--- a/src/ZF/Constructible/Reflection.thy Tue Jul 30 11:38:33 2002 +0200
+++ b/src/ZF/Constructible/Reflection.thy Tue Jul 30 11:39:57 2002 +0200
@@ -40,13 +40,20 @@
defines "F0(P,y) == \<mu>b. (\<exists>z. M(z) \<and> P(<y,z>)) -->
(\<exists>z\<in>Mset(b). P(<y,z>))"
and "FF(P) == \<lambda>a. \<Union>y\<in>Mset(a). F0(P,y)"
- and "ClEx(P) == \<lambda>a. Limit(a) \<and> normalize(FF(P),a) = a"
+ and "ClEx(P,a) == Limit(a) \<and> normalize(FF(P),a) = a"
lemma (in reflection) Mset_mono: "i\<le>j ==> Mset(i) <= Mset(j)"
apply (insert Mset_mono_le)
apply (simp add: mono_le_subset_def leI)
done
+text{*Awkward: we need a version of @{text ClEx_def} as an equality
+ at the level of classes, which do not really exist*}
+lemma (in reflection) ClEx_eq:
+ "ClEx(P) == \<lambda>a. Limit(a) \<and> normalize(FF(P),a) = a"
+by (simp add: ClEx_def [symmetric])
+
+
subsection{*Easy Cases of the Reflection Theorem*}
theorem (in reflection) Triv_reflection [intro]:
@@ -157,7 +164,7 @@
text{*...and it is closed and unbounded*}
lemma (in ex_reflection) ZF_Closed_Unbounded_ClEx:
"Closed_Unbounded(ClEx(P))"
-apply (simp add: ClEx_def)
+apply (simp add: ClEx_eq)
apply (fast intro: Closed_Unbounded_Int Normal_imp_fp_Closed_Unbounded
Closed_Unbounded_Limit Normal_normalize)
done
@@ -176,13 +183,20 @@
apply (simp_all add: Mset_mono_le Mset_cont Pair_in_Mset)
done
+(*Alternative proof, less unfolding:
+apply (rule Reflection.ZF_ClEx_iff [of Mset _ _ Cl, folded M_def])
+apply (fold ClEx_def FF_def F0_def)
+apply (rule ex_reflection.intro, assumption)
+apply (simp add: ex_reflection_axioms.intro, assumption+)
+*)
+
lemma (in reflection) Closed_Unbounded_ClEx:
"(!!a. [| Cl(a); Ord(a) |] ==> \<forall>x\<in>Mset(a). P(x) <-> Q(a,x))
==> Closed_Unbounded(ClEx(P))"
-apply (unfold ClEx_def FF_def F0_def M_def)
-apply (rule ex_reflection.ZF_Closed_Unbounded_ClEx
- [OF ex_reflection.intro, OF reflection.intro ex_reflection_axioms.intro])
-apply (simp_all add: Mset_mono_le Mset_cont Pair_in_Mset)
+apply (unfold ClEx_eq FF_def F0_def M_def)
+apply (rule Reflection.ZF_Closed_Unbounded_ClEx [of Mset _ _ Cl])
+apply (rule ex_reflection.intro, assumption)
+apply (blast intro: ex_reflection_axioms.intro)
done
subsection{*Packaging the Quantifier Reflection Rules*}