, j)
-  | "op ="              => SOME (p, i, "=", q, j)
-  | _                   => NONE
-end handle Zero => NONE;
-
-fun of_lin_arith_sort sg (U : typ) : bool =
-  Type.of_sort (Sign.tsig_of sg) (U, ["Ring_and_Field.ordered_idom"])
-
-fun allows_lin_arith sg (discrete : string list) (U as Type (D, [])) : bool * bool =
-  if of_lin_arith_sort sg U then
-    (true, D mem discrete)
-  else (* special cases *)
-    if D mem discrete then  (true, true)  else  (false, false)
-  | allows_lin_arith sg discrete U =
-  (of_lin_arith_sort sg U, false);
-
-fun decomp_typecheck (thy, discrete, inj_consts) (T : typ, xxx) : decompT option =
-  case T of
-    Type ("fun", [U, _]) =>
-      (case allows_lin_arith thy discrete U of
-        (true, d) =>
-          (case decomp0 inj_consts xxx of
-            NONE                   => NONE
-          | SOME (p, i, rel, q, j) => SOME (p, i, rel, q, j, d))
-      | (false, _) =>
-          NONE)
-  | _ => NONE;
-
-fun negate (SOME (x, i, rel, y, j, d)) = SOME (x, i, "~" ^ rel, y, j, d)
-  | negate NONE                        = NONE;
-
-fun decomp_negation data
-  ((Const ("Trueprop", _)) $ (Const (rel, T) $ lhs $ rhs)) : decompT option =
-      decomp_typecheck data (T, (rel, lhs, rhs))
-  | decomp_negation data ((Const ("Trueprop", _)) $
-  (Const ("Not", _) $ (Const (rel, T) $ lhs $ rhs))) =
-      negate (decomp_typecheck data (T, (rel, lhs, rhs)))
-  | decomp_negation data _ =
-      NONE;
-
-fun decomp ctxt : term -> decompT option =
-  let
-    val thy = ProofContext.theory_of ctxt
-    val {discrete, inj_consts, ...} = get_arith_data ctxt
-  in decomp_negation (thy, discrete, inj_consts) end;
-
-fun domain_is_nat (_ $ (Const (_, T) $ _ $ _))                      = nT T
-  | domain_is_nat (_ $ (Const ("Not", _) $ (Const (_, T) $ _ $ _))) = nT T
-  | domain_is_nat _                                                 = false;
-
-fun number_of (n, T) = HOLogic.mk_number T n;
-
-(*---------------------------------------------------------------------------*)
-(* the following code performs splitting of certain constants (e.g. min,     *)
-(* max) in a linear arithmetic problem; similar to what split_tac later does *)
-(* to the proof state                                                        *)
-(*---------------------------------------------------------------------------*)
-
-(* checks if splitting with 'thm' is implemented                             *)
-
-fun is_split_thm (thm : thm) : bool =
-  case concl_of thm of _ $ (_ $ (_ $ lhs) $ _) => (
-    (* Trueprop $ ((op =) $ (?P $ lhs) $ rhs) *)
-    case head_of lhs of
-      Const (a, _) => member (op =) [@{const_name Orderings.max},
-                                    @{const_name Orderings.min},
-                                    @{const_name HOL.abs},
-                                    @{const_name HOL.minus},
-                                    "IntDef.nat",
-                                    "Divides.div_class.mod",
-                                    "Divides.div_class.div"] a
-    | _            => (warning ("Lin. Arith.: wrong format for split rule " ^
-                                 Display.string_of_thm thm);
-                       false))
-  | _ => (warning ("Lin. Arith.: wrong format for split rule " ^
-                   Display.string_of_thm thm);
-          false);
-
-(* substitute new for occurrences of old in a term, incrementing bound       *)
-(* variables as needed when substituting inside an abstraction               *)
-
-fun subst_term ([] : (term * term) list) (t : term) = t
-  | subst_term pairs                     t          =
-      (case AList.lookup (op aconv) pairs t of
-        SOME new =>
-          new
-      | NONE     =>
-          (case t of Abs (a, T, body) =>
-            let val pairs' = map (pairself (incr_boundvars 1)) pairs
-            in  Abs (a, T, subst_term pairs' body)  end
-          | t1 $ t2                   =>
-            subst_term pairs t1 $ subst_term pairs t2
-          | _ => t));
-
-(* approximates the effect of one application of split_tac (followed by NNF  *)
-(* normalization) on the subgoal represented by '(Ts, terms)'; returns a     *)
-(* list of new subgoals (each again represented by a typ list for bound      *)
-(* variables and a term list for premises), or NONE if split_tac would fail  *)
-(* on the subgoal                                                            *)
-
-(* FIXME: currently only the effect of certain split theorems is reproduced  *)
-(*        (which is why we need 'is_split_thm').  A more canonical           *)
-(*        implementation should analyze the right-hand side of the split     *)
-(*        theorem that can be applied, and modify the subgoal accordingly.   *)
-(*        Or even better, the splitter should be extended to provide         *)
-(*        splitting on terms as well as splitting on theorems (where the     *)
-(*        former can have a faster implementation as it does not need to be  *)
-(*        proof-producing).                                                  *)
-
-fun split_once_items ctxt (Ts : typ list, terms : term list) :
-                     (typ list * term list) list option =
-let
-  val thy = ProofContext.theory_of ctxt
-  (* takes a list  [t1, ..., tn]  to the term                                *)
-  (*   tn' --> ... --> t1' --> False  ,                                      *)
-  (* where ti' = HOLogic.dest_Trueprop ti                                    *)
-  fun REPEAT_DETERM_etac_rev_mp terms' =
-    fold (curry HOLogic.mk_imp) (map HOLogic.dest_Trueprop terms') HOLogic.false_const
-  val split_thms = filter is_split_thm (#splits (get_arith_data ctxt))
-  val cmap       = Splitter.cmap_of_split_thms split_thms
-  val splits     = Splitter.split_posns cmap thy Ts (REPEAT_DETERM_etac_rev_mp terms)
-  val split_limit = ConfigOption.get ctxt fast_arith_split_limit
-in
-  if length splits > split_limit then
-   (tracing ("fast_arith_split_limit exceeded (current value is " ^
-      string_of_int split_limit ^ ")"); NONE)
-  else (
-  case splits of [] =>
-    (* split_tac would fail: no possible split *)
-    NONE
-  | ((_, _, _, split_type, split_term) :: _) => (
-    (* ignore all but the first possible split *)
-    case strip_comb split_term of
-    (* ?P (max ?i ?j) = ((?i <= ?j --> ?P ?j) & (~ ?i <= ?j --> ?P ?i)) *)
-      (Const (@{const_name Orderings.max}, _), [t1, t2]) =>
-      let
-        val rev_terms     = rev terms
-        val terms1        = map (subst_term [(split_term, t1)]) rev_terms
-        val terms2        = map (subst_term [(split_term, t2)]) rev_terms
-        val t1_leq_t2     = Const (@{const_name HOL.less_eq},
-                                    split_type --> split_type --> HOLogic.boolT) $ t1 $ t2
-        val not_t1_leq_t2 = HOLogic.Not $ t1_leq_t2
-        val not_false     = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
-        val subgoal1      = (HOLogic.mk_Trueprop t1_leq_t2) :: terms2 @ [not_false]
-        val subgoal2      = (HOLogic.mk_Trueprop not_t1_leq_t2) :: terms1 @ [not_false]
-      in
-        SOME [(Ts, subgoal1), (Ts, subgoal2)]
-      end
-    (* ?P (min ?i ?j) = ((?i <= ?j --> ?P ?i) & (~ ?i <= ?j --> ?P ?j)) *)
-    | (Const (@{const_name Orderings.min}, _), [t1, t2]) =>
-      let
-        val rev_terms     = rev terms
-        val terms1        = map (subst_term [(split_term, t1)]) rev_terms
-        val terms2        = map (subst_term [(split_term, t2)]) rev_terms
-        val t1_leq_t2     = Const (@{const_name HOL.less_eq},
-                                    split_type --> split_type --> HOLogic.boolT) $ t1 $ t2
-        val not_t1_leq_t2 = HOLogic.Not $ t1_leq_t2
-        val not_false     = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
-        val subgoal1      = (HOLogic.mk_Trueprop t1_leq_t2) :: terms1 @ [not_false]
-        val subgoal2      = (HOLogic.mk_Trueprop not_t1_leq_t2) :: terms2 @ [not_false]
-      in
-        SOME [(Ts, subgoal1), (Ts, subgoal2)]
-      end
-    (* ?P (abs ?a) = ((0 <= ?a --> ?P ?a) & (?a < 0 --> ?P (- ?a))) *)
-    | (Const (@{const_name HOL.abs}, _), [t1]) =>
-      let
-        val rev_terms   = rev terms
-        val terms1      = map (subst_term [(split_term, t1)]) rev_terms
-        val terms2      = map (subst_term [(split_term, Const (@{const_name HOL.uminus},
-                            split_type --> split_type) $ t1)]) rev_terms
-        val zero        = Const (@{const_name HOL.zero}, split_type)
-        val zero_leq_t1 = Const (@{const_name HOL.less_eq},
-                            split_type --> split_type --> HOLogic.boolT) $ zero $ t1
-        val t1_lt_zero  = Const (@{const_name HOL.less},
-                            split_type --> split_type --> HOLogic.boolT) $ t1 $ zero
-        val not_false   = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
-        val subgoal1    = (HOLogic.mk_Trueprop zero_leq_t1) :: terms1 @ [not_false]
-        val subgoal2    = (HOLogic.mk_Trueprop t1_lt_zero) :: terms2 @ [not_false]
-      in
-        SOME [(Ts, subgoal1), (Ts, subgoal2)]
-      end
-    (* ?P (?a - ?b) = ((?a < ?b --> ?P 0) & (ALL d. ?a = ?b + d --> ?P d)) *)
-    | (Const (@{const_name HOL.minus}, _), [t1, t2]) =>
-      let
-        (* "d" in the above theorem becomes a new bound variable after NNF   *)
-        (* transformation, therefore some adjustment of indices is necessary *)
-        val rev_terms       = rev terms
-        val zero            = Const (@{const_name HOL.zero}, split_type)
-        val d               = Bound 0
-        val terms1          = map (subst_term [(split_term, zero)]) rev_terms
-        val terms2          = map (subst_term [(incr_boundvars 1 split_term, d)])
-                                (map (incr_boundvars 1) rev_terms)
-        val t1'             = incr_boundvars 1 t1
-        val t2'             = incr_boundvars 1 t2
-        val t1_lt_t2        = Const (@{const_name HOL.less},
-                                split_type --> split_type --> HOLogic.boolT) $ t1 $ t2
-        val t1_eq_t2_plus_d = Const ("op =", split_type --> split_type --> HOLogic.boolT) $ t1' $
-                                (Const (@{const_name HOL.plus},
-                                  split_type --> split_type --> split_type) $ t2' $ d)
-        val not_false       = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
-        val subgoal1        = (HOLogic.mk_Trueprop t1_lt_t2) :: terms1 @ [not_false]
-        val subgoal2        = (HOLogic.mk_Trueprop t1_eq_t2_plus_d) :: terms2 @ [not_false]
-      in
-        SOME [(Ts, subgoal1), (split_type :: Ts, subgoal2)]
-      end
-    (* ?P (nat ?i) = ((ALL n. ?i = int n --> ?P n) & (?i < 0 --> ?P 0)) *)
-    | (Const ("IntDef.nat", _), [t1]) =>
-      let
-        val rev_terms   = rev terms
-        val zero_int    = Const (@{const_name HOL.zero}, HOLogic.intT)
-        val zero_nat    = Const (@{const_name HOL.zero}, HOLogic.natT)
-        val n           = Bound 0
-        val terms1      = map (subst_term [(incr_boundvars 1 split_term, n)])
-                            (map (incr_boundvars 1) rev_terms)
-        val terms2      = map (subst_term [(split_term, zero_nat)]) rev_terms
-        val t1'         = incr_boundvars 1 t1
-        val t1_eq_int_n = Const ("op =", HOLogic.intT --> HOLogic.intT --> HOLogic.boolT) $ t1' $
-                            (Const ("Nat.of_nat", HOLogic.natT --> HOLogic.intT) $ n)
-        val t1_lt_zero  = Const (@{const_name HOL.less},
-                            HOLogic.intT --> HOLogic.intT --> HOLogic.boolT) $ t1 $ zero_int
-        val not_false   = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
-        val subgoal1    = (HOLogic.mk_Trueprop t1_eq_int_n) :: terms1 @ [not_false]
-        val subgoal2    = (HOLogic.mk_Trueprop t1_lt_zero) :: terms2 @ [not_false]
-      in
-        SOME [(HOLogic.natT :: Ts, subgoal1), (Ts, subgoal2)]
-      end
-    (* "?P ((?n::nat) mod (number_of ?k)) =
-         ((number_of ?k = 0 --> ?P ?n) & (~ (number_of ?k = 0) -->
-           (ALL i j. j < number_of ?k --> ?n = number_of ?k * i + j --> ?P j))) *)
-    | (Const ("Divides.div_class.mod", Type ("fun", [Type ("nat", []), _])), [t1, t2]) =>
-      let
-        val rev_terms               = rev terms
-        val zero                    = Const (@{const_name HOL.zero}, split_type)
-        val i                       = Bound 1
-        val j                       = Bound 0
-        val terms1                  = map (subst_term [(split_term, t1)]) rev_terms
-        val terms2                  = map (subst_term [(incr_boundvars 2 split_term, j)])
-                                        (map (incr_boundvars 2) rev_terms)
-        val t1'                     = incr_boundvars 2 t1
-        val t2'                     = incr_boundvars 2 t2
-        val t2_eq_zero              = Const ("op =",
-                                        split_type --> split_type --> HOLogic.boolT) $ t2 $ zero
-        val t2_neq_zero             = HOLogic.mk_not (Const ("op =",
-                                        split_type --> split_type --> HOLogic.boolT) $ t2' $ zero)
-        val j_lt_t2                 = Const (@{const_name HOL.less},
-                                        split_type --> split_type--> HOLogic.boolT) $ j $ t2'
-        val t1_eq_t2_times_i_plus_j = Const ("op =", split_type --> split_type --> HOLogic.boolT) $ t1' $
-                                       (Const (@{const_name HOL.plus}, split_type --> split_type --> split_type) $
-                                         (Const (@{const_name HOL.times},
-                                           split_type --> split_type --> split_type) $ t2' $ i) $ j)
-        val not_false               = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
-        val subgoal1                = (HOLogic.mk_Trueprop t2_eq_zero) :: terms1 @ [not_false]
-        val subgoal2                = (map HOLogic.mk_Trueprop
-                                        [t2_neq_zero, j_lt_t2, t1_eq_t2_times_i_plus_j])
-                                          @ terms2 @ [not_false]
-      in
-        SOME [(Ts, subgoal1), (split_type :: split_type :: Ts, subgoal2)]
-      end
-    (* "?P ((?n::nat) div (number_of ?k)) =
-         ((number_of ?k = 0 --> ?P 0) & (~ (number_of ?k = 0) -->
-           (ALL i j. j < number_of ?k --> ?n = number_of ?k * i + j --> ?P i))) *)
-    | (Const ("Divides.div_class.div", Type ("fun", [Type ("nat", []), _])), [t1, t2]) =>
-      let
-        val rev_terms               = rev terms
-        val zero                    = Const (@{const_name HOL.zero}, split_type)
-        val i                       = Bound 1
-        val j                       = Bound 0
-        val terms1                  = map (subst_term [(split_term, zero)]) rev_terms
-        val terms2                  = map (subst_term [(incr_boundvars 2 split_term, i)])
-                                        (map (incr_boundvars 2) rev_terms)
-        val t1'                     = incr_boundvars 2 t1
-        val t2'                     = incr_boundvars 2 t2
-        val t2_eq_zero              = Const ("op =",
-                                        split_type --> split_type --> HOLogic.boolT) $ t2 $ zero
-        val t2_neq_zero             = HOLogic.mk_not (Const ("op =",
-                                        split_type --> split_type --> HOLogic.boolT) $ t2' $ zero)
-        val j_lt_t2                 = Const (@{const_name HOL.less},
-                                        split_type --> split_type--> HOLogic.boolT) $ j $ t2'
-        val t1_eq_t2_times_i_plus_j = Const ("op =", split_type --> split_type --> HOLogic.boolT) $ t1' $
-                                       (Const (@{const_name HOL.plus}, split_type --> split_type --> split_type) $
-                                         (Const (@{const_name HOL.times},
-                                           split_type --> split_type --> split_type) $ t2' $ i) $ j)
-        val not_false               = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
-        val subgoal1                = (HOLogic.mk_Trueprop t2_eq_zero) :: terms1 @ [not_false]
-        val subgoal2                = (map HOLogic.mk_Trueprop
-                                        [t2_neq_zero, j_lt_t2, t1_eq_t2_times_i_plus_j])
-                                          @ terms2 @ [not_false]
-      in
-        SOME [(Ts, subgoal1), (split_type :: split_type :: Ts, subgoal2)]
-      end
-    (* "?P ((?n::int) mod (number_of ?k)) =
-         ((iszero (number_of ?k) --> ?P ?n) &
-          (neg (number_of (uminus ?k)) -->
-            (ALL i j. 0 <= j & j < number_of ?k & ?n = number_of ?k * i + j --> ?P j)) &
-          (neg (number_of ?k) -->
-            (ALL i j. number_of ?k < j & j <= 0 & ?n = number_of ?k * i + j --> ?P j))) *)
-    | (Const ("Divides.div_class.mod",
-        Type ("fun", [Type ("IntDef.int", []), _])), [t1, t2 as (number_of $ k)]) =>
-      let
-        val rev_terms               = rev terms
-        val zero                    = Const (@{const_name HOL.zero}, split_type)
-        val i                       = Bound 1
-        val j                       = Bound 0
-        val terms1                  = map (subst_term [(split_term, t1)]) rev_terms
-        val terms2_3                = map (subst_term [(incr_boundvars 2 split_term, j)])
-                                        (map (incr_boundvars 2) rev_terms)
-        val t1'                     = incr_boundvars 2 t1
-        val (t2' as (_ $ k'))       = incr_boundvars 2 t2
-        val iszero_t2               = Const ("IntDef.iszero", split_type --> HOLogic.boolT) $ t2
-        val neg_minus_k             = Const ("IntDef.neg", split_type --> HOLogic.boolT) $
-                                        (number_of $
-                                          (Const (@{const_name HOL.uminus},
-                                            HOLogic.intT --> HOLogic.intT) $ k'))
-        val zero_leq_j              = Const (@{const_name HOL.less_eq},
-                                        split_type --> split_type --> HOLogic.boolT) $ zero $ j
-        val j_lt_t2                 = Const (@{const_name HOL.less},
-                                        split_type --> split_type--> HOLogic.boolT) $ j $ t2'
-        val t1_eq_t2_times_i_plus_j = Const ("op =", split_type --> split_type --> HOLogic.boolT) $ t1' $
-                                       (Const (@{const_name HOL.plus}, split_type --> split_type --> split_type) $
-                                         (Const (@{const_name HOL.times},
-                                           split_type --> split_type --> split_type) $ t2' $ i) $ j)
-        val neg_t2                  = Const ("IntDef.neg", split_type --> HOLogic.boolT) $ t2'
-        val t2_lt_j                 = Const (@{const_name HOL.less},
-                                        split_type --> split_type--> HOLogic.boolT) $ t2' $ j
-        val j_leq_zero              = Const (@{const_name HOL.less_eq},
-                                        split_type --> split_type --> HOLogic.boolT) $ j $ zero
-        val not_false               = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
-        val subgoal1                = (HOLogic.mk_Trueprop iszero_t2) :: terms1 @ [not_false]
-        val subgoal2                = (map HOLogic.mk_Trueprop [neg_minus_k, zero_leq_j])
-                                        @ hd terms2_3
-                                        :: (if tl terms2_3 = [] then [not_false] else [])
-                                        @ (map HOLogic.mk_Trueprop [j_lt_t2, t1_eq_t2_times_i_plus_j])
-                                        @ (if tl terms2_3 = [] then [] else tl terms2_3 @ [not_false])
-        val subgoal3                = (map HOLogic.mk_Trueprop [neg_t2, t2_lt_j])
-                                        @ hd terms2_3
-                                        :: (if tl terms2_3 = [] then [not_false] else [])
-                                        @ (map HOLogic.mk_Trueprop [j_leq_zero, t1_eq_t2_times_i_plus_j])
-                                        @ (if tl terms2_3 = [] then [] else tl terms2_3 @ [not_false])
-        val Ts'                     = split_type :: split_type :: Ts
-      in
-        SOME [(Ts, subgoal1), (Ts', subgoal2), (Ts', subgoal3)]
-      end
-    (* "?P ((?n::int) div (number_of ?k)) =
-         ((iszero (number_of ?k) --> ?P 0) &
-          (neg (number_of (uminus ?k)) -->
-            (ALL i. (EX j. 0 <= j & j < number_of ?k & ?n = number_of ?k * i + j) --> ?P i)) &
-          (neg (number_of ?k) -->
-            (ALL i. (EX j. number_of ?k < j & j <= 0 & ?n = number_of ?k * i + j) --> ?P i))) *)
-    | (Const ("Divides.div_class.div",
-        Type ("fun", [Type ("IntDef.int", []), _])), [t1, t2 as (number_of $ k)]) =>
-      let
-        val rev_terms               = rev terms
-        val zero                    = Const (@{const_name HOL.zero}, split_type)
-        val i                       = Bound 1
-        val j                       = Bound 0
-        val terms1                  = map (subst_term [(split_term, zero)]) rev_terms
-        val terms2_3                = map (subst_term [(incr_boundvars 2 split_term, i)])
-                                        (map (incr_boundvars 2) rev_terms)
-        val t1'                     = incr_boundvars 2 t1
-        val (t2' as (_ $ k'))       = incr_boundvars 2 t2
-        val iszero_t2               = Const ("IntDef.iszero", split_type --> HOLogic.boolT) $ t2
-        val neg_minus_k             = Const ("IntDef.neg", split_type --> HOLogic.boolT) $
-                                        (number_of $
-                                          (Const (@{const_name HOL.uminus},
-                                            HOLogic.intT --> HOLogic.intT) $ k'))
-        val zero_leq_j              = Const (@{const_name HOL.less_eq},
-                                        split_type --> split_type --> HOLogic.boolT) $ zero $ j
-        val j_lt_t2                 = Const (@{const_name HOL.less},
-                                        split_type --> split_type--> HOLogic.boolT) $ j $ t2'
-        val t1_eq_t2_times_i_plus_j = Const ("op =",
-                                        split_type --> split_type --> HOLogic.boolT) $ t1' $
-                                       (Const (@{const_name HOL.plus}, split_type --> split_type --> split_type) $
-                                         (Const (@{const_name HOL.times},
-                                           split_type --> split_type --> split_type) $ t2' $ i) $ j)
-        val neg_t2                  = Const ("IntDef.neg", split_type --> HOLogic.boolT) $ t2'
-        val t2_lt_j                 = Const (@{const_name HOL.less},
-                                        split_type --> split_type--> HOLogic.boolT) $ t2' $ j
-        val j_leq_zero              = Const (@{const_name HOL.less_eq},
-                                        split_type --> split_type --> HOLogic.boolT) $ j $ zero
-        val not_false               = HOLogic.mk_Trueprop (HOLogic.Not $ HOLogic.false_const)
-        val subgoal1                = (HOLogic.mk_Trueprop iszero_t2) :: terms1 @ [not_false]
-        val subgoal2                = (HOLogic.mk_Trueprop neg_minus_k)
-                                        :: terms2_3
-                                        @ not_false
-                                        :: (map HOLogic.mk_Trueprop
-                                             [zero_leq_j, j_lt_t2, t1_eq_t2_times_i_plus_j])
-        val subgoal3                = (HOLogic.mk_Trueprop neg_t2)
-                                        :: terms2_3
-                                        @ not_false
-                                        :: (map HOLogic.mk_Trueprop
-                                             [t2_lt_j, j_leq_zero, t1_eq_t2_times_i_plus_j])
-        val Ts'                     = split_type :: split_type :: Ts
-      in
-        SOME [(Ts, subgoal1), (Ts', subgoal2), (Ts', subgoal3)]
-      end
-    (* this will only happen if a split theorem can be applied for which no  *)
-    (* code exists above -- in which case either the split theorem should be *)
-    (* implemented above, or 'is_split_thm' should be modified to filter it  *)
-    (* out                                                                   *)
-    | (t, ts) => (
-      warning ("Lin. Arith.: split rule for " ^ ProofContext.string_of_term ctxt t ^
-               " (with " ^ string_of_int (length ts) ^
-               " argument(s)) not implemented; proof reconstruction is likely to fail");
-      NONE
-    ))
-  )
-end;
-
-(* remove terms that do not satisfy 'p'; change the order of the remaining   *)
-(* terms in the same way as filter_prems_tac does                            *)
-
-fun filter_prems_tac_items (p : term -> bool) (terms : term list) : term list =
-let
-  fun filter_prems (t, (left, right)) =
-    if  p t  then  (left, right @ [t])  else  (left @ right, [])
-  val (left, right) = foldl filter_prems ([], []) terms
-in
-  right @ left
-end;
-
-(* return true iff TRY (etac notE) THEN eq_assume_tac would succeed on a     *)
-(* subgoal that has 'terms' as premises                                      *)
-
-fun negated_term_occurs_positively (terms : term list) : bool =
-  List.exists
-    (fn (Trueprop $ (Const ("Not", _) $ t)) => member (op aconv) terms (Trueprop $ t)
-      | _                                   => false)
-    terms;
-
-fun pre_decomp ctxt (Ts : typ list, terms : term list) : (typ list * term list) list =
-let
-  (* repeatedly split (including newly emerging subgoals) until no further   *)
-  (* splitting is possible                                                   *)
-  fun split_loop ([] : (typ list * term list) list) = ([] : (typ list * term list) list)
-    | split_loop (subgoal::subgoals)                = (
-        case split_once_items ctxt subgoal of
-          SOME new_subgoals => split_loop (new_subgoals @ subgoals)
-        | NONE              => subgoal :: split_loop subgoals
-      )
-  fun is_relevant t  = isSome (decomp ctxt t)
-  (* filter_prems_tac is_relevant: *)
-  val relevant_terms = filter_prems_tac_items is_relevant terms
-  (* split_tac, NNF normalization: *)
-  val split_goals    = split_loop [(Ts, relevant_terms)]
-  (* necessary because split_once_tac may normalize terms: *)
-  val beta_eta_norm  = map (apsnd (map (Envir.eta_contract o Envir.beta_norm))) split_goals
-  (* TRY (etac notE) THEN eq_assume_tac: *)
-  val result         = List.filter (not o negated_term_occurs_positively o snd) beta_eta_norm
-in
-  result
-end;
-
-(* takes the i-th subgoal  [| A1; ...; An |] ==> B  to                       *)
-(* An --> ... --> A1 --> B,  performs splitting with the given 'split_thms'  *)
-(* (resulting in a different subgoal P), takes  P  to  ~P ==> False,         *)
-(* performs NNF-normalization of ~P, and eliminates conjunctions,            *)
-(* disjunctions and existential quantifiers from the premises, possibly (in  *)
-(* the case of disjunctions) resulting in several new subgoals, each of the  *)
-(* general form  [| Q1; ...; Qm |] ==> False.  Fails if more than            *)
-(* !fast_arith_split_limit splits are possible.                              *)
-
-local
-  val nnf_simpset =
-    empty_ss setmkeqTrue mk_eq_True
-    setmksimps (mksimps mksimps_pairs)
-    addsimps [imp_conv_disj, iff_conv_conj_imp, de_Morgan_disj, de_Morgan_conj,
-      not_all, not_ex, not_not]
-  fun prem_nnf_tac i st =
-    full_simp_tac (Simplifier.theory_context (Thm.theory_of_thm st) nnf_simpset) i st
-in
-
-fun split_once_tac ctxt split_thms =
-  let
-    val thy = ProofContext.theory_of ctxt
-    val cond_split_tac = SUBGOAL (fn (subgoal, i) =>
-      let
-        val Ts = rev (map snd (Logic.strip_params subgoal))
-        val concl = HOLogic.dest_Trueprop (Logic.strip_assums_concl subgoal)
-        val cmap = Splitter.cmap_of_split_thms split_thms
-        val splits = Splitter.split_posns cmap thy Ts concl
-        val split_limit = ConfigOption.get ctxt fast_arith_split_limit
-      in
-        if length splits > split_limit then no_tac
-        else split_tac split_thms i
-      end)
-  in
-    EVERY' [
-      REPEAT_DETERM o etac rev_mp,
-      cond_split_tac,
-      rtac ccontr,
-      prem_nnf_tac,
-      TRY o REPEAT_ALL_NEW (DETERM o (eresolve_tac [conjE, exE] ORELSE' etac disjE))
-    ]
-  end;
-
-end;  (* local *)
-
-(* remove irrelevant premises, then split the i-th subgoal (and all new      *)
-(* subgoals) by using 'split_once_tac' repeatedly.  Beta-eta-normalize new   *)
-(* subgoals and finally attempt to solve them by finding an immediate        *)
-(* contradiction (i.e. a term and its negation) in their premises.           *)
-
-fun pre_tac ctxt i =
-let
-  val split_thms = filter is_split_thm (#splits (get_arith_data ctxt))
-  fun is_relevant t = isSome (decomp ctxt t)
-in
-  DETERM (
-    TRY (filter_prems_tac is_relevant i)
-      THEN (
-        (TRY o REPEAT_ALL_NEW (split_once_tac ctxt split_thms))
-          THEN_ALL_NEW
-            (CONVERSION Drule.beta_eta_conversion
-              THEN'
-            (TRY o (etac notE THEN' eq_assume_tac)))
-      ) i
-  )
-end;
-
-end;  (* LA_Data_Ref *)
-
-
-structure Fast_Arith =
-  Fast_Lin_Arith(structure LA_Logic=LA_Logic and LA_Data=LA_Data_Ref);
-
-fun fast_arith_tac ctxt    = Fast_Arith.lin_arith_tac ctxt false;
-val fast_ex_arith_tac      = Fast_Arith.lin_arith_tac;
-val trace_arith            = Fast_Arith.trace;
-
-(* reduce contradictory <= to False.
-   Most of the work is done by the cancel tactics. *)
-
-val init_arith_data =
- Fast_Arith.map_data (fn {add_mono_thms, mult_mono_thms, inj_thms, lessD, ...} =>
-   {add_mono_thms = add_mono_thms @
-    @{thms add_mono_thms_ordered_semiring} @ @{thms add_mono_thms_ordered_field},
-    mult_mono_thms = mult_mono_thms,
-    inj_thms = inj_thms,
-    lessD = lessD @ [thm "Suc_leI"],
-    neqE = [@{thm linorder_neqE_nat}, @{thm linorder_neqE_ordered_idom}],
-    simpset = HOL_basic_ss
-      addsimps
-       [@{thm "monoid_add_class.zero_plus.add_0_left"},
-        @{thm "monoid_add_class.zero_plus.add_0_right"},
-        @{thm "Zero_not_Suc"}, @{thm "Suc_not_Zero"}, @{thm "le_0_eq"}, @{thm "One_nat_def"},
-        @{thm "order_less_irrefl"}, @{thm "zero_neq_one"}, @{thm "zero_less_one"},
-        @{thm "zero_le_one"}, @{thm "zero_neq_one"} RS not_sym, @{thm "not_one_le_zero"},
-        @{thm "not_one_less_zero"}]
-      addsimprocs [ab_group_add_cancel.sum_conv, ab_group_add_cancel.rel_conv]
-       (*abel_cancel helps it work in abstract algebraic domains*)
-      addsimprocs nat_cancel_sums_add}) #>
-  arith_discrete "nat";
-
-val fast_nat_arith_simproc =
-  Simplifier.simproc (the_context ()) "fast_nat_arith"
-    ["(m::nat) < n","(m::nat) <= n", "(m::nat) = n"] (K Fast_Arith.lin_arith_simproc);
-
-(* Because of fast_nat_arith_simproc, the arithmetic solver is really only
-useful to detect inconsistencies among the premises for subgoals which are
-*not* themselves (in)equalities, because the latter activate
-fast_nat_arith_simproc anyway. However, it seems cheaper to activate the
-solver all the time rather than add the additional check. *)
-
-
-(* arith proof method *)
-
-local
-
-fun raw_arith_tac ctxt ex =
-  (* FIXME: K true should be replaced by a sensible test (perhaps "isSome o
-     decomp sg"? -- but note that the test is applied to terms already before
-     they are split/normalized) to speed things up in case there are lots of
-     irrelevant terms involved; elimination of min/max can be optimized:
-     (max m n + k <= r) = (m+k <= r & n+k <= r)
-     (l <= min m n + k) = (l <= m+k & l <= n+k)
-  *)
-  refute_tac (K true)
-    (* Splitting is also done inside fast_arith_tac, but not completely --   *)
-    (* split_tac may use split theorems that have not been implemented in    *)
-    (* fast_arith_tac (cf. pre_decomp and split_once_items above), and       *)
-    (* fast_arith_split_limit may trigger.                                   *)
-    (* Therefore splitting outside of fast_arith_tac may allow us to prove   *)
-    (* some goals that fast_arith_tac alone would fail on.                   *)
-    (REPEAT_DETERM o split_tac (#splits (get_arith_data ctxt)))
-    (fast_ex_arith_tac ctxt ex);
-
-fun more_arith_tacs ctxt =
-  let val tactics = #tactics (get_arith_data ctxt)
-  in FIRST' (map (fn ArithTactic {tactic, ...} => tactic) tactics) end;
-
-in
-
-fun simple_arith_tac ctxt = FIRST' [fast_arith_tac ctxt,
-  ObjectLogic.full_atomize_tac THEN' (REPEAT_DETERM o rtac impI) THEN' raw_arith_tac ctxt true];
-
-fun arith_tac ctxt = FIRST' [fast_arith_tac ctxt,
-  ObjectLogic.full_atomize_tac THEN' (REPEAT_DETERM o rtac impI) THEN' raw_arith_tac ctxt true,
-  more_arith_tacs ctxt];
-
-fun silent_arith_tac ctxt = FIRST' [fast_arith_tac ctxt,
-  ObjectLogic.full_atomize_tac THEN' (REPEAT_DETERM o rtac impI) THEN' raw_arith_tac ctxt false,
-  more_arith_tacs ctxt];
-
-fun arith_method src =
-  Method.syntax Args.bang_facts src
-  #> (fn (prems, ctxt) => Method.METHOD (fn facts =>
-      HEADGOAL (Method.insert_tac (prems @ facts) THEN' arith_tac ctxt)));
-
-end;
-
+(* FIXME dead code *)
 (* antisymmetry:
    combines x <= y (or ~(y < x)) and y <= x (or ~(x < y)) into x = y
 
@@ -1036,17 +209,6 @@
 end;
 *)
 
-(* theory setup *)
+end;
 
-val arith_setup =
-  init_arith_data #>
-  Simplifier.map_ss (fn ss => ss
-    addsimprocs (nat_cancel_sums @ [fast_nat_arith_simproc])
-    addSolver (mk_solver' "lin. arith." Fast_Arith.cut_lin_arith_tac)) #>
-  Context.mapping
-   (LA_Data_Ref.setup_options #>
-    Method.add_methods
-      [("arith", arith_method,
-        "decide linear arithmethic")] #>
-    Attrib.add_attributes [("arith_split", Attrib.no_args arith_split_add,
-      "declaration of split rules for arithmetic procedure")]) I;
+open ArithData;